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The aim of this paper is to provide simple nonparametric methods to estimate finite-mixture
models from data with repeated measurements. Three measurements suffice for the mixtures to
be fully identified and so our approach can be used even with very short panel data. We provide
distribution theory for estimators of the number of mixture components, the mixing proportions,
as well as of the mixture distributions and various functionals thereof. These estimators are
found to perform well in a series of Monte Carlo exercises. We apply our techniques to document
heterogeneity in log annual earnings using PSID data spanning the period 1969–1998.
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i introduction

Finite mixtures encompass a large class of models. Popular applications include modeling

unobserved heterogeneity, performing factor analysis and ecological inference, as well as

dealing with corrupted data and misclassified observations. We refer to Henry, Kitamura,

and Salanié (2011) for illustrations of mixture models in economics and to McLachlan and

Peel (2000) for a treatment at booklength. The conventional approach to inference in

finite mixtures is parametric—i.e., by specifying the distribution function of the outcome

of interest, say y, conditional on a discrete latent variable, say x, up to a finite-dimensional

parameter—with identification being driven fully by functional form. Only few results on

the nonparametric identifiability and estimability of mixtures have so far been obtained,

and our aim here is to contribute to their development.

In line with the seminal work of Hall and Zhou (2003), our analysis relies on the

availability of repeated measurements on y. These measurements—which could be collected

either contemporaneously or over time, as with panel data, for example—are assumed to

be independent and identically distributed conditional on x.1 Our arguments yield point

identification of the number of component mixtures, the component distributions, and the
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mixing proportions when three or more repeated measurements are available when a rank

condition involving the component distributions is satisfied. Our approach to identification

is constructive, and the resulting estimators are attractive from a computational point of

view and have desirable large-sample properties.

For brevity, throughout, we focus on the case where the outcome variable exhibits

continuous variation. Nevertheless, our methods can equally be applied when y is a discrete

random variable, allowing for the number of support points to grow with the sample size.

Our analysis is based on projections of the marginal densities and component mixtures

into a basis of functions. We show that the mixture structure imposes a set of linear

restrictions on the (generalized) Fourier coefficients of these densities. When the coefficients

of the component densities are linearly independent, the number of component mixtures

is identified as the rank of the matrix containing the Fourier coefficients of the bivariate

marginal density. Further, the coefficients themselves are identified as the eigenvalues of a

sequence of whitened matrices of Fourier coefficients of the trivariate marginal density. The

mixing proportions are then readily pinned down as the unique minimizers of a minimum-

distance criterion.

We propose estimating the number of components by sequentially testing the rank of

an empirical analog of the matrix of bivariate Fourier coefficients and show consistency of

the resulting point estimate. To estimate the component densities, we employ an algorithm

for the joint approximate-diagonalization of a set of eigenmatrices developed by Cardoso

and Souloumiac (1993). We derive both mean integrated square error (MISE) and uniform

convergence rates, and provide conditions for pointwise asymptotic normality. Interest-

ingly, the convergence rates coincide with those that would be obtained when data could

be sampled directly from the component densities, and are optimal in the MISE sense for

a variety of basis functions. A least-squares type estimator for the mixing proportions that

converges at the parametric rate is then readily constructed. We also present distribution

theory for GMM estimators of finite-dimensional parameters defined through conditional

moment restrictions involving the component mixtures; prime examples of such estimands

are their respective moments.

Our identification analysis is related to a recent independent contribution by Kasahara

and Shimotsu (2010). However, first, we work with a projection of the relevant densities into

a basis of functions while they employ a discretization argument to achieve identification

when the outcome is continuous. Second, we explicitely use our identification arguments to

construct estimators of the component mixtures and their functionals, and of the mixing

proportions. Our estimators also complement and extend the work by Hall, Neeman,

Pakyari, and Elmore (2005), who proposed a nonparametric approach to estimate bivariate
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mixtures. An advantage of our procedure is that it readily accommodates general K-variate

mixtures, and this at no increase in computational cost.

The remainder of the paper is organized as follows. Section 2 formalizes our setup

and presents our identification results. Section 3 contains an exposition of the resulting

estimators and their large-sample properties. Section 4 provides simulation evidence on

the performance of the various estimators. Section 5 investigates the presence of hetero-

geneity in male earnings. Two appendices collect auxiliary lemmata and technical proofs,

respectively.

ii identification

Let x be a latent random variable with probability mass function (PMF) $ : X 7→ [0, 1],

where X ≡ {x1, x2, . . . , xK} for an integer K. Let ~yT ≡ (y1, y2, . . . , yT )′ be a vector of

repeated measurements on an observable outcome variable y whose marginal probability

density function (PDF) takes the form

f(y1, . . . , yT ) =
K∑
k=1

{ T∏
t=1

fk(yt)
}
ωk. (2.1)

where ωk ≡ $(xk) and fk : Y 7→ F denotes the PDF of y conditional on x = xk.

Equalizing the support and image of the various fk is without loss of generality.

Throughout this section we set T = 3, which suffices for identification.2 Let L2[S ]

denote the set of functions that are square-integrable on the space S , that is, the set of

functions g for which ‖g‖2 ≡
∫

S
|g(ε)|2 dε < ∞.3 We restrict attention to the class of

functions that satisfy the following regularity conditions.

Assumption 2.1 (Regularity). The intervals Y and F are, respectively, compact and

bounded, and fk ∈ L2[Y ] for all k = 1, 2, . . . , K.

The demand for Y to be compact could be relaxed. However, if the outcome of interest, say

y∗, takes values on the real line, for example, we may always consider a strictly-monotonic

function h : R 7→ Y and work with the transformation y = h(y∗). With Y = [0, 1],

for example, a simple choice for h would be a logistic CDF. Square-integrability validates

a generalized Fourier expansion in a basis of functions, which is key for our subsequent

developments.

2Non-trivial bounds on the component mixtures when T = K = 2 are given by Hall and Zhou (2003).
3We will use |ε| to denote the absolute value when ε is a real number and the cardinality when ε is a

set. The notation ‖ε‖ will be reserved for the Euclidean norm when ε is a vector and for the matrix norm
when ε is a matrix.
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Let {χj, j ≥ 1} be a complete orthonormal basis for L2[Y ]. For any integer J , the

generalized Fourier approximation of fk(y) is given by the projection of the density onto

the subspace spanned by χ1, χ2, . . . , χJ , that is,

fk(y; J) ≡
J∑
j=1

γkjχj(y), γki ≡
∫

Y

χj(ε)fk(ε) dε, (2.2)

and satisfies limJ→∞‖fk(y; J)− fk(y)‖2 = 0.

Let χi1...iD ≡ ΠD
d=1χid . Then {χi1...iD , i1, . . . , iD ≥ 1} forms a complete orthogonal

(tensor-product) basis for L2[Y D]. Hence, we may define a truncated series expansion of

the univariate marginal density as

f(y; I) ≡
I∑
i=1

σiχi(y), σi ≡
∫

Y

χi(ε)f(ε) dε,

as well as of the bivariate and trivariate marginal densities, as

f(y1, y2; I) ≡
I∑

i1=1

I∑
i2=1

σi1i2χi1i2(y1, y2),

f(y1, y2, y3; I, J) ≡
I∑

i1=1

I∑
i2=1

J∑
j=1

σi1i2jχi1i2j(y1, y2, y3),

where, for example, σi1i2 ≡
∫∫

Y 2 χi1i2(ε1, ε2)f(ε1, ε2) dε1dε2. The distinction between I and

J is not important for identification but will matter for estimation, where I will be kept

fixed and J will grow with the sample size.

Observe that, given a choice of basis functions, knowledge of the sequence of Fourier

coefficients implies identification of the corresponding PDF, and vice versa. In our setup,

while the data does not directly nonparametrically identify {γkj, j ≥ 1}, they do reveal

the sequences {σi, i ≥ 1}, {σi1i2 , i1, i2 ≥ 1}, and {σi1i2j, i1, i2, j ≥ 1}, while the mixture

structure implies the set of linear restrictions

σi1 =
K∑
k=1

γki1 ωk, σi1i2 =
K∑
k=1

γki1γki2 ωk, σi1i2j =
K∑
k=1

γki1γki2γkj ωk, (2.3)

for all i1, i2, j. The relations in (2.3) imply identification of the component mixtures and

associated mixing proportions (up to an arbitrary relabeling) under a weak restriction.

