Journal Article

Local identification of nonparametric and semiparametric models

Authors

Xiaohong Chen, Victor Chernozhukov, Sokbae (Simon) Lee, Whitney K. Newey

Published Date

1 March 2014

Type

Journal Article

In parametric, nonlinear structural models, a classical sufficient condition for local identification, like Fisher (1966) and Rothenberg (1971), is that the vector of moment conditions is differentiable at the true parameter with full rank derivative matrix. We derive an analogous result for thenonparametric, nonlinear structural models, establishing conditions under which an infinite dimensional analog of the full rank condition is sufficient for local identification. Importantly, we show that additional conditions are often needed in nonlinear, nonparametric models to avoid nonlinearities overwhelming linear effects. We give restrictions on a neighborhood of the true value that are sufficient for local identification. We apply these results to obtain new, primitive identification conditions in several important models, including nonseparable quantile instrumental variable (IV) models and semiparametric consumption-based asset pricing models.


Previous version

Local identification of nonparametric and semiparametric models
Xiaohong Chen, Victor Chernozhukov, Sokbae (Simon) Lee, Whitney K. Newey
CWP37/12