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QUADRATIC ENGEL CURVES AND CONSUMER DEMAND
James Banks, Richard Blundell, and Arthur Lewbel*

Abstract—This paper presents a model of consumer demand that is
consistent with the observed expenditure patterns of individual consumers
in a long time series of expenditure surveys and is also able to provide a
detailed welfare analysis of shifts in relative prices. A nonparametric
analysis of consumer expenditure patterns suggests that Engel curves
require quadratic terms in the logarithm of expenditure. While popular
models of demand such as the Translog or the Almost Ideal Demand
Systems do allow flexible price responses within a theoretically coherent
structure, they have expenditure share Engel curves that are linear in the
logarithm of total expenditure. We derive the complete class of integrable
quadratic logarithmic expenditure share systems. A specification from this
class is estimated on a large pooled data set of U.K. households. Models
that fail to account for Engel curvature are found to generate important
distortions in the patterns of welfare losses associated with a tax increase.

I. Introduction

EMAND models play an important role in the evalua-

tion of indirect tax policy reform. We argue that for
many commodities, standard empirical demand models do
not provide an accurate picture of observed behavior across
income groups. Our aim is to develop a demand model that
can match patterns of observed consumer behavior while
being consistent with consumer theory and thereby allowing
welfare analysis.

The distributional analysis of commodity tax policy
requires the accurate specification of both price and income
effects. Crude utility-based demand models such as the
linear expenditure system, however, impose strong and
unwarranted restrictions on price elasticities (Deaton (1974)).
Recognition of this spawned a large literature, first on
flexible demand systems and later on semiparametric and
nonparametric specifications of demands. Except for the
estimation of Engel curves, these nonparametric methods
are generally series rather than kernel based (see Barnett and
Jonas (1983) or Gallant and Souza (1991)) because of the
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difficulty of imposing utility-derived structure (such as
Slutsky symmetry) on kernel estimators.

Since incomes vary considerably across individuals and
income elasticities vary across goods, the income effect for
individuals at different points in the income distribution
must be fully captured in order for a demand model to
predict responses to tax reform usefully. Indeed, the study of
the relationship between commodity expenditure and in-
come (the Engel curve) has been at the center of applied
microeconomic welfare analysis since the early studies of
Engel (1895), Working (1943), and Leser (1963). But a
complete description of consumer behavior sufficient for
welfare analysis requires a specification of both Engel curve
and relative price effects consistent with utility maximiza-
tion. An important contribution of the Muellbauer (1976),
Deaton and Muellbauer (1980), and Jorgenson et al. (1982)
studies was to place the Working—Leser Engel curve specifi-
cation within integrable consumer theory.

For many commodities, however, there is increasing
evidence that the Working—Leser form underlying these
specifications does not provide an accurate picture of
individual behavior. A series of empirical Engel curve
studies indicates that further terms in income are required
for some, but not all, expenditure share equations (see, for
example, Atkinson et al. (1990), Bierens and Pott-Buter
(1987), Blundell et al. (1993), Hausman, et al. (1995),
Hirdle and Jerison (1988), Hildenbrand (1994), and Lewbel
(1991)). For welfare analysis we will show that if some
commodities require these extra terms while others do not
(as we find in our empirical analysis), then parsimony,
coupled with utility theory, restricts the nonlinear term to
being a quadratic in log income.

We derive a new class of demand systems that have log
income as the leading term in an expenditure share model
and additional higher order income terms. This preserves the
flexibility of the empirical Engel curve findings while
permitting consistency with utility theory and is shown to
provide a practical specification for demands across many
commodities, allowing flexible relative price effects. We
show that the coefficients of the higher order income terms
in these models must be price dependent and that these
higher order terms have to include a quadratic logarithmic
term. The demands generated by this class are shown to be
rank 3 which, as proved in Gorman (1981), is the maximum
possible rank for any demand system that is linear in
functions of income. The quadratic logarithmic class nests
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both the Almost Ideal (AI) model of Deaton and Muellbauer
and the exactly aggregable Translog model of Jorgenson et
al. (1982). Unlike these demand models, however, the
quadratic logarithmic model permits goods to be luxuries at
some income levels and necessities at others. The empirical
analysis we report suggests that this is an important feature.

Using data from the U.K. Family Expenditure Survey
(FES), under a variety of alternative parametric and nonpar-
ametric estimation techniques, we are able to strongly reject
the Working—Leser form for some commodities, while for
others, in particular food, Engel curves do look very close to
being linear in log income. This analysis confirms that share
equations quadratic in the logarithm of total expenditure can
provide a good approximation to the Engel relationship in
the raw microdata.

It is interesting to note that Rothbarth and Engel equiva-
lence scales of the sort discussed in Deaton and Muellbauer
(1986) implicitly assume that Engel curves are monotonic in
utility, and hence in total expenditures. The Engel curvature
found in our data violates this assumption. For example,
Rothbarth scales may use expenditures on alcohol or adult
clothing to measure welfare. Our quadratic Engel curves for
these goods invalidate such techniques since both rich and
poor households could have the same expenditure on these
commodities.

Having established the Engel curve behavior, a complete
demand model is estimated on a pooled FES data set using
data from 1970 to 1986. This model produces a data-
coherent and plausible description of consumer behavior.
The specific form we propose—the Quadratic Almost Ideal
Demand System (QUAIDS)—is constructed so as to nest the
AI model and have leading terms that are linear in log
income while including the empirically necessary rank 3
quadratic term. Regularity conditions for utility maximiza-
tion, such as Slutsky symmetry, can be imposed on our
model and are not statistically rejected. Regularity con-
straints involving inequalities cannot hold globally for any
demand system such as ours, which allows some Engel
curves to be Working—Leser, because at sufficiently high
expenditure levels a budget share that is linear must go
outside the permitted zero-to-one range.! Despite this,
negative semidefiniteness of the Slutsky matrix is found to
hold empirically in the majority of the sample, with the
exceptions being the very high income households.

More specifically, let x equal deflated income, that is,
income divided by a price index. One convenient feature of
the AI model is that the coefficients of In x in the budget
share equations are constants. Our theorem 1 shows that any
parsimonious rank 3 extension must be quadratic in In x.
Given this, it would be convenient? if a rank 3 specification
could be constructed in which the coefficients of both In x

! Some globally regular demand systems do exist (Barnett and Jonas
(1983) and Cooper and McLaren (1996), for example), but these are all
examples of fractional demand systems, and none with rank higher than 2
have been implemented empirically.