To discuss identification, it is useful to write the restrictions in matrix form. For any

I, let

Γ ≡


γ11 γ12 · · · γ1K

γ21 γ22 · · · γ2K
...

...
. . .

...
γI1 γI2 · · · γIK

 ,
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be the I × K matrix whose kth column contains the first I Fourier coefficients of fk.

Similarly, let σ ≡ (σ1, σ2, . . . , σI)
′ and introduce the J + 1 symmetric I × I matrices

Σ0 ≡


σ11 σ12 · · · σ1I

σ21 σ22 · · · σ2I
...

...
. . .

...
σI1 σI2 · · · σII

 , Σj ≡


σ11j σ12j · · · σ1Ij

σ21j σ22j · · · σ2Ij
...

...
. . .

...
σI1j σI2j · · · σIIj

 ,

containing the Fourier coefficients of the bivariate and of the trivariate marginal PDF,

respectively. Then (2.3) can be equivalently expressed as

Σ0 = ΓΩΓ′, Σj = ΓΩ1/2∆jΩ
1/2Γ′, j = 1, 2, . . . , J, (2.4)

where Ω ≡ diag[ω] = diag[ω1, ω2, . . . , ωK ] and ∆j ≡ diag[γ1j, γ2j, . . . , γKj] for each j =

1, 2, . . . , J .

Identification rests on the following assumption.

Assumption 2.2 (Rank condition). rank[Γ] = K and det[Ω] > 0.

The assumption of maximal column rank imposes absence of multicolinearity among the

Fourier coefficients of the component mixtures and is intuitive. Clearly, it requires that

I ≥ K. Note, however, that the rank condition implicitly limits the support set of the PMF

$. To see why, note that the L2-convergence of fk(y; I) in (2.2) requires the γki to shrink to

zero as i→∞ (by Parseval’s identity; see below), so that I cannot be set without bound to

make rank[Γ] = K hold. The demand for Ω to be invertible is equivalent to imposing $ to

have K support points, and thus ensures that (2.1) is a proper (multivariate) K-component

mixture.

Theorem 2.1 follows.

Theorem 2.1 (Identification). (i) The number of mixture components, (ii) the component

mixtures, and (iii) the mixing proportions are all nonparametrically identified, where (ii)

and (iii) are up to arbitrary relabeling of the components.

The proof to Theorem 2.1 is constructive. By Assumption 2.2, the matrix Σ0, which is

real and symmetric, has rank K. As this matrix is nonparametrically identified, so is its

rank and, hence, the number of mixture components. This establishes Theorem 2.1(i).

Continuing on, Σ0 admits the spectral decomposition

Σ0 = ΥΛΥ′, Υ ≡ (υ1, υ2, . . . , υK), Λ ≡ diag[λ1, λ2, . . . , λK ],
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where the K eigenvalues λ1, λ2, . . . , λK are all positive, real, and have multiplicity one, and

where the corresponding eigenvectors υ1, υ2, . . . , υK are linearly independent. By construc-

tion, Σ0 can be transformed to the identity matrix through pre- and post multiplication

with the matrices Θ ≡ Λ−1/2Υ′ and Θ′, respectively. Moreover, from (2.4), we obtain

ΘΣ0Θ′ = IK = ΞΞ′, Ξ ≡ ΘΓΩ1/2.

Note that, by Assumption 2.2, Ξ is a K × K orthonormal matrix of full rank. Now, on

transforming Σj in the same way, we obtain

kj ≡ ΘΣjΘ
′ = Ξ∆jΞ

′.

That is, the sequence of matrices {kj, j ≥ 1} is simultaneously diagonalizable in the same

basis (namely, the columns of Ξ). The eigenvalue of kj corresponding to its kth eigenvector

equals γkj, the jth Fourier coefficient of fk. Hence, fk(y; J) is identified for any J , which

implies that fk is identified on Y for all k = 1, 2, . . . , K; recall the convergence results under

(2.2). Identification is achieved up to arbitrary relabeling only because the eigenvectors can

be rearranged without affecting the argument. This establishes Theorem 2.1(ii). Finally,

consider the metric DF(g1, g2) ≡
∫ +∞
−∞ [g1(ε) − g2(ε)]2 dF(ε) for some weight function F .

Then it is easy to show that ω uniquely minimizes DF(f(·; I),
∑

kfk(·; I)wk) with respect

to w1, w2, . . . , wK . For example, on introducing w = (w1, w2, . . . , wK)′ and setting F to

the uniform measure on Y ,

DF(f(·; I),
∑

kfk(·; I)wk) = ‖f(y)−
∑

kfk(y; I)wk‖2
2 = (σ − Γw)′(σ − Γw),

where the last transition follows from orthogonality of the basis functions. As the columns

of Γ are linearly independent, Γ′Γ has full rank, and ω = (Γ′Γ)−1Γ′σ follows. Because Γ is

identified, so is ω. This establishes Theorem 2.1(iii).4

Knowledge of the component mixtures implies identification of all their functionals.

Theorem 2.2 provides one possible representation of this result that is particularly useful

for the purpose of estimation. To state it, we introduce the functions

τk(ε) ≡
fk(ε)

f(ε)
=

fk(ε)∑K
k′=1 fk′(ε) ωk′

k = 1, 2, . . . , K,

identification of which follows immediately from Theorem 2.1.

4We note that Theorem 2.1(iii) may also be established from the equality Ξ = ΘΓΩ1/2, which implies
that Ω−1/2 = Ξ′ΘΓ. However, we prefer our exposition here, as the minimum-distance argument allows
the construction of a variety of different estimators, by varying the weight function F .
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Theorem 2.2 (Functionals). For any measurable function g of y whose expectation under

fk exists,

E[g(y)|x = xk] = E[g(y)τk(y)]

for each k = 1, 2, . . . , K. Furthermore, the function τk and, therefore, all the functionals

are nonparametrically identified.

Theorem 2.2 is instrumental in inferring a parameter ϑ0 defined through moment conditions

of the form

E[g(y;ϑ0)|x = xk] = 0

for a known measurable function g.

The weight function τk is interesting in its own right. More precisely, πk(ε) ≡ ωkτk(ε) =

E[1{x = xk}|y = ε], the probability that x = xk given that y = ε. This is a key object of

interest in latent-class analysis, allowing classification of observations based on marginal

information.

iii estimation

In this section we construct estimators based on the identification arguments laid out

above. For ~ynT ≡ (yn1, yn2, . . . , ynT )′, let {~ynT , n = 1, 2, . . . , N} denote a sample of size N

drawn at random from f(~yT ). Throughout, we assume that T ≥ 3, keep I fixed to a chosen

value, and let the truncation parameter J grow with the sample size. Admissible rates on

J will be stated below.

3.1 Number of component mixtures

Let %D be the set of D-tuples of distinct integers from the set {1, 2, . . . , T}. On invoking

symmetry, an estimator of σi1...iD for any D is given by the sample average

σ̂i1...iD ≡
1

N

1

|%D|

N∑
n=1

∑
(t1,t2,...,tD)∈%D

χi1...iD(ynt1 , ynt2 , . . . , yntD), (3.1)

and is
√
N -consistent and asymptotically normal.

Use (3.1) with D = 2 to construct an estimator of Σ0, say Σ̂0. Then Σ̂0 is
√
N -consistent

and asymptotically normal, that is,

√
Nvec[Σ̂0 − Σ0]

L→ N (0,VΣ0), VΣ0 ≡ E[ψΣ0(~yT )ψΣ0(~yT )′],

with a typical element of the vector ψΣ0(~yT ) being |%2|−1
∑

(t1,t2)∈%2 χi1i2(yt1 , yt2) − σi1i2 .

