centre for microdata methods and practice

ESRC centre

cemmap is an ESRC research centre

ESRC

Keep in touch

Subscribe to cemmap news

The sorted effects method: discovering heterogeneous effects beyond their averages

Authors: Victor Chernozhukov , Ivan Fernandez-Val and Ye Luo
Date: 21 December 2015
Type: cemmap Working Paper, CWP74/15
DOI: 10.1920/wp.cem.2015.7415

Abstract

The partial (ceteris paribus) effects of interest in nonlinear and interactive linear models are heterogeneous as they can vary dramatically with the underlying observed or unobserved covariates. Despite the apparent importance of heterogeneity, a common practice in modern empirical work is to largely ignore it by reporting average partial effects (or, at best, average effects for some groups, see e.g. Angrist and Pischke (2008)). While average effects provide very convenient scalar summaries of typical effects, by definition they fail to reflect the entire variety of the heterogenous effects. In order to discover these effects much more fully, we propose to estimate and report sorted effects – a collection of estimated partial effects sorted in increasing order and indexed by percentiles. By construction the sorted effect curves completely represent and help visualize all of the heterogeneous effects in one plot. They are as convenient and easy to report in practice as the conventional average partial effects. We also provide a quantification of uncertainty (standard errors and confidence bands) for the estimated sorted effects. We apply the sorted effects method to demonstrate several striking patterns of gender-based discrimination in wages, and of race-based discrimination in mortgage lending.

Using differential geometry and functional delta methods, we establish that the estimated sorted effects are consistent for the true sorted effects, and derive asymptotic normality and bootstrap approximation results, enabling construction of pointwise confidence bands (point-wise with respect to percentile indices). We also derive functional central limit theorems and bootstrap approximation results, enabling construction of simultaneous confidence bands (simultaneous with respect to percentile indices). The derived statistical results in turn rely on establishing Hadamard differentiability of the multivariate sorting operator, a result of independent mathematical interest.

Download full version

Publications feeds

Subscribe to cemmap working papers via RSS

Search cemmap

Search by title, topic or name.

Contact cemmap

Centre for Microdata Methods and Practice

How to find us

Tel: +44 (0)20 7291 4800

E-mail us