2 It was shown by Blundell et al. (1993) to be empirically plausible.
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and (In x)? were constants. We find that a surprising implica-
tion of utility maximization is that constant coefficients are
not possible in such models—the coefficients of (In x)* must
vary with prices. The QUAIDS model we propose makes
this required price dependence as simple as possible.

The layout of the paper is as follows. Section II contains
our assessment of the Engel curve relationship. In section III
the theoretical results are presented, and the restrictions
placed on the model by consumer demand theory are
derived. Section IV presents estimates of relative price and
income effects for our QUAIDS model of demand, which
relaxes these restrictions. The restrictions are rejected, as are
linear logarithmic preferences. In section V we illustrate the
importance of our results for the welfare evaluation of
indirect tax reform with two specific reforms which high-
light differences in consumer behavior across goods. A brief
summary and concluding comments are presented in sec-
tion VI.

II. Assessing the Shape of the Engel Curve Relationship

Given the importance of the Engel relationship, we begin
our analysis by providing a nonparametric description of the
Working-Leser model. In this model each expenditure share
is defined over the logarithm of deflated income or total
expenditure. The evidence in the raw expenditure data from
the UK. FES for a quadratic extension to this linear
relationship can be seen clearly from the preliminary data
analysis presented below. Although we make comparisons
across household types, in order to place emphasis on the
shape of the Engel curve we use a relatively homogeneous
subsample taken from the 1980-1982 surveys for which
there are two married adults with the husband employed and
who live in London and the South East.

This choice reflects the need to preserve homogeneity of
composition since we have good reason to believe that the
shape of Engel curves is likely to vary with labor market
status and region (see Browning and Meghir (1991) and
Blundell et al. (1993)). It also reflects our desire to pin down
the shape of the Engel curve before moving to the time-
series information on relative price movements in our
repeated cross sections.?

Figure 1 presents nonparametric kernel regressions, qua-
dratic polynomial regressions, and pointwise confidence
intervals for the nonparametric Engel curves of our five
commodity groups in a three-year period in the middle of
our sample. In all kernel regressions we use the Gaussian
kernel with a mean integrated squared-error optimal smooth-
ing parameter (see Hirdle (1990)).* Although the linear
formulation appears to provide a reasonable approximation
for the food share curve, for some groups, in particular

3In addition we trim any observations that lie outside three standard
deviations of the mean on either the logarithm of total expenditure or any
of the five commodity expenditure shares.

4 All computations were carried out using Gauss and the Gauss-based
interactive kernel regression package NP-REG (see Duncan and Jones
(1992)).
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FIGURE 1A.—NONPARAMETRIC ENGEL CURVE FOR FOOD SHARES
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FIGURE 1C.—NONPARAMETRIC ENGEL CURVE FOR CLOTHING SHARES
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FIGURE 1E.—NONPARAMETRIC ENGEL CURVE FOR OTHER GOODS
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alcohol and clothing, distinct nonlinear behavior is evident,
at least in the raw data.

It is interesting to focus on a comparison with the simple
second-order polynomial fit. Some guidance to the reliabil-
ity of the quadratic approximation can be drawn from the
pointwise confidence intervals (evaluated at decile points)
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FIGURE 1B.—NONPARAMETRIC ENGEL CURVE FOR DOMESTIC FUEL SHARES
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FIGURE 1D.—NONPARAMETRIC ENGEL CURVE FOR ALCOHOL SHARES
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shown in the graphs. It is only where the data are sparse and
the confidence bands relatively wide that the paths diverge.
This appears to be the case for all five commodity groups
across the span of the data period.

The need for higher order terms in the Engel curve
relationship is also evident from the rank test results
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TABLE 1.—RANK TESTS FOR FES DATA 1980-1982
o Gill and Lewbel (1992)  Cragg and Donald (1995)
Distribution

Test Function X2 Statistic  p-Value  x? Statistic p-Value
r=1 4 13849.170 0.000 448.461 0.000
r=2 3 10.232 0.016 31.360 0.000
r=3 2 0.004 0.997 7.784 0.100

presented in table 1. This test examines the maximum rank
of the coefficient matrix on a general set of income
functions, as in Lewbel (1991). The first test uses the
lower—diagonal-upper (LDU) Gaussian elimination decom-
position as a basis for a nonparametric test (see Gill and
Lewbel (1992)). The second test is an alternative improved
distance measure related test proposed by Cragg and Donald
(1995), which imposes the restriction that budget shares sum
to 1. Our results refer to the 19801982 subset of data. Table
1 provides values for a sequence of asymptotic x? tests
against the alternative that the rank is greater than r. There is
a strong suggestion that a rank 3 relationship is required, as
would be the case in our second-order polynomial.

Detailed results (available from the authors) indicate
stability in these overall patterns across time and across
alternative bandwidth choices for the nonparametric regres-
sions. It is perhaps more important to note that the overall
picture is maintained for other demographic groups. For
example, figure 2a shows shifts in the Engel curve for food
as the household size varies. The overall shape is little
affected by variations in the choice of kernel or smoothing
parameter. Indeed, the behavior in the tails of the kernel
regressions in figure 1 reflects low density in the data and is
made more stable in figure 2a by the adoption of the
computationally more expensive adaptive kernel.

These raw data analyses should be viewed with caution
for a number of reasons. Most obviously one would expect
additional covariates. This point is largely accounted for by
the selection of a homogeneous subsample. Possibly of more
importance are assumptions on the stochastic specification
underlying the kernel regressions. The explanatory variable
is the logarithm of (deflated) total expenditure on the sum of
the five consumption categories. This is likely to be endog-
enous. Our first line of analysis therefore is to assess to what
extent the rejection of linearity can be attributed to one of
these stochastic problems. To do this we follow both
nonparametric and parametric approaches.