InferringK then boils down to testing the rank of this matrix, which can be done by any of a
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number of approaches. The procedure by Kleibergen and Paap (2006) has several attractive

features and therefore carries our preference.5 To describe it, fix κ ∈ {0, 1, . . . , I − 1} and

let ΛI−κ denote the lower-right (I −κ)× (I −κ) block of the matrix of eigenvalues of Σ0.

Write (z′κ,z′I−κ)′ for the corresponding I × (I −κ) matrix of eigenvectors, where zI−κ is

(I − κ)× (I − κ). Let ϕκ ≡ vec[zI−κΣ0z′I−κ] for zI−κ ≡ (zI−κz′I−κ)1/2z−1′
I−κ[z′κ

...z′I−κ].

Then, if rank[Σ0] = K ≤ κ, ΛI−κ = 0 and

r̂κ ≡ N |%2|ϕ̂κV̂ −1
ϕκ ϕ̂κ

L→ χ2
(
(I −κ)2

)
, Vϕκ ≡ (zI−κ ⊗zI−κ)VΣ0(z

′
I−κ ⊗z′I−κ), (3.2)

where ϕ̂κ is the sample analog of ϕκ and V̂ϕκ is a consistent estimator of Vϕκ . The

rank statistic r̂κ can be used to test the null H0 : rank[Σ0] = κ against the alternative

H1 : rank[Σ0] > κ.

Furthermore, the statistic in (3.2) also leads to a consistent estimator of K, based on a

sequential testing procedure. Following Robin and Smith (2000), let

K̂ ≡ min
κ∈{0,1,...,I−1}

{
κ : r̂k ≥ p1−α(k), k = 0, 1, . . . ,κ − 1, r̂κ < p1−α(κ)

}
, (3.3)

for p1−α(ε) the 100(1 − α)th percentile of the χ2((I − ε)2) distribution and α = α(N) a

chosen significance level. That is, K̂ is the first integer for which we fail to reject the null

at significance level α.

Theorem 3.1 (Number of components). Let α→ 0 and − logα/N → 0 as N →∞. Then

K̂
P→ K.

Our estimator of K is similar to the recent proposal of Kasahara and Shimotsu (2010).

Their approach is based on a partitioning of the Cartesian square Y × Y into a set of

subplanes, say, {Hh1 ×Hh2 , h1 = 1, 2, . . . , H1;h2 = 1, 2, . . . , H2} for some integer values

H1 and H2. Their estimator is then constructed as discussed above, with Σ̂0 replaced by a

nonparametric estimator of the H1×H2 matrix whose (h1, h2)th entry is the cell probability

E[1{(y1, y2) ∈Hh1 ×Hh2}].

3.2 Component mixtures

We next turn to estimation of the conditional densities (i.e., fk, k = 1, 2, . . . , K). Dealing

with the pretesting problem that arises from utilizing K̂ rather than K is a problem beyond

the scope of this paper and so, throughout the remainder of this section, we take K as

given.

5Kleibergen and Paap (2006) [Section 3] discuss the relative merits of their test statistic. Prime
advantages include its non-sensitivity to the ordering of variables and the fact that its limit distribution
under the null is a Chi-squared distribution, which is free of nuisance parameters.
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Let Θ̂ be the sample counterpart to Θ, constructed from the spectral decomposition of

Σ̂0. For j = 1, 2, . . . , J , let Σ̂j be an estimator of Σj; Σ̂j can be computed as before, using

(3.1) for D = 3. On subsequently forming k̂j ≡ Θ̂Σ̂jΘ̂
′, our estimator of ∆j is

∆̂j ≡ Ξ̂′k̂jΞ̂, Ξ̂ ≡ arg min
X∈O(K)

J∑
j=1

off
[
X ′k̂jX

]
, (3.4)

where O(K) denotes the set of orthonormal matrices of dimension K×K and the function

off[·] maps a square matrix into the sum of its squared off-diagonal elements. For fixed

y ∈ Y , our estimator of fk(y) (k = 1, 2, . . . , K) then reads

f̂k(y) ≡
J∑
j=1

γ̂kjχj(y), (3.5)

where γ̂kj ≡ q′kvec[∆̂j] and qk denotes the kth column of the selection matrix Q, which is

defined as the K2 ×K matrix whose transpose turns a K ×K matrix into a K × 1 vector

containing only its diagonal elements.

It is important to note that estimation is not based on the eigenspectra of the individual

matrices {k̂j, j = 1, 2, . . . , J}. Although the set {kj, j ≥ 1} all share the same eigenvectors,

sampling error will imply that the eigenvectors of k̂j1 and k̂j2 will all be different for each

j1 6= j2. In small samples this is problematic. Rather, our estimator of Ξ in (3.4) is defined

as that X ∈ O(K) that makes the set {X ′k̂jX, j = 1, 2, . . . , J} as diagonal as possible.6

It is attractive from an efficiency point of view, as it correctly utilizes the restriction that

the {kj, j ≥ 1} do share the same eigenvectors. Nevertheless, in any finite sample, it will

typically not correspond to the eigenvectors of any of the k̂j. The estimator Ξ̂ can easily be

computed using the algorithm for the joint approximate-diagonalization of eigenmatrices

(JADE) developed by Cardoso and Souloumiac (1993). JADE is fast and straightforward

to implement.

The following high-level assumption is conventional in nonparametric curve estimation

by series expansions and is compatible with a large variety of basis functions.

Assumption 3.1 (Smoothness). For each k = 1, 2, . . . , K, fk is absolutely continuous and

of bounded variation on Y , and ‖fk(y; J)− fk(y)‖2 = O(J−β) for some β ≥ 1.

Assumption 3.1 can be motivated through a smoothness condition on the function fk,

demanding it to be β-smooth, and may be interpreted as a restriction on the shrinkage

6More precisely, minimizing the criterion defined in (3.4) is equivalent to solving the least-squares

problem minX∈O(K),Lj∈L(K)

∑J
j=1‖k̂j−XLjX

′‖2F , where L(K) is the set of K×K diagonal matrices and
‖·‖F is the Frobenius norm.
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rate of the generalized Fourier coefficients, through Parseval’s identity; see. e.g., Efromovich

(1999) [Chapter 2] for an elegant exposition and Chen (2007) for illustrations with specific

basis functions. We remark that demanding a certain degree of smoothness from the

component mixtures is substantially less demanding than is requesting the same from the

marginal density. The mixing will typically create nonsmoothness, even if the components

are all smooth.

Consistent estimation requires the truncation parameter J to grow with the sample

size. The (uniform) convergence speed depends on the basis functions used. To be able

to proceed with a generic set of basis functions, let ζ(J) denote a sequence of constants

satisfying supy∈Y ‖XJ(y)‖ ≤ ζ(J), where XJ(y) ≡ (χ1(y), χ2(y), . . . , χJ(y))′. For example,

when orthonormal polynomials—e.g., Chebychev, Jacobi, or Legendre polynomials—are

used, ζ(J) ∝ J . On using splines, ζ(J) ∝
√
J . See, e.g., Newey (1997) or Chen (2007) for

additional discussion.

Assumption 3.2 (Truncation). The integer sequence J grows so that (i) ζ(J)J2/N → 0

and (ii) ζ(J)2J2β/N →∞ as N →∞.

Assumption 3.2(i) is needed for consistency. Assumption 3.2(ii) will ensure that the limit

distribution of the component mixtures at a fixed point is correctly centered. Of course,

β in Assumption 3.1 could be allowed to vary with k, which would subsequently allow the

truncation parameter associated with each component mixture to grow at a different rate.

Theorem 3.2 provides mean integrated squared error (MISE) and uniform convergence

rates for the estimator of the component mixtures.

Theorem 3.2 (Component mixtures: convergence rates). The estimator of the component

mixture satisfies

E
∥∥f̂k(y)− fk(y)

∥∥2

2
= OP

(
J/N + J−2β

)
, sup

y∈Y

∣∣f̂k(y)− fk(y)
∣∣ = OP

(
ζ(J)[

√
J/
√
N + J−β]

)
,

for each k = 1, 2, . . . , K.

