Working Paper

Linear regression for panel with unknown number of factors as interactive fixed effects

Authors

Hyungsik Roger Roger Moon, Martin Weidner

Published Date

21 August 2014

Type

Working Paper (CWP35/14)

In this paper we study the least squares (LS) estimator in a linear panel regression model with unknown number of factors appearing as interactive fixed e ffects. Assuming that the number of factors used in estimation is larger than the true number of factors in the data we establish the limiting distribution of the LS estimator for the regression coefficients, as the number of time periods and the number of crosssectional units jointly go to infinity. The main result of the paper is that under certain assumptions the limiting distribution of the LS estimator is independent of the number of factors used in the estimation, as long as this number is not underestimated. The important practical implication of this result is that for inference on the regression coefficients one does not necessarily need to estimate the number of interactive fixed eff ects consistently.

Supplementary material for this paper is available here.


Latest version

Previous version