The ordinary least-squares (OLS) regression estimates
corresponding to the quadratic approximation to the kernel
regressions are given in table 2. As one might expect, they
imply similar conclusions as the plots we have already
discussed. Quadratic terms are significant for clothing,
alcohol, and other goods, but linearity appears to be
sufficient to explain expenditure shares on food and fuel. To
allow for the possibility of endogeneity, we instrument log
expenditure and its square by log income and its square. One
way of computing this estimator is by the inclusion of the
two reduced-form residuals in an extended OLS regression
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(see Holly (1982)). This “Wu—Hausman” technique has the
advantage of directly testing exogeneity through the joint
significance of the two residual terms. Exogeneity of log
expenditure is strongly rejected, but the residuals on the
reduced form for the square of log expenditure (presented in
the penultimate row of table 2) are not jointly significant.
This suggests that including the reduced-form residual on
log expenditure alone is sufficient to control for endogeneity.
Joint normality of log expenditure and the Engel curve
disturbances would be sufficient to guarantee this result. In
figure 2b we show the closeness to normality of the Inx
distribution in our data.

Table 2 also presents results for the quadratic model under
this correction for endogeneity. These estimates differ from
the OLS results but display the same overall patterns. As a
final check on our specification we include higher-order
terms in log expenditure, which are presented in the final
row of table 2. These are also jointly insignificant.

As a descriptive alternative to this instrumental variable
procedure, we show a more nonparametric picture of the
robustness of our Engel curve results. For this we consider

FIGURE 2A.—ENGEL CURVES FOR Foob, BY FAMILY TYPE

0.5

+—— No Kids

0.4

Food Share
0.3

0.2

0.1

4.0 4.5 5.0 55 6.0 6.5
Log Real Expenditure

FIGURE 2B.—THE DISTRIBUTION OF LOG NON-DURABLE EXPENDITURE
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TABLE 2.—ENGEL CURVE PARAMETERS, FES DATA 1980-1982: SHARE EQUATIONS

Food Fuel Clothing Alcohol Other
OLS
Inx —0.1785 (0.0840) —0.0600 (0.0318) 0.2759 (0.0524) 0.2229 (0.0524) —0.2602 (0.1298)
In x? 0.0039 (0.0089) 0.0016 (0.0033) —0.0237 (0.0056) —0.0237 (0.0056) 0.0448 (0.0140)
Wu—-Hausman
Inx —0.1593 (0.0940) —0.0498 (0.0334) 0.2749 (0.0920) 0.2286 (0.0617) —0.2943 (0.1424)
In x? 0.0046 (0.0100) 0.0020 (0.0036) —0.0267 (0.0098) —0.0235 (0.0066) 0.0436 (0.0152)
v —0.0321 (0.0165) —0.0170 (0.0059) 0.0017 (0.0160) —0.0096 (0.0108) 0.0570 (0.0251)
Alternative Specifications
» —0.0780 (0.0524) —0.0590 (0.0212) 0.0520 (0.0499) 0.0129 (0.0341) 0.0721 (0.0779)
In x3 —0.0135 (0.0060) 0.0023 (0.0022) —0.0035 (0.0058) 0.0127 (0.0039) 0.0020 (0.0090)

Notes: (1) Standard errors are in parentheses.

(2) The estimates in this table are the restricted estimates in which the single reduced-form residual for In expenditure, »;, alone is included.

(3) All share equations also contain age and age squared of both adults, the logarithm of relative prices, spouses’ employment status, seasonal dummies, and a constant.

(4) v, is the reduced-form residual from the prediction of In x, where the instrument set comprises age and age squared of both adults, In income, seasonal dummies, relative prices, a price index, and a constant.

(5) The alternative specifications presented report the coefficients on two extra variables to test the sensitivity of the model. v, is the residual from the reduced form for (In x)?, where the instrument includes the square
of the logarithm of income. The final line presents parameters for the term in (In x)* which, when added, was jointly insignificant across equations.

the fitted value Inx based on our vector of instruments.
Under the null hypothesis that the budget shares are at least
approximately Working—Leser, a kernel regression of w; on

In x would look linear even if In x were endogenous. Under
the null, the asymptotic distribution of the kernel regression

is not affected by the estimation error in In x, because the

convergence rate of In x is root N, which is faster than that of
the kernel regression. Figure 3 shows these regressions for

clothing and alcohol, assuming the reduced form for In x is
linear. The kernel regressions look highly nonlinear, indicat-
ing that dependence between In x and the share equation
errors is not responsible for the observed curvature in the
Engel curves of figure 1.

In summary, these preliminary data investigations suggest
two distinct features of our expenditure data. For certain
goods such as food, the linear logarithmic expenditure share
model provides a robust description of behavior. Second, for
certain other goods the linear model needs to be supple-
mented by some other, possibly quadratic, term in log
expenditure.

III. Utility Maximization and the Shape of Engel Curves

Over time and in the presence of indirect tax changes,
relative prices as well as real incomes change. The analysis
of these changes requires a demand system that is able to
accommodate the Engel curve shapes uncovered in the
previous section while allowing for data-coherent relative
price responses. The evidence of section II suggests Engel
curves that have leading terms linear in the logarithm of
income and additional higher order terms in income. Our
aim in this section is to consider utility functions that are
consistent with such Engel curves. In the empirical estima-
tion of section IV we check whether the resulting demand
system is consistent with the price, income, and expenditure
share data.

Demands having expenditure shares that are linear in log
total expenditure (hereafter referred to as In m) alone have

been called Price-Independent Generalized Logarithmic
(PIGLOG) by Muellbauer (1976), and arise from indirect
utility functions that are themselves linear in In m. Examples
of PIGLOG demands include Deaton and Muellbauer’s
(1980) AI demand system and Jorgenson et al.’s (1982)
translog model. Since the empirical Engel curves for some
goods (i.e., food) look linear in In m, we consider generaliza-
tions of PIGLOG preferences.

A. Extensions of PIGLOG Preferences

The simplest general form of demands consistent with the
empirical evidence on Engel curves is

w; = A;(p) + Bi(p) Inx + C;(p)g(x) )]

for goods i = 1, ..., N, where p is the N-vector of prices,
x = mla(p), and A,(p), B;(p), Ci(p), and g(x) are differen-
tiable functions.

Equation (1) says that expenditure shares are linear in log
income and in another smooth function of income, g(x). The
Ci(p)g(x) term allows for the nonlinearities apparent in
figure 1 for clothing and alcohol, whereas the Engel curves
that look like PIGLOG have C;(p) near zero.