The rates in Theorem 3.2 equal the conventional univariate rates of nonparametric series

estimators; see, e.g., Newey (1997). The MISE rate is known to be optimal for power series

and splines in the sense that it achieves Stone’s (1982) bound.

Theorem 3.3 below presents the pointwise limit distribution of the estimator of the kth

component mixture. The proof to the theorem shows that

f̂k(y)− fk(y ; J) = N−1

N∑
n=1

ψfk(~ynT ) +OP (1/
√
N),

[10]



where y ∈ Y is a chosen value and where

ψfk(~ynT ) ≡ |%3|−1
∑

(t1,t2,t3)∈%3

[
τ k(ynt1 , ynt2)κJ(ynt3 ; y)− E[τ k(yt1 , yt2)κJ(yt3 ; y)]

]
, (3.6)

whose dependence on y is kept implicit. Here,

τ k(y1, y2) ≡
I∑

i1=1

I∑
i2=1

ξ′kθi1χi1(y1)χi2(y2)θ′i2ξk, κJ(y1, y2) ≡
J∑
j=1

χj(y1)χj(y2).

The form of ψfk in (3.6) is interesting. The function κj is known as the jth kernel of the

system {χj, j ≥ 1} and behaves much like its namesake in kernel-density estimation; e.g.,

E[κJ(y, y)] = f(y ; J). Concerning τ k, observe that E[τ k(yt1 , yt2)|x = xk′ ] = ω−1
k 1{k′ = k}

and so E[τ k(yt1 , yt2)κJ(yt3 ; y)] = fk(y ; J) = E[τk(y)κJ(y; y)], as is readily verified by use of

the law of iterated expectations. Hence, f̂k(y) can be viewed as a reweighting estimator

based on an estimator of f(y), the marginal density of y at y .

Theorem 3.3 (Component mixtures: normality). For each k ∈ {1, 2, . . . , K} and each

y ∈ Y , the estimated component mixture satisfies

√
NV −1/2

fk
[f̂k(y)− fk(y)]

L→ N (0, 1), Vfk ≡ E[ψfk(~yT )ψfk(~yT )],

as N →∞.

From Viollaz (1989), Vfk = O(℘J(y)) for ℘J(y) ≡
∫

Y
κJ(ε, y)2 dε and so the pointwise

convergence speed is determined by the growth rate of ℘J(y). For example, for Jacobi

and Legendre polynomials it is known that ℘J(y) = O(J); see, e.g., Hall (1982). The limit

distribution is free of asymptotic bias provided that ℘J(y)J2β/N →∞ as N →∞. Because√
℘J(y) ≤ supy∈Y ‖XJ(y)‖ ≤ ζ(J), a weak bound is |f̂k(y) − fk(y)| = OP (ζ(J)/

√
N), and

so a sufficient condition is that ζ(J)2J2β/N →∞ as N →∞; cfr. Assumption 3.2(ii).

3.3 Mixing proportions

An estimator of the mixing proportions is easily constructed using the results obtained so

far, by virtue of a minimum-distance procedure. Here, we provide results for the estimator

ω̂ ≡ (Γ̂′Γ̂)−1Γ̂′σ̂,

where Γ̂′ = (Q′vec[∆̂1], Q′vec[∆̂2], . . . , Q′vec[∆̂I ]) and σ̂ is the I-vector whose ith element

equals (NT )−1
∑N

n=1

∑T
t=1 χi(ynt); viz. (3.1). We could derive alternative estimators by

considering a metric DF that uses a weight function that is different from the uniform one,
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but these are omitted for brevity. One possibility would be to set F to the marginal CDF

of the data, which could be useful for downweighting regions of Y where the value of the

component mixtures is small.

Denote by ψσ(~ynT ) the vector whose ith entry equals T−1
∑T

t=1 χi(ynt) − σi and let

ψΓ′(~ynT ) be the vector obtained on stacking Q′ψ∆i
(~ynT ) (i = 1, 2, . . . , I). The function ψ∆i

is detailed in Theorem A.1 in Appendix A and is the influence function of ∆̂i. On letting

ψω(~ynT ) ≡ (Γ′Γ)−1
[
(σ′ ⊗ IK)ψΓ(~ynT ) + Γ′ψσ(~ynT )

]
,

Theorem 3.4 can be stated.

Theorem 3.4 (Mixing proportions). The minimum-distance estimator ω̂ of the mixing

proportions ω satisfies

√
N(ω̂ − ω)

L→ N (0,Vω), Vω ≡ E[ψω(~yT )ψω(~yT )′],

as N →∞.

Our minimum-distance estimator is similar in spirit to the proposal of Titterington (1983),

who worked in a framework where data could be sampled directly from the component

mixtures.

3.4 Functionals

Now consider the problem of inferring a vector ϑ0 defined as the unique solution to a

moment condition of the form m(ϑ0) = 0, where m(ϑ) ≡ E[g(y;ϑ)|x = xk] for some

known function g, which may be multivariate. From Theorem 2.2 we have that m(ϑ) =

E[g(y;ϑ)τk(y)], and so a natural way to proceed is to consider a GMM estimator of the

form

ϑ̂ ≡ arg min
ϑ∈T

m̂N(ϑ)′VNm̂N(ϑ), m̂N(ϑ) ≡ (NT )−1

N∑
n=1

T∑
t=1

g(ynt;ϑ) τ̂k(ynt),

where T is the parameter space, VN is a positive-definite weight matrix that converges in

probability to a positive-definite and non-stochastic matrix V , and τ̂k(y) is an estimator

of the weight function τk at y.7 We use

τ̂k(y) ≡ f̂k(y)∑K
k′=1 f̂k′(y) ω̂k′

,

7Some trimming will typically be warranted. With some work, Theorem 3.5 below may be generalized
to hold under a trimming scheme where the tuning parameter converges to the identity slowly with N . We
note that, if interest lies mainly in moments of the component mixtures, a fixed-trimming scheme would
be inappropriate.
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although other possibilities could be entertained. Prime examples of such ϑ0 are the

moments of the component mixtures; the first moment, for example, is defined through

E[yτk(y)− ϑ0] = 0.

Impose the following conditions.

Assumption 3.3 (Regularity). The space T is compact and has ϑ0 as an interior element.

The function g is twice continuously differentiable in ϑ on T . For each k = 1, 2, . . . , K, the

two moments supϑ∈T E[‖g(y;ϑ)τk(y)‖] and supϑ∈T E[‖∂g(y;ϑ)/∂ϑ′(y;ϑ)τk(y)‖] are finite,

the matrix E[∂g(y;ϑ0)/∂ϑ′τk(y)] has full column rank, and the function τk is bounded away

from zero and infinity on Y . The truncation parameter grows so that ζ(J)2J4/N → 0 as

N →∞.

Assumption 3.3 contains familiar conditions for GMM estimators to be asymptotically

normal. It also imposes a slower growth rate on J than was required before. This is needed

because our moment conditions are nonlinear in the estimated component mixtures. When

power series are used as basis functions, for example, we now require that J6/N → 0—as

opposed to J3/N → 0—as N →∞.

Let Mϑ ≡ E[∂g(y;ϑ0)/∂ϑ′τk(y)]. Let Mω be the K-vector that has E[g(y;ϑ0)τk(y)τk′(y)]

as its k′th entry. Introduce

pk(ynt) ≡ g(ynt;ϑ0)
(1− f(ynt)

f(ynt)

)
τk(ynt)− E

[
g(y;ϑ0)

(1− f(y)

f(y)

)
τk(y)

]
−M ′

ωψω(ynt).

Then ϑ̂− ϑ0 = (NT )−1
∑N

n=1

∑T
t=1 ψϑ(ynt) + oP (1/

√
N) with influence function

ψϑ(ynt) ≡ [M ′
ϑVMϑ]−1M ′

ϑV
[
g(ynt;ϑ0)τk(ynt) + pk(ynt)

]
.