Lewbel (1991) defines the rank of any demand system to
be the dimension of the space spanned by its Engel curves.
The rank of equation system (1) equals the rank of the N X 3
matrix of Engel curve coefficients, having rows [A;(p):B;
(p):Ci(p)] for goods i. This matrix has three columns, so 3 is
the maximum possible rank of equation system (1). Exactly
aggregable demand systems are defined as demand systems
that are linear in functions of m. Gorman (1981) proved that
the maximum possible rank of any exactly aggregable de-
mand system (with any number of terms) is 3. The empirical
evidence on Engel curves indicates that observed demands
are rank 3. These theoretical and empirical results together
suggest that there would be little or no gain in adding
additional terms of the form D;(p)A(x) to equation (1).
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FIGURE 3A.—ROBUST TESTING FOR LINEAR ENGEL CURVES: ALCOHOL SHARES
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FIGURE 3B.—ROBUST TESTING FOR LINEAR ENGEL CURVES: CLOTHING SHARES
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The following theorem characterizes demand systems that
are consistent with equation (1).

THEOREM 1: All exactly aggregable demand systems in the
form of equation (1) that are derived from utility maximiza-
tion either have

Ci(p) = d(p)Bi(p) (2
for some function d(p) (so the rank is less than 3), or they are
rank 3 quadratic logarithmic budget share systems having
indirect utility functions of the form

Inm — In a(p)]~!

b(p)

Inv= 3)

-1
+Mm]

where the term [Inm — In a(p)]/b(p) is the indirect utility
function of a PIGLOG demand system (i.e., a system with
budget shares linear in log total expenditure), and the extra
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term M is a differentiable, homogeneous function of degree
zero of prices p.

For a proof see appendix A.

Notice that when A(p) is independent of prices, the
indirect utility function reduces to a form observationally
equivalent to the PIGLOG class, which includes the Al
model and the translog model of Jorgenson et al. By Roy’s
identity the budget shares are given by

dlna(p) olnb(p) o 1
w; = + (Inx) + ————(nx)? (Y}
dInp; dInp; dIn p; b(p)

which are quadratic in In x = In m — In a(p). It can be seen
that A; in equation (1) corresponds to the ith In p derivative
of In a(p); similarly for B; and C;. This is precisely the Engel
curve relationship fitted on the FES data in the previous
section.

The empirical evidence on Engel curves appears to rule
out condition (2), since some goods, such as food, have
budget shares nearly linear in In x whereas others display
strong nonlinearities. Equation (2) would also require that
the ratio of the coefficient on (In x)? to the coefficient on In x
be the same for all goods, which is clearly violated by the
estimates in table 2. As a result theorem | suggests that
budget shares of the form of equation (4) should be
considered.

Theorem 1 makes equation (1) demands satisfy homoge-
neity and symmetry. Utility maximization also imposes
inequality constraints on the functions comprising equations
(2) and (3), resulting from concavity conditions. Our strat-
egy will be to estimate the demand systems without impos-
ing these inequality constraints and then check that our
estimates of the required inequalities are in the range of our
data.

COROLLARY 1:  Utility-derived demand systems in the form
of equation (1) can be constructed for any regular function
g(x), but all rank 3 exactly aggregable utility-derived
demand systems in the form of equation (1) have g(x) =
(In x)%.

To prove corollary 1, let G(x) = — [[x In x + xg(x)]~! dx.
Then the indirect utility function V = G(m/a(p)) + b(p)
yields rank 2 demands in the form of equation (1), as can be
verified directly using Roy’s identity. This method can be
used to construct rank 2 utility-derived equation (1) systems
for any function g (subject only to restrictions required for
cost function concavity and existence of the integral defining
G, which is what is meant here by regularity). Given
theorem 1, equations (3) and (4) prove the rank 3 case of
corollary 1.

Corollary 1 shows that confining attention to exactly
aggregable, utility-derived equation (1) forms does not by
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itself force the quadratic logarithmic specification. It is the
additional requirement that demands be rank 3 that forces
g(x) to equal (In x)2.

Since rank 3 forces g(x) = (Inx)?, budget shares are
quadratic in Inx = Inm — Ina(p) and therefore are
quadratic in In m itself. Having proved this much, the actual
characterization of rank 3 quadratic logarithmic demands
given in equation (3) can be readily derived from analogous
constructions in Howe et al. (1979) or van Daal and Merkies
(1989). An additional contribution of theorem 1 is equation
(2), which shows exactly how the coefficients collapse to
rank 2 when the utility function does not have the quadratic
logarithmic form of equation (3).

Fortunately every empirical Engel curve analyzed in
section II does look either linear or quadratic in Inx, and
hence the observed Engel curves appear to be rank 3 and do
not violate the restrictions required for utility maximization
that are revealed in theorem 1.

The following corollary provides another surprising impli-
cation of utility maximization that is revealed by theorem 1.

COROLLARY 2: No rank 3 exactly aggregable utility-
derived equation system (1) exists that has both B{p) and
Cy(p) independent of prices.

To prove the corollary, for each commodity I, set the
expressions for B;(p) and C;(p) implied by equation (4)
equal to constants. The only solution to the resulting
expressions for b(p) and \(p) are b(p) = pr" and \(p)
proportional to b(p), which makes equation (2) hold and
therefore causes the system to collapse to rank 2.

The Al demand system has the form of equation (1), with
each B, constant (that is, independent of prices) and every
C; = 0. The natural extension of the Al system would be to
let both B; and C; be constants, with C; nonzero for
commodities being nonlinear in x budget shares, such as
alcohol and clothing. For example, Blundell et al. (1993)
obtain good fits estimating models in the form of equation
(1), with B; and C; constant. They take A; and B; to be of the
Al system form, that is,

2
wi= o+ yiinp + ) By(inx) + error; %)
| =

Unfortunately, by corollary 2, B; and C; cannot both be
constants for all commodities i while maintaining rank 3, as
is empirically required. For demand systems in the form of
equation (5), theorem 1 and corollary 2 show that utility
maximization rather unexpectedly forces

w; = a; + v Inp + By[ln x + €(In x)*] + error; (6)
where € is some constant, requiring that all Engel curves

have the same quadratic in In x expenditure shares. Figure 1
alone clearly rules out equation (6), so any model that is both
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theoretically and empirically acceptable must have quadratic
coefficients that vary with prices. The QUAIDS specifica-
tion retains the overall form of the quadratic model in
Blundell et al. (1993) but introduces this price dependence in
a parsimonious way.

IV. Estimation of Income and Relative Price Effects
A. A Quadratic Almost Ideal Demand System

The analysis of the last two sections suggests that the
quadratic demand systems in equation (4) provide a data-
coherent structure for consumer preferences in the FES data.
To construct a simple quadratic logarithmic specification
consistent with equation (3), we begin by considering
Deaton and Muellbauer’s Al demand system.> The AT model
has an indirect utility function given by equation (3), but
with the \ term set to zero. In particular, In a(p) has the
translog form

n

Ina(p) = o + 2 o; In p;

i=1

)

n

1 n
+ 52 E Yij In p; In p;

i=1 j=1

and b(p) is the simple Cobb-Douglas price aggregator
defined above,

b(p) = Hlp ®)

The Al model is popular in part because it has budget shares
that, conditional on a(p), are linear in In p and In x, which
simplifies estimation. However, the analysis in section II
shows that the AI system, being linear in In x and rank 2,
requires generalization. The results of section II show that a
demand model consistent with both the predictions of
demand theory and our empirical evidence must be rank 3
and have the form of equations (1) and (3).

Our goal is to construct a system that is as similar as
possible to the convenient Al model while allowing for the
more general Engel curve shapes discovered in section II. To
do so, we define the indirect utility in V by equation (3) with

Ap) = 2 A;In p;, where 2 N =0. 9)
i=1 ;

Equations (3), (7), (8), and (9) together define what we call
QUAIDS. By equation (4) the corresponding expenditure

5 We could equally well work from the translog model of Jorgenson et al.
(1982).
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share equation system is

w,=ao; + z'y,-jlnpj + B;In _m_}
j=1 a(p) (10)
N t m |)?
+——iln|——=
b | la(p

where the impact of demographic and other household
characteristics could be allowed to enter all terms.® The
QUAIDS model has the income flexibility and rank sug-
gested by the Engel curve analysis of the previous two
sections. it has the same degree of price flexibility as the
usual Al and translog models, it is as close to linearity in
parameters as theorem 1 will permit, it has the Al model
nested within it as a special case, and it has as few additional
parameters over the Al model as possible, given all these
features.

To calculate QUAIDS model elasticities, differentiate
equation (10) with respect to In m and In p;, respectively, to
obtain

aWi 2)\1 m l
Hi dlnm B: b(p) f a(p) (an
GW,-
Hijzalnpj:%j_ H; aj+;’ijlnPk
(12)
o " |
——iln|—|; .
bp)| la(p)

The budget elasticities are given by e; = u/w; + 1, and with
a positive B and a negative \ (as suggested in section II for
clothing and alcohol), will be seen to be greater than unity at
low levels of expenditure, eventually becoming less than
unity as the total expenditure increases and the term in A,
becomes more important. Such commodities therefore have
the characteristics of luxuries at low levels of total expendi-
ture and necessities at high levels.

The uncompensated price elasticities are given by e}; =
wi/w; — 8, where ;; is the Kronecker delta. We use the
Slutsky equation, ej; = ej; + ew;, to calculate the set of
compensated elasticities e;; and assess the symmetry and
negativity conditions by examining the matrix with elements
w;[e};], which should be symmetric and negative semidefi-
nite in the usual way.

B. Estimating Relative Price and Income Effects

To estimate this model we take a sample of households
from the repeated cross sections of the UK. FES for the
period of 1970-1986, adopting the same sample selection as

6 Note that rebasing prices implies a rescaling of the o« and v;
parameters. The demand system and implied welfare measures are
invariant to such rebasing.
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in section II. The selected sample has 4785 observations
over 68 quarterly price points, and later price data at the
appropriate aggregation are unavailable. We consider the
system defined above for the five goods analyzed in section
I (food, fuel, clothing, alcohol, and other nondurable
nonhousing expenditures), imposing homogeneity by ex-
pressing all prices relative to the price of “other” goods.

To deal with the possibility of endogeneity, measurement
error, and nonnormality of errors, a generalized method of
moments (GMM) estimation procedure is used. The system
is nonlinear and estimation follows two stages. In the first
stage an iterated moment estimator is adopted, which
exploits the conditional linearity of equation (10) given a(p)
and b(p). That is, given a(p) and b(p), the system is linear in
parameters, and this suggests a natural iterative procedure
conditioning on an updated a(p) and b(p) at each iteration.”
This technique preserves the adding-up and invariance
properties of the system. To derive the symmetry-restricted
estimates, the optimum minimum distance estimator was
used at the second stage (see Blundell (1988) and Browning
and Meghir (1991) for a full description of this technique).
Incidentally, if we were to consider a household in the base
period when all relative prices are unity, their price index
In [a(p)] would simply be equal to o, and since we require
real expenditure to be positive, then the minimum level of
log real expenditure observed in the data places an upper
bound on In [a(p,)] and therefore o in the base period.®

C. Empirical Results

Table 3 presents the symmetry-restricted parameter esti-
mates for our preferred quadratic specification. In line with
the evidence presented in section III, we restrict the coeffi-
cients on the quadratic terms for the food and fuel equations
to be zero. The full unrestricted model estimates are
presented in appendix B. Given the homogeneity of our
sample, we choose to allow only a limited number of
additional factors to influence preferences (i.e., age, seasonal
dummies, and a time trend) through «; in equation (10).
Households are chosen to be demographically homogeneous
which, given the large samples at our disposal, seems a
reasonable way to proceed.

Table 3 clearly shows the importance of quadratic terms in
real expenditure for clothing and alcohol, as the nonparamet-
ric analysis suggested. As we will use the Al model for
comparison in the welfare analysis that follows, we report
estimates of the corresponding Al specification in appendix
B. The diagnostics suggest that higher order price terms are
not required and also that linearity in In m for food and fuel
cannot be rejected. Moreover, in this QUAIDS specification
the symmetry restrictions, tested with a x? statistic, are not

7The consistency of this procedure and its asymptotic efficiency
properties are described in Blundell and Robin (1996).