The influence function has the usual structure. The function pk captures the impact of

first-stage estimation error on the asymptotic variance of ϑ̂. Let

Vm ≡ E[(g(y;ϑ0)τk(y) + pk(y))(g(y;ϑ0)τk(y) + pk(y))′]

and assume this matrix to be positive definite. Then ϑ̂ is
√
N -consistent and asymptotically

normal.

Theorem 3.5 (Functionals). For any k = 1, 2, . . . , K, the estimator ϑ̂ of the estimand ϑ0

satisfies √
N(ϑ̂− ϑ0)

L→ N (0,Vϑ), Vϑ ≡ E[ψϑ(y)ψϑ(y)′],

as N →∞.

Standard arguments show that the optimally-weighted estimator is obtained on setting

V ∝ V −1
m , in which case Theorem 3.5 implies that

√
N(ϑ̂− ϑ0)

L→ N (0, [M ′
ϑV
−1
m Mϑ]−1).
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iv monte carlo illustrations

We present numerical evidence on the small-sample performance of our estimators by

means of two illustrations. In both examples we work with the family of generalized Beta

distributions (see, e.g., McDonald, 1984), which is popular for modeling the distribution

of income. On the interval [y, y] ⊂ R, the generalized Beta distribution is

b(y;ϑ1, ϑ2; y, y) ≡ 1

(y − y)ϑ1+ϑ2−1

1

B(ϑ1, ϑ2)
(y − y)ϑ1−1(y − y)ϑ2−1,

where B(ϑ1, ϑ2) ≡
∫ 1

0
εϑ1(1− ε)ϑ2−1 dε and ϑ1 and ϑ2 are positive real scale parameters. Its

mean and variance are

µ ≡ y + (y − y)
ϑ1

ϑ1 + ϑ2

, ς2 ≡ (y − y)2 ϑ1ϑ2

(ϑ1 + ϑ2)2(ϑ1 + ϑ2 + 1)
, (4.1)

respectively. Throughout, we use normalized Chebychev polynomials as basis functions.

For ε ∈ [−1, 1], the ith such polynomial is

χi(ε) =
2

π

1

21{i=1}
1√

1− ε2
cos[(i− 1) arccos(ε)].

In each illustration, we estimate the component mixtures and their associated CDFs, the

mixing proportions, as well as the mean and variance of the component mixtures. To

ensure bona fide density estimators we use

f̃k(y) ≡ max{0, f̂k(y)− ck}, (4.2)

where ck is chosen so that
∫
f̃k(ε) dε = 1 (see Gajek, 1986). To infer the conditional CDFs,

Fk(y) ≡
∫ y
−∞ fk(ε) dε, we use Clenshaw-Curtis quadrature to approximate the integral∫ y

−∞ f̃k(ε) dε; our approximation uses 101 quadrature nodes. The moments are estimated

using the GMM estimator from Theorem 3.5, without any trimming.

Experiment 1: A mixture of Betas. Our first experiment involves three generalized

Beta distributions on the interval [−1, 1]. Moreover, we consider

f1(y) = b(y; 2, 7;−1, 1), ω1 = .20,

f2(y) = b(y; 5, 4;−1, 1), ω2 = .35,

f3(y) = b(y; 6, 2;−1, 1), ω3 = .45.

Using (4.1), the means of the component mixtures are µ1 = −5/9 ≈ −.556, µ2 = 1/9 ≈
.111, and µ3 = 1/2 = .500, while their respective variances are ς2

1 = 28/405 ≈ .069,

ς2
2 = 8/81 ≈ .099, and ς2

3 = 1/12 ≈ .083. Throughout, we set T = 4 and I = J = 6.
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Table 1 presents simulation results for the estimator of K defined through the sequential

testing procedure in (3.3) for various values of N and α. The table reports the frequency

with which K was either underestimated, correctly estimated, or overestimated in 10, 000

Monte Carlo replications. The results show that K̂ performs well, correctly picking the

true number of component mixtures in about 95% of the cases overall.

Table 1: Sequential rank test in Experiment 1 (Beta mixture)

α = .100 α = .050 α = .025

N K̂<K K̂=K K̂>K K̂<K K̂=K K̂>K K̂<K K̂=K K̂>K

500 .005 .927 .068 .002 .959 .039 .001 .978 .021
750 .006 .926 .068 .002 .958 .040 .001 .976 .023

1000 .005 .924 .071 .002 .957 .041 .001 .979 .020
1500 .005 .929 .066 .002 .960 .038 .000 .976 .024
2000 .006 .930 .064 .002 .956 .042 .002 .980 .018
2500 .004 .929 .067 .002 .965 .033 .000 .975 .024

Note: K = 3, T = 4, I = J = 6; 10, 000 replications.

TakingK as given, we turn to estimation of the component mixtures and their moments,

as well as the mixing proportions. For brevity, we report results only for N = 1000. The

upper four panels in Figure 1 contain the upper and lower envelopes (dashed lines) over

1000 estimates of the component PDFs (upper left) and CDFs (upper right), as well as

of the estimates of the corresponding marginal PDF (lower left) and CDF (lower right),

together with their respective true values (solid lines).8 The plots reveal the estimator to

back out the underlying component mixtures quite well. In addition, the variability of the

estimates of the fk is not drastically different from the variability of the estimates of the

marginal density.

The lower four panels in Figure 1 provide box plots of the sampling distribution of the

mixing proportions (upper left), the mean of the weight function (upper right), as well as

of the mean (lower left) and variance (lower right) of the component mixtures. All box

plots are centered around the respective true values. The results are encouraging. All

estimators are virtually median unbiased, and the interquartile ranges indicate quite low

variability of the point estimates.

Experiment 2: A location-scale model. Our methods contribute to the analysis

of non-separable fixed-effect models, that is, models of the form yt = g(x, εt), for some

8The marginal PDF was estimated by means of a kernel estimator based on all NT data points, using
a Gaussian kernel and 1.06 ∗ ς̂(NT )−1/5 for the bandwidth, where ς̂ is the empirical standard deviation of
the data.
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Figure 1: Estimates in Experiment 1 (Beta mixture)
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unobservable εt. A location-scale version is

yt = x+ ηt, ηt = ς(x)εt, x⊥εt,

for some function ς. Suppose that εt is drawn from the generalized Beta distribution on

[−1, 1] with ϑ1 = ϑ2 = ϑ. Then

E[y|x = xk] = xk, V[y|x = xk] =
ς(xk)

2

2ϑ+ 1
.

The location-scale model can be seen as a stripped-down version of a linear fixed-effect

model or as a one-factor model. Note, however, that the factor x and the error ηt are not

independent.

Below we report simulation results for the simple design with X = {−1, 0, 1} and

$ the PMF that spreads its mass uniformly over these three support points. To generate

realizations of ηt we set ϑ = 2 and ς(x) = 1+.5||x|−1|. With these parameter constellations,

Y = [−2, 2], the support of fk is the subset [−1 + xk, 1 + xk], its mean is simply xk, while

its variance equals 1/20 if k ∈ {1, 3} and 9/20 if k = 2. We maintain T = 4 and choose

I = J = 8.

Table 2 contains the simulation results for K̂ over 10, 000 replications and has the same

structure as Table 1 above. Here, the estimator is somewhat more likely to overestimate

K, although it still approaches K as N →∞ and α→ 0.

Table 2: Sequential rank test in Experiment 2 (Factor model)

α = .100 α = .050 α = .025

N K̂<K K̂=K K̂>K K̂<K K̂=K K̂>K K̂<K K̂=K K̂>K

500 .000 .660 .340 .000 .719 .281 .000 .767 .233
750 .000 .733 .267 .000 .781 .219 .000 .815 .185

1000 .000 .769 .231 .000 .813 .187 .000 .853 .147
1500 .000 .810 .190 .000 .857 .143 .000 .885 .115
2000 .001 .830 .170 .000 .879 .121 .000 .904 .096
2500 .001 .856 .143 .000 .895 .105 .000 .923 .077

Note: K = 3, T = 4, I = J = 8; 10, 000 replications.