8 Our choice of the parameter o follows the original discussion in
Deaton and Muellbauer (1980) and is chosen to be just below the lowest
value of In m in our data. To check that this did not affect our results, we
also chose a grid of values.
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TABLE 3.—DEMAND SYSTEM PARAMETER ESTIMATES AND #-RATIOS

Food Fuel Clothing Alcohol Other

Constant 0.868 24.11 0.255 16.02 —0.383 —4.33 —0.400 —6.18 0.660 5.65
PFOOD —0.103 —2.95 —0.011 —0.68 0.123 3.70 0.128 5.96 —0.137 —1.20
PFUEL —0.011 —0.68 0.005 0.31 —0.018 —-1.12 0.055 4.48 —0.030 —1.08
PCLOTH 0.123 3.70 —0.018 —1.12 —0.091 —-2.72 —0.082 —4.10 0.068 2.50
PALC 0.128 5.95 0.055 4.48 —0.082 —4.10 —0.115 —4.80 0.014 1.71
POTHER -0.137 —1.20 —0.030 —1.08 0.068 2.50 0.014 1.71 0.085 0.11
TREND 0.010 0.84 —0.003 —0.60 —0.009 -0.71 0.005 0.69 —0.003 0.19
S1 —0.003 —0.95 0.006 4.74 —0.006 —1.87 —0.005 —2.41 0.008 1.56
S2 —0.002 —0.65 —0.003 —1.84 —0.008 —2.39 —0.003 —-1.27 0.016 3.07
S3 —0.007 —2.13 —0.011 —17.60 0.003 0.84 —0.002 —0.74 0.017 3.26
AGE 0.010 10.29 0.006 14.84 —0.004 —4.36 —0.006 —9.47 —0.054 —38.57
AGE? —0.000 —0.52 —0.002 —4.44 0.002 2.65 0.001 1.02 —0.001 -0.71
Inx —0.125 —21.34 —0.035 —14.85 0.184 5.71 0.173 7.13 —0.197 —4.87
(In x)? — — —0.018 —5.24 —0.017 —6.52 0.034 8.09
v —0.029 —4.32 —0.007 —2.51 0.028 4.28 —0.009 —2.16 0.017 1.71

Symmetry test = 12.54 x2(6,0.975) = 14.45

Linearity test = 7.29 x2(2,0.975) = 7.38

Cubic test = 24.65 x2(16, 0.975) = 28.85

Notes: (1) All prices are in logarithms.
(2) Sample selection is married couples without children living in London and the South East.

(3) Iny; is the (Wu—Hausman) reduced-form residual from the regression of In x on the instrument set (see section II).

(4) The cubic test is a Wald test of the hypothesis that cubic terms in prices are jointly insignificant in the regression of the (unrestricted) residuals on RHS variables and higher order (cubed) price terms.

(5) The linearity test reports the test statistic for our restricted model with linear Engel curves for food and fuel against the alternative of quadratic Engel curves in all five commodity groups.

(6) Instruments for In x in all equations were age and age squared of both adults, tenure, durable ownership dummies, interest rates, trend and higher order trend terms, smoker and white-collar dummies, prices
(including durables and housing), normal household income and income squared, and interactions of prices and incomes.

rejected.? Comparison of table 3 and table B.2 in appendix B
(which presents symmetry-restricted but not linearity-
restricted results) reveals that the imposition of linearity for
food and fuel does not seriously affect any other parameters
in the system.

In figure 4 we present a nonparametric residual analysis
with 95% confidence bands for our preferred specification
for the food and alcohol equations under all the preference
restrictions. If our specification is appropriate, this nonpara-
metric regression should lie close to the horizontal axis. The
estimates suggest that our QUAIDS Al specification of table
3 is not missing any serious systematic nonlinearities in the
Engel curve. Similar patterns are observed in the residuals
for the fuel, clothing, and “‘other” categories.

Finally, before moving to the welfare analysis of indirect
tax reform, we report the elasticities in table 4. These
elasticities are calculated for each household individually,
and then a weighted average is constructed, with the weights
being equal to the household’s share of total sample
expenditure for the relevant good. Uncompensated own-
price elasticities are negative for all goods at all percentiles
of the total expenditure distribution. In addition, we compute
Slutsky matrices to examine concavity in the domain of our
sample. The few violations we found were among the very
highest spending households.

V. Welfare Analysis and Indirect Tax Reform

One of the main motivations for estimating demand
systems is to facilitate welfare analysis. In what follows we
use our estimated model to calculate some simple welfare

9In a smaller UK. data set, Lewbel (1995) finds that the results of
symmetry testing using the QUAIDS model agree with a fully nonparamet-
ric symmetry test.

measures for an example indirect tax reform. As a compari-
son model we use the popular AI model (in which all
quadratic terms in In x are omitted) estimated on the same
data. The reform we consider is the imposition of a 17.5%
sales tax on clothing. While this is certainly a large price
change, it is not inconsistent with those price changes that
would occur if a sales tax were added to a good not
previously taxed. In the United Kingdom the current rate of
value-added taxation (VAT) is 17.5%, and children’s cloth-
ing and footwear are among the goods that are not currently
subject to this tax (although our ‘“clothing” category in-
cludes adult clothing, which currently is subject to VAT). In
a related paper we consider, for the same reform, how
welfare analysis based on first- and second-order approxima-
tions to demand responses differs from that based on the full
QUAIDS estimates (Banks et al. (1996)).

Using the parameters estimated above we can calculate
indirect utilities from the functional form in equations
(7)—(9), both before and after the reform. We plot the
compensating variations, given by the difference in cost
functions c(p', z, u®) — c(p°, z, u®) for each household in the
final year of our data. These are positive for every point in
our data, indicating that each household experiences a
welfare loss as a result of the price rise. First we plot in
figure 5 the welfare losses for the QUAIDS specification (in
pounds per week) against the households’ total expenditures.
All households suffer positive utility losses, and these losses
increase with total expenditure, as would be expected.

In figure 6 we indicate the ‘“‘biases” obtained when the Al
model is estimated on the same data. This figure plots the
difference between the AI welfare loss and the QUAIDS
welfare loss for each household as a proportion of that
household’s QUAIDS welfare loss. The figure shows that,
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FIGURE 4A.—A RESIDUAL ANALYSIS OF THE QUADRATIC SPECIFICATION FOR
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for this reform, the Al model understates the welfare losses
for the majority of the distribution and overstates the welfare
losses for the richer (and the very poorest) households, a
result that is consistent with the AI model not allowing
adequate curvature in the Engel curve for clothing. Indeed,
looking at reforms to goods with linear Engel curves does
not produce nearly such pronounced patterns.

V1. Summary and Conclusions

This paper was motivated by the need to provide an
accurate analysis of the welfare cost of indirect tax reform.
Analyses of household budget surveys have pointed to more
curvature in the Engel curve relationship than is permitted
by the standard Working-Leser form. Our aim was to
provide a detailed assessment of this result and to consider
the appropriate form of preferences that support generaliza-
tions in the shape for the Engel curve relationship. This is

TABLE 4.—ESTIMATED DEMAND ELASTICITIES

Food Fuel Clothing Alcohol Other
Compensated
Food —0.7817 (0.15) 0.1068 (0.06) 0.2919 (0.13) 0.2914 (0.08) 0.0888 (0.11)
Fuel 0.4653 (0.29) —0.7669 (0.22) —0.4590 (0.29) 0.6330 (0.19) 0.1274 (0.29)
Clothing 1.0423 (0.41) —0.3805 (0.17) —0.9606 (0.42) 0.0571 (0.23) 0.2419 (0.34)
Alcohol 1.5341 (0.42) 0.7588 (0.21) 0.0580 (0.41) —1.6492 (0.44) —0.7017 (0.59)
Other 0.0490 (0.06) 0.0163 (0.03) 0.0390 (0.07) —0.0769 (0.06) —0.0277 (0.10)
Uncompensated
Food —0.9593 (0.16) 0.0657 (0.06) 0.2474 (0.13) 0.2641 (0.08) —0.1860 (0.12)
Fuel 0.3130 (0.31) —0.8040 (0.21) —0.4946 (0.29) 0.6087 (0.19) —0.0988 (0.31)
Clothing 0.7129 (0.44) —0.4546 (0.17) —1.0535 (0.41) —0.0075 (0.23) —0.3358 (0.39)
Alcohol 1.1543 (0.44) 0.6720 (0.21) —0.0441 (0.40) —1.7212 (0.44) —1.3397 (0.64)
Other —0.3621 (0.07) —0.0641 (0.03) —0.0620 (0.07) —0.1491 (0.05) —0.6831 (0.11)
Budget Mean Shares
Food 0.5680 (0.11) 0.2968
Fuel 0.4753 (0.20) 0.0675
Clothing 1.1388 (0.38) 0.0800
Alcohol 1.2786 (0.38) 0.0549
Other 1.2605 (0.09) 0.5007

Note: Standard errors are in parentheses.
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FIGURE 6.—BIAS IN WELFARE L0ss FROM USING THE Al MODEL
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shown to be restricted to a class of quadratic logarithmic
models. Given the importance of such models in understand-
ing the impact of indirect tax reform, we consider the
significance of our results in measuring the distribution of
welfare gains for an indirect tax reform for the United
Kingdom.

It seems clear that we can reject the linear Working—Leser
form for certain commodity groups in the U.K. FES,
although it is equally clear that for certain items, in
particular food expenditures, linearity is unlikely to be
rejected. Moreover, kernel regression analysis suggests that
share equations quadratic in the logarithm of total expendi-
ture provide a sufficiently general approximation to the
Engel relationship in the raw microdata. In addition, models
that require a constant ratio of linear to quadratic expendi-
ture terms across commodity groups were also ruled out by
our preliminary analysis.

We derive the unique class of quadratic Engel curve
preferences that satisfy integrability without the requirement
of the constant-ratio restriction. These demands are rank 3,
which is the maximum possible rank for any demand system
that is linear in functions of income. Furthermore it was
shown that the coefficients of the quadratic term in these
demands must be price dependent. This class nests the Al
and the exactly aggregable translog models while allowing
the flexibility of a rank 3 quadratic specification.

Using these results we specify the QUAIDS model, an
empirical demand system that, with a minimum number of
parameters and departures from linearity, possesses both
price flexibility and the Engel curve shape observed in the
data. The estimated model was found to produce a data-
coherent and plausible description of consumer behavior
from which we could calculate welfare measures associated
with price and tax changes. These welfare measures show
important divergences from similar measures calculated for
a standard model that is linear in log expenditure, reflecting
the importance of including quadratic expenditure terms to
account for goods being luxuries at some income levels and
necessities at others.
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The use of semiparametric or nonparametric methods as
an alternative solution to this problem will often be impracti-
cal. Kernel-based methods are not amenable to having
Slutsky symmetry imposed on them. Series-based semipara-
metric models have numbers of parameters that increase
explosively with the number of terms in the expansion, and
restrictions on homogeneity and Slutsky symmetry prevent
adding income parameters without also adding price param-
eters. Finally, nonparametric analyses of Engel curves and of
residuals from the parametric QUAIDS model indicate that
the QUAIDS is adequate, so no additional semiparametric
terms are required. However, if desired in contexts having
substantially more than the usual amount of price variation,
expansion terms could be appended to the QUAIDS specifi-
cation.

Our results indicate that studies based on Al or translog
preferences will badly misspecify the distribution of welfare
losses by failing to model Engel curvature correctly. The
empirical findings on the shape of Engel curves also show
that welfare calculations based on Engel or Rothbarth scales
must be invalid, since such scales require that Engel curves
be monotonic in utility, and hence in total expenditures. For
example, many Rothbarth scales use expenditures on alco-
hol or clothing to measure welfare. Our empirical findings
indicate that rich or poor households alike may have equal
expenditures or budget shares on these goods.
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APPENDIX A

Proof of Theorem 1

The demand system in equation (1) has three terms, so its maximum
rank is 3. If equation (1) has rank 1, it must be homothetic, so B,(p) =
Ci(p) = 0. If equation (1) has rank 2, the indirect utility function must have
the form V = h[ln b(p), In x] with x = m/a(p) for some a(p) and b(p)
(Gorman (1981)). By Roy’s identity we can write

dlnb(p) Jlna(p)

w; = H(b(p), x) ainp, + 3 inp,
(A.D)
—[0h/0 In b(p)]
where H=——"——"—"+
dh/d In x

Equation (1) can be written in the form of equation (A.1) if and only if
H(b,x) = H\(b) + Hy(b)Inx + H;(b)g(x), making B; = H,(b)[d In
b/d In p;] and C; = H3(b)[ In b/d In p;], so C/B; = H,/H; = d(p). Finally,
if equation (1) has rank 3, then applying Lewbel’s (1990) characterization
of full rank demand systems shows that the only rank 3 system that is linear
in In m and any other function of In m is the quadratic logarithmic, which
has the indirect utility function V = m{[8,(p) + 8,(p) Inm]~1 + 05(p)} for
some monotonic function m. The proof then follows immediately from
equation (A.1), which is from Muellbauer’s (1976) characterization of