Figure 2, in turn, has the same layout as Figure 1, and similar conclusions may be

drawn from it. It may be observed that the estimator of the second component mixture is

somewhat more volatile than the others but, overall, we may conclude that the estimates

reflect well the population densities and distributions. Further, the mixing proportions and

various moments are all estimated well, although there tends to be somewhat more bias and
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Figure 2: Estimates in Experiment 2 (Factor model)
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higher variability than in Experiment 1. Again, the distributions of the mixing proportion

and variance associated with the second component mixture have a higher variance than

those of the other components.

v empirical application

In this section we apply our methods to document heterogeneity in earnings dynamics of

males using PSID9 data from the period 1969–1998. The classic model (see, e.g., Hall and

Mishkin, 1982) allows for heterogeneity in log-earnings levels through the inclusion of unit-

specific intercepts. However, the recent literature has argued that unobserved heterogeneity

in log earnings stretches beyond such additive fixed effects; see, e.g., Browning, Ejrnaes,

and Alvarez (2010) for a discussion and an extensive empirical investigation in a parametric

framework. Here, we adopt a fully nonparametric view on earnings. Our approach is very

flexible in terms of unobserved heterogeneity. The cost of this is that we assume away the

presence of state dependence.

From the PSID 1969–1998 we construct a set of three-period balanced subpanels, using

a rolling window of length one.10 This yields 28 subpanels. For each such subpanel, we

obtain our measure of log (annual) earnings of unit n at time t, say ynt, as the residual of

a pooled regression of reported log earnings on a constant term, a set of time dummies,

years of schooling, and a second-degree polynomial in experience. A graphical inspection

of the marginal densities in each subpanel (not reported) does not suggest large disperion

between the univariate marginal densities in a given subpanel, so that our smoothing policy

seems reasonable.

Informal experimentation as well as testing for the number of components in the PSID

data hints log earnings to decompose as a continuous mixture. In line with Heckman and

Singer (1984) and many others since, we view the latent factor x as representing type

heterogeneity and consider a discretization approach. Figures 3–4 provide plots of the

estimated component mixtures in the PSID subpanels for the period 1969–1994 with K

fixed to three. Larger values of K yielded a similar pattern in the component mixtures.

We focus on a relatively small K for ease of exposition. In this way, one can think of the x

as an indicator for low, intermediate, and high innate ability, for example. The plots were

generated with Chebychev polynomials as basis functions, I set to five, and J = .7∗ 3
√
N to

9Panel Study of Income Dynamics public use dataset. Produced and distributed by the University of
Michigan with primary funding from the National Science Foundation, the National Institute of Aging,
and the National Institute of Child Health and Human Development. Ann Arbor, MI.

10We excluded self-employed individuals and students, as well as individuals for whome earnings were
top coded. We further restricted the sample to individuals between the ages of 20 and 60, with at most
40 years of experience.
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accommodate the relatively strong increase in the number of cross-sectional observations

in the subpanels spanning later time periods. N is reported below each plot. We used

(4.2) to ensure non-negative density estimates that integrate to one.

The plots show well-separated unimodal component mixtures. The conditional densities

are fairly symmetric about their respective modes, although the lowest one does have

a significant right tail. This suggests that a flexible parametric specification involving

location-scale densities may fit the data relatively well. Index the component mixtures

k = 1, 2, 3 from left to right, i.e., the first component mixture has the lowest mode, etc.

The plots further suggest the volatility of the component mixtures to be inversely

related to the mode. To inspect the evolution of the location and variability over time, we

estimated the mode and interquartile range of the component mixtures in each subpanel.

The interquartile range was estimated by inverting the CDF of the components which,

in turn, was computed using Clenshaw-Curtis quadrature (with 101 quadrature nodes, as

before). The individual estimates are indicated by a • for k = 1, by an x for k = 2, and by

a + for k = 3. To capture the overall time trend, regression lines through the individual

points are also given. The regressors set consists a third-order polynomial in a time index

and a constant term.

The left plot in Figure 5 shows the evolution of the mixture modes over the sampling

period. As is clear from the regression lines, the dispersion between the modes tends to

increase somewhat over time, with the mode for k = 1 decreasing, the mode for k = 2

remaining relatively constant, and the mode for k = 3 increasing slightly. In terms of

location, this indicates the various component mixtures to move further away from each

other, suggesting an increase in the between-group dispersion of log earnings.

The interquartile ranges are provided in the right plot of Figure 5. The plot confirms

the intuition obtained from Figures 3–4 that the spread of the component mixtures is

inversely related to their mode. Individuals at the lower end of the earnings distribution

are exposed to higher volatility. Interestingly though, the difference in the interquartile

ranges decreases over the sampling period. The regression lines show that the interquartile

ranges of the first and second component mixture have decreased while the interquartile

range of the high-end component mixture displays an upward trend.

Overall, our analysis suggests the distribution of earnings to vary considerably with

unobserved factors. The component distributions are well separated in terms of location.

Individuals at the lower end of the (marginal) earnings distribution tend to be exposed to

higher uncertainty, as measured by interquartile range. The increase in overall dispersion

over time appears to be driven more by between-group than by within-group variation. Our

results indicate the presence of unobserved heterogeneity beyond simple location shifts, as
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Figure 3: Estimated conditional densities of log earnings
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Figure 4: Estimated conditional densities of log earnings (cont’d.)
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Figure 5: Estimated functionals of conditional log earnings densities
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is evident from the different patterns in the interquartile ranges, for example. This implies

the classic linear fixed-effect model with independent errors to be insufficiently flexible for

modeling earnings processes.

vi conclusion

We have discussed methods to estimate nonparametric finite-mixture models from short

panel data. The estimators are straightforward to implement and have desirable large-

sample properties. A Monte Carlo assessement further indicated good performance in small

samples. As an empirical illustration we applied our approach to earnings data. We found

evidence of substantial nonlinear heterogeneity in earnings processes, and documented their

evolution over time.

In future work, we aim to provide a data-driven method for selecting the truncation

parameter optimally, paving the path for adaptive estimation. Another potentially fruitful

direction for further research is to investigate how our approach can be modified to allow

K to grow with T . With some work, it should also be possible to extend our methodology

to Markovian models. One area where this can be of use is in the estimation of dynamic

discrete-choice models. Finally, our projection approach can potentially be used to esti-

mate continuous mixtures. However, this leads to an ill-posed inverse problem, and the

associated decrease in convergence rates.
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appendix a: auxiliary results

This appendix works toward Theorem A.1, which establishes the limit behavior of the

∆̂j. We do so by providing lemmata which, in turn, develop the large-sample behavior

of the spectral-decomposition matrix Θ̂ (Lemma A.1), the whitened matrices of Fourier

coefficients, k̂j (Lemma A.2), and the JADE estimator, Ξ̂ (Lemma A.3).

To state our results, some additional notation is needed. First, observe that vec[Σ̂j−Σj]

is asymptotically linear and that its influence function at ~ynT , ψΣj
(~ynT ), say, has typical

element

|%3|−1
∑

(t1,t2,t3)∈%3

χi1i2j(ynt1 , ynt2 , ynt3)− σi1i2j,

for all j = 1, 2, . . . , J . Let Υ ≡ (υ1, υ2, . . . , υK)′ for υk ≡ υk ⊗ υk and define the selection

matrix Q−1 through the relation Q−1ε = vec[diag(ε)], where ε is any K-vector. Use these

expressions to introduce

ψΘ(~yT ) ≡
[
(II ⊗ Λ−3/2Υ′)− 1/2(Υ⊗ IK)Q−1Λ−3/2Υ

]
ψΣ0(~yT ),

ψΘ′(~yT ) ≡
[
(Λ−3/2Υ′ ⊗ II)− 1/2(IK ⊗Υ)Q−1Λ−3/2Υ

]
ψΣ0(~yT ).

The interpretation of these functions is that they are the respective influence functions of

Θ̂ and Θ̂′, as stated in Lemma A.1.

Lemma A.1 (Spectral decomposition). The estimators Θ̂ and Θ̂′ of the matrices Θ and

Θ′ satisfy

√
Nvec[Θ̂−Θ]

L→ N (0,VΘ),
√
Nvec[Θ̂′ −Θ′]

L→ N (0,VΘ′),

for VΘ ≡ E[ψΘ(~yT )ψΘ(~yT )′] and VΘ′ ≡ E[ψΘ′(~yT )ψΘ′(~yT )′], respectively, as N →∞.

Now use Lemma A.1 to construct

ψkj
(~yT ) ≡ (ΘΣj ⊗ IK)ψΘ(~yT ) + (Θ⊗Θ)ψΣj

(~yT ) + (IK ⊗ΘΣj)ψΘ′(~yT ),

for each j = 1, 2, . . . , J . Then Lemma A.2 follows readily.

Lemma A.2 (Whitening). For each j = 1, 2, . . . , J , the estimator k̂j = Θ̂Σ̂jΘ̂
′ of the

whitened matrix kj = ΘΣjΘ
′ satisfies

√
Nvec[k̂j − kj]

L→ N (0,Vkj
), Vkj

≡ E[ψkj
(~yT )ψkj

(~yT )′],

as N →∞.
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Moving on to the JADE estimator, let

ψΞ(~ynT ) ≡ (IK ⊗ ΞℵJ)
J∑
j=1

∇j(Ξ
′ ⊗ Ξ′)ψkj

(~ynT ),

ψΞ′(~ynT ) ≡ (ΞℵJ ⊗ IK)
J∑
j=1

∇j(Ξ
′ ⊗ Ξ′)ψkj

(~ynT ),

where ℵJ is the K ×K matrix whose (k1, k2)th element is

[ℵJ ]k1,k2 ≡

{ [∑J
j=1(γk1j − γk2j)2

]−1

if k1 6= k2

0 if k1 = k2

,

and ∇j ≡ diag[vec[∇j]] with ∇j ≡ ∆jιKι
′
K − ιKι′K∆j for j = 1, 2, . . . , J . The asymptotic

distribution of JADE is stated in Lemma A.3.

Lemma A.3 (JADE). The JADE estimator defined in (3.4) satisfies

√
Nvec[Ξ̂− Ξ]

L→ N (0,VΞ),
√
Nvec[Ξ̂′ − Ξ′]

L→ N (0,VΞ′),

for VΞ ≡ limJ→∞ E[ψΞ(~yT )ψΞ(~yT )′] and ṼΞ′ ≡ limJ→∞ E[ψΞ′(~yT )ψΞ′(~yT )′], respectively, as

N →∞.

To see why Ξ̂ converges at the parametric rate, note that, even though ψΞ and ψΞ′ are

triangular arrays,
∑J

j=1∇j = O(1), because γkj → 0 as j →∞.

On combining Lemma A.2 and Lemma A.3, and introducing

ψ∆j
(~yT ) ≡ (IK ⊗ Ξ′kj)ψΞ(~yT ) + (Ξ′ ⊗ Ξ′)ψkj

(~yT ) + (Ξ′kj ⊗ IK)ψΞ′(~yT ),

we obtain Theorem A.1.

Theorem A.1 (Fourier coefficients). For each j = 1, 2, . . . , J , the estimator ∆̂j = Ξ̂′k̂jΞ̂
of the matrix ∆j = Ξ′kjΞ satisfies

vec[∆̂j −∆j]
L→ N (0,V∆j

), V∆j
≡ E[ψ∆j

(~yT )ψ∆j
(~yT )′]

as N →∞

Theorem A.1 shows that, although one can not draw data directly from the component

mixtures, their Fourier coefficients can be estimated at the parametric rate.
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appendix b: proofs

Proof of Lemma A.1. Recall that Σ0 is real, symmetric, and has rank K. Hence,

it has K positive and distinct eigenvalues. Further, Σ̂0—which, by construction, too, is

symmetric—satisfies
√
Nvec[Σ̂0−Σ0]

L→ N (0,VΣ0). From Eaton and Tyler (1991) [Theorem

4.2] and Magnus (1985) [Theorem 1], it then follows that
√
N(λ̂ − λ)

L→ N (0,Vλ), where

[Vλ]k1,k2 ≡ (υ′k1 ⊗υ
′
k1

)VΣ0(υk2 ⊗υk2). Because vec[Λ] = Q−1λ, the Jacobian associated with

the transformation from λ to vec[Λ−1/2] is −1
2
Q−1 diag[λ

−3/2
1 , λ

−3/2
2 , . . . , λ

−3/2
K ]. Hence, an

application of the Delta method gives

√
Nvec[Λ̂−1/2 − Λ−1/2]

L→ N (0,VΛ−1/2), (B.1)

for VΛ−1/2 ≡ 1/4Q−1Λ−3/2ΥVΣ0Υ
′
Λ−3/2Q−1′. Moving on, from Bura and Pfeiffer (2008)

[Corollary 1], we have that the estimated eigenvectors satisfy

√
Nvec[Υ̂−Υ]

L→ N (0,VΥ),
√
Nvec[Υ̂′ −Υ′]

L→ N (0,VΥ′), (B.2)

where VΥ ≡ (Λ−1Υ′ ⊗ II)VΣ0(ΥΛ−1 ⊗ II) and VΥ′ ≡ (II ⊗ Λ−1Υ′)VΣ0(II ⊗ ΥΛ−1). On

combining (B.1) and (B.2) with the linearization Θ̂−Θ = (Λ̂−Λ)−1/2Υ′+Λ−1/2(Υ̂−Υ)′+

oP (1/
√
N), and recalling that VΣ0 = E[ψΣ0(~yT )ψΣ0(~yT )′],

√
Nvec[Θ̂−Θ]

L→ N (0,VΘ) and√
Nvec[Θ̂′ −Θ′]

L→ N (0,VΘ′) follow.

Proof of Lemma A.2. Fix j ∈ {1, 2, . . . , J}. From (3.1), the (i1, i2)th element of Σ̂j

takes the form

σ̂i1i2j =
1

N

1

|%3|

N∑
n=1

∑
(t1,t2,t3)∈%3

χi1i2j(ynt1 , ynt2 , ynt3),

and
√
Nvec[Σ̂j −Σj]

L→ N (0,VΣj
). Combining this with Lemma A.1 and the linearization

vec[k̂j−kj] = (ΘΣj⊗IK)vec[Θ̂−Θ]+(Θ⊗Θ)vec[Σ̂j−Σj]+(IK⊗ΘΣj)vec[Θ̂′−Θ′]+oP (1/
√
N)

yields the result.

Proof of Lemma A.3. Taylor-expanding the JADE first-order conditions around Ξ and

proceeding along the lines of the proof to Theorem 5 in Bonhomme and Robin (2009) gives

vec[Ξ̂− Ξ] = −(IK ⊗ Ξ)(IK ⊗ ℵJ)
J∑
j=1

∇j(Ξ
′ ⊗ Ξ′)vec[k̂j − kj] + oP (1/

√
N). (B.3)
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Recall that ℵJ is the K ×K matrix whose (k1, k2)th element is

[ℵJ ]k1,k2 =

{ [∑J
j=1(γk1j − γk2j)2

]−1

if k1 6= k2

0 if k1 = k2

.