401. PIGLOG demands.
APPENDIX B
TABLE B.1.—UNRESTRICTED ESTIMATES OF QUAI MODEL
Food Fuel Clothing Alcohol

INTERCEP 1.18634 (0.1073) 0.25747 (0.0426) —0.43553 (0.1049) —0.39579 (0.0708)
PFOOD —0.20752 (0.0582) 0.00671 (0.0231) 0.05660 (0.0569) 0.10548 (0.0384)
PFUEL —0.05564 (0.0407) —0.00328 (0.0162) 0.01605 (0.0398) 0.06259 (0.0268)
PCLOTH 0.20247 (0.0550) —0.03374 (0.0219) —0.04032 (0.0538) —0.05403 (0.0363)
PALC 0.16169 (0.0395) 0.06263 (0.0157) —0.16410 (0.0386) —0.10969 (0.0261)
TREND 0.00860 (0.0166) —0.00673 (0.0066) —0.00277 (0.0163) 0.01438 (0.0110)
SPRING —0.00292 (0.0034) 0.00624 (0.0013) —0.00528 (0.0033) —0.00530 (0.0022)
SUMMER —0.00215 (0.0034) —0.00245 (0.0014) —0.00822 (0.0034) —0.00292 (0.0023)
AUTUMN —0.00725 (0.0036) —0.01027 (0.0014) 0.00171 (0.0035) —0.00215 (0.0023)
AGE 0.00972 (0.0010) 0.00564 (0.0004) —0.00402 (0.0009) —0.00598 (0.0006)
AGE? —0.00055 (0.0009) —0.00165 (0.0004) 0.00246 (0.0009) 0.00062 (0.0006)
In x —0.25719 (0.0419) —0.03351 (0.0167) 0.19981 (0.0410) 0.16438 (0.0277)
In x2 0.01368 (0.0043) —0.00011 (0.0017) —0.01942 (0.0042) —0.01562 (0.0029)
v —0.02795 (0.0067) —0.00698 (0.0027) 0.02765 (0.0066) —0.00930 (0.0044)

Notes: (1) Standard errors are in parentheses.

(2) Instruments in all equations were age and age squared of both adults, tenure, durable ownership dummies, interest rates, trend and higher order trend terms, smoker and white collar dummies, prices (including

durables and housing), normal household income and income squared, and interactions of prices and incomes.

TABLE B.2.—SYMMETRY RESTRICTED MINIMUM-DISTANCE ESTIMATES

Food Fuel Clothing Alcohol
PFOOD —0.16030 (0.041)
PFUEL —0.01491 (0.018) 0.00445 (0.014)
PCLOTH 0.15760 (0.036) —0.01626 (0.012) —0.11995 (0.035)
PALC 0.14359 (0.022) 0.05485 (0.013) —0.09948 (0.020) —0.11498 (0.024)
Inx —0.22234 (0.036) —0.03948 (0.015) 0.21132 (0.033) 0.18011 (0.023)
In x2 0.01020 (0.005) —0.00058 (0.002) —0.02053 (0.003) —0.01719 (0.003)

Note: Standard errors are in parentheses.



QUADRATIC ENGEL CURVES AND CONSUMER DEMAND

TaBLE B.3.—UNRESTRICTED ESTIMATES FOR ALMOST IDEAL MODEL

539

Food Fuel Clothing Alcohol
INTERCEP 0.8850 (0.0427) 0.2618 (0.0169) 0.0067 (0.0418) —0.0383 (0.0282)
PFOOD —0.0756 (0.0505) 0.0177 (0.0200) —0.0759 (0.0494) —0.0023 (0.0334)
PFUEL —0.0474 (0.0406) —0.0032 (0.0161) 0.0043 (0.0398) 0.0529 (0.0269)
PCLOTH 0.0766 (0.0503) —0.0488 (0.0200) 0.0640 (0.0492) 0.0317 (0.0333)
PALC 0.0604 (0.0357) 0.0493 (0.0142) —0.0853 (0.0350) —0.0447 (0.0236)
TREND 0.0097 (0.0167) —0.0064 (0.0066) —0.0029 (0.0163) 0.0143 (0.0110)
SPRING —0.0030 (0.0034) 0.0062 (0.0013) —0.0050 (0.0033) —0.0051 (0.0022)
SUMMER —0.0019 (0.0034) —0.0024 (0.0014) —0.0083 (0.0034) —0.0030 (0.0023)
AUTUMN —0.0071 (0.0036) —0.0102 (0.0014) 0.0016 (0.0035) —0.0022 (0.0024)
AGE 0.0098 (0.0010) 0.0056 (0.0004) —0.0041 (0.0009) —0.0060 (0.0006)
AGE? —0.0006 (0.0009) —0.0016 (0.0004) 0.0024 (0.0009) 0.0005 (0.0006)
Inx —0.1284 (0.0060) —0.0350 (0.0024) 0.0135 (0.0059) 0.0142 (0.0040)
v —0.0247 (0.0067) —0.0064 (0.0027) 0.0275 (0.0066) —0.0089 (0.0045)
Note: (1) Standard errors are in parentheses.
(2) Parameters for “other goods” not reported.
TABLE B.4.—ELASTICITIES OF ALMOST IDEAL SYSTEM
Food Fuel Clothing Alcohol
Compensated

Food —0.5845 (0.12) 0.1392 (0.06) 0.1822 (0.11) 0.1507 (0.07)

Fuel 0.6095 (0.26) —0.7507 (0.22) —0.4599 (0.25) 0.6064 (0.18)

Clothing 0.6473 (0.39) —0.3703 (0.20) —1.2813 (0.40) —0.0643 (0.23)

Alcohol 0.7730 (0.35) 0.7100 (0.21) —0.0931 (0.34) —1.6230(0.39)

Uncompensated

Food —0.7620 (0.13) 0.0981 (0.06) 0.1405 (0.11) 0.1210 (0.07)

Fuel 0.4596 (0.27) —0.7873 (0.22) —0.4911 (0.24) 0.5830 (0.18)

Clothing 0.3158 (0.42) —0.4449 (0.20) —1.3820 (0.39) —0.1319 (0.23)

Alcohol 0.4142 (0.37) 0.6282 (0.21) —0.1970 (0.33) —1.6962 (0.38)

Budget

Food 0.5577 (0.02)

Fuel 0.4534 (0.04)

Clothing 1.1946 (0.08)

Alcohol 1.2718 (0.08)

Notes: (1) Standard errors are in parentheses.
(2) Parameters for “other goods” not reported.