Note that Assumption 2.2 ensures that ℵJ is well defined. Moreover, as N →∞, ℵJ → ℵ,

where ℵ is the matrix whose (k1, k2)th element equals

[ℵ]k1,k2 ≡
{
‖fk1(y)− fk2(y)‖−2

2 if k1 6= k2

0 if k1 = k2
,

because, for all k1, k2 = 1, 2, . . . , K, limJ→∞
∑J

j=1(γk1j−γk2j)2 =
∫

Y
|fk1(y)−fk2(y)|2 dy by

orthonormality of the basis functions. Continuing on, establishing asymptotic normality

of Ξ̂ requires verifying that the triangular array vector

1

N

N∑
n=1

δ(~ynT ), δ(~ynT ) ≡
J∑
j=1

∇j(Ξ
′ ⊗ Ξ′) ψkj

(~ynT ), (B.4)

satisfies the conditions of Lyapunov’s central limit theorem. Thus, it suffices to show that

(i) E[c′δ(~yT )] = 0, (ii) V[c′δ(~yT )] = O(1), and (iii) E[|c′δ(~yT )/
√
N |2+d] = o(1) for some

d > 0 and any vector of finite constants c that satisfies c′c = 1. Condition (i) follows

readily from the fact that ψΣj
(~yT ) has zero mean. Condition (ii) follows from the fact that

E[ψkj1
(~yT )ψkj2

(~yT )′] = O(1) and
∑J

j=1∇j = O(1). To verify Condition (iii), observe that

∣∣∣c′δ(~yT )√
N

∣∣∣ ≤ ∣∣∣c′∑J
j=1[∇j(Ξ

′ ⊗ Ξ′)(ΘΣj ⊗ IK)]ψΘ(~yT )
√
N

∣∣∣+
∣∣∣c′∑J

j=1[∇j(Ξ
′Θ⊗ Ξ′Θ)]ψΣj

(~yT )
√
N

∣∣∣
+
∣∣∣c′∑J

j=1[∇j(Ξ
′ ⊗ Ξ′)(IK ⊗ΘΣj)]ψΘ′(~yT )
√
N

∣∣∣.
The first and third right-hand side terms are readily shown to have expectation o(1). For

the second term, note that

E
∣∣∣c′∑J

j=1[∇j(Ξ
′Θ⊗ Ξ′Θ)]ψΣj

(~yT )
√
N

∣∣∣2+d

≤

[∑J
j=1

∥∥∥c′∇j(Ξ
′Θ⊗ Ξ′Θ)

∥∥∥2] 2+d
2 E
[∑J

j=1

∥∥∥ψΣj
(~yT )

∥∥∥2] 2+d
2

N
2+d
2

≤ O
( 1

N

) 2+d
2
[ J∑
j=1

(
E
∥∥∥ψΣj

(~yT )
∥∥∥2+d) 2

2+d
] 2+d

2

≤ O
( 1

N

) 2+d
2
O
(
Jζ(J)2

) 2+d
2

= O
(Jζ(J)2

N

) 2+d
2
,
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which is o(1) by Assumption 3.2. Here, the first two inequalities follow from the Cauchy-

Schwarz inequality and Minkowski’s inequality, respectively, and the third inequality comes

from boundedness of the marginal density and the fact that the basis functions are bounded

in Euclidean norm by the sequence ζ(J). Hence,
∑N

n=1 δ(~ynT )/
√
N converges in law to a

normal random variable. In tandem with (B.3), (B.4), and an application of the Delta

method, this proves the result.

Proof of Theorem A.1. The result follows on combining Lemma A.2 and Lemma A.3

with a linearization of vec[∆̂j −∆j].

Proof of Theorem 2.1. The proof is given in the main text.

Proof of Corollary 2.2. The result follows immediately from Theorem 2.1.

Proof of Theorem 3.1. The result follows from an application of Theorem 5.2 in Robin

and Smith (2000).

Proof of Theorem 3.2. Fix k ∈ {1, 2, . . . , K} throughout. Start with Theorem 3.2(i).

Using orthonormality, the MISE decomposes as

E‖f̂k(y)− fk(y)‖2
2 =

J∑
j=1

E[(γ̂kj − γkj)2] + ‖fk(y; J)− fk(y)‖2
2.

The second term is O(J−2β) by Assumption 3.1. For the first term, with γ̂kj − γkj =

q′kvec[∆̂j −∆j], Theorem A.1 gives γ̂kj − γkj = OP (1/
√
N). Hence,

∑J
j=1 E[(γ̂kj − γkj)2] =

O(J/N), which proves the MISE result. To obtain the uniform-convergence rate, we

may proceed similarly. Let γk ≡ (γk1, γk2, . . . , γkJ)′ and define γ̂k similarly. Then we

have that supy∈Y |f̂k(y) − fk(y)| is bounded by supy∈Y ‖XJ(y)‖[‖γ̂k − γk‖ + O(J−β)] =

O(ζ(J)) OP (
√
J/
√
N + J−β), which follows from repeated use of the triangle and Cauchy-

Shwarz inequalities, together with the rate result from Theorem A.1 and the fact that

supy∈Y ‖XJ(y)‖ = O(ζ(J)).

Proof of Theorem 3.3. Fix k ∈ {1, 2, . . . , K}, y ∈ Y throughout. On adding and

subtracting fk(y ; J), we have f̂k(y) − fk(y) = N−1
∑N

n=1

∑J
j=1 q

′
kψ∆j

(~ynT )χj(y) + O(J−β).

Under our assumptions, the bias term is asymptotically negligible. Theorem A.1 and

Lemmata A.1–A.3, together with a small calculation, allow the leading right-hand side
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term to be simplified as

f̂k(y)− fk(y ; J) =
1

N

N∑
n=1

J∑
j=1

q′k(Ξ
′Θ⊗ Ξ′Θ)ψΣj

(~ynT )χj(y) +OP (1/
√
N).

On recalling the form of the function ψΣj
, a small calculation gives

q′k(Ξ
′Θ⊗ Ξ′Θ)ψΣj

(~ynT ) = |%3|−1
∑

(t1,t2,t3)∈%3

[ I∑
i1=1

I∑
i2=1

ξ′kθi1χi1i2j(ynt1 , ynt2 , ynt3)θ
′
i2
ξk − γkj

]
,

On using the tensor-product structure of the multivariate basis functions, we arrive at the

expression in (3.6). Establishing normality then requires verifying that (i) E[ψfk(~yT )] = 0,

(ii) E[ψfk(~yT )ψfk(~yT )′] = O(℘J(y)), and (iii) E[|ψfk(~yT )/
√
N℘J(y)|2+d] = o(1) for some

d > 0. Condition (i) is immediate from the form of ψfk . To verify Condition (ii), use the

law of iterated expectations to see that it suffices to show that E[τ k(y1, y2)2|x = xk′ ] = O(1)

and that E[κJ(y3; y)2|x = xk′ ] = O(℘J(y)) for any k′ = 1, 2, . . . , K. From Viollaz (1989)

[Theorem 2.2.2], E[κJ(y; y)2|x = xk′ ]/℘J(y) → fk′(y), which is O(1) by Assumption 2.1.

For the first term, on letting fk′ ≡ E[XI(y)XI(y)′|x = xk′ ] and defining Qk through the

relation qk = vec[Qk], E[τ k(y1, y2)2|x = xk′ ] equals[
q′k(Ξ

′Θ⊗ Ξ′Θ) vec[fk′ ]
]2

= tr[fk′(Θ
′ΞQ′kΞΘ′)(Θ′ΞQ′kΞΘ′)′fk′ ] = O(1),

where the first transition follows from elementary properties of the vec operator. Finally,

using similar arguments as in the proof to Lemma A.3, we obtain

E
[∣∣∣ ψfk(~yT )√

N℘J(y)

∣∣∣2+d]
= O

(Jζ(J)2

N

)2+d

O
( 1

℘J(y)

)2+d

= o(1),

with the conclusion following from the growth rates in Assumption 3.2. This establishes

Condition (iii).

Proof of Theorem 3.4. Theorem A.1 implies that ‖Γ̂− Γ‖ = OP (1/
√
N). Assumption

2.2 ensures that Γ′Γ has full rank. Hence, (Γ̂′Γ̂)−1 P→ (Γ′Γ)−1. Further, a linearization

yields Γ̂′σ̂ − Γ′σ = (Γ̂′ − Γ′)σ + Γ′(σ̂ − σ) + oP (1/
√
N), In tandem with the asymptotic

results on Γ̂ and σ̂, the Delta method then provides the result.

Proof of Theorem 3.5. The result follows from standard arguments on two-step esti-

mators using first-step series estimators, making use of Theorems 3.2–3.4 and Assumption

3.3; see, e.g., Newey (1994).
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