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ROBUST INFERENCE IN HIGH-DIMENSIONAL APPROXIMATELY SPARSE

QUANTILE REGRESSION MODELS

A. BELLONI, V. CHERNOZHUKOV, AND K. KATO

Abstract. This work proposes new inference methods for the estimation of a regression coefficient

of interest in quantile regression models. We consider high-dimensional models where the number of

regressors potentially exceeds the sample size but a subset of them suffice to construct a reasonable

approximation of the unknown quantile regression function in the model. The proposed methods are

protected against moderate model selection mistakes, which are often inevitable in the approximately

sparse model considered here. The methods construct (implicitly or explicitly) an optimal instrument

as a residual from a density-weighted projection of the regressor of interest on other regressors. Under

regularity conditions, the proposed estimators of the quantile regression coefficient are asymptotically

root-n normal, with variance equal to the semi-parametric efficiency bound of the partially linear quan-

tile regression model. In addition, the performance of the technique is illustrated through Monte-carlo

experiments and an empirical example, dealing with risk factors in childhood malnutrition. The nu-

merical results confirm the theoretical findings that the proposed methods should outperform the naive

post-model selection methods in non-parametric settings. Moreover, the empirical results demonstrate

soundness of the proposed methods.

1. Introduction

Many applications of interest requires the measurement of the distributional impact of a policy (or

treatment) on the relevant outcome variable. Quantile treatment effects have emerged as an important

concepts for measuring such distributional impact (see, e.g., [20]). In this work we focus on the quantile

treatment effect ατ of a policy/treatment d of an outcome of interest y in the partially linear model:

τ − quantile(y | z, d) = dατ + gτ (z).

Here ατ is the quantile treatment effect ([27, 20]), and gτ is the confounding effects of the other covariates

or controls z. To approximate gτ we rely on linear combinations of p-dimensional vector of technical

regressors, x = P (z), where we allow for the dimension p to be potentially bigger than the sample size

n to achieve an accurate approximation for gτ . This brings forth the need to perform model selection or

regularization.

We propose methods to construct estimates and confidence regions for the coefficient of interest ατ ,

based upon robust post-selection procedures. We establish the (uniform) validity of the proposed meth-

ods in a non-parametric setting. Model selection in those settings (generically) leads to a (moderate)

misspecification of the selected model and traditional arguments based on perfect model selection do not
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apply. Therefore the proposed methods are developed to be robust to (moderate) model selection mis-

takes. The proposed methods achieve the asymptotic semi-parametric efficiency bound for the partially

linear quantile regression model. To do so the conditional densities should be used as weights in the

second step of the method. Typically such density function is unknown and needs to be estimated which

leads to high dimensional model selection problems with estimated data. 1

The proposed methods proceed in three steps. The first step aims to construct an estimate of the

control function gτ . This can be achieved via ℓ1-penalized quantile regression estimator [3, 17, 38] or

quantile regression post-selection based on ℓ1-penalized quantile regression [3]. The second step attempts

to properly partial out the confounding factors z from the treatment. The heteroscedasticity in the model

requires us to consider a density-weighted equation, whose estimation is carried out by the heteroscedastic

post-Lasso [34, 2]. The third step combines the estimates above to construct an estimate of α0 which is

robust to the non-regular estimation in the previous steps. The fact that the estimators in the first two

steps are non-regular is a generic feature of our problem. We propose to implement this last step via

instrumental quantile regression [13] or by a density-weighted quantile regression with all the variables

selected in the previous steps, with the latter step reminiscent of the “post-double selection” method

proposed in [6, 10]. We mostly focus on selection as a means of regularization, but certainly other

regularization (e.g. the use of ℓ1-penalized fits per se) is possible, thought performs less well than the

methods we focus on.

Our paper contributes to the new literature on inference (as opposed to estimation) in the high-

dimensional sparse models. Several recent papers study the problem of constructing confidence regions

after model selection allowing p≫ n. In the case of linear mean regression, [6] proposed a double selection

inference in a parametric with homoscedastic Gaussian errors, [10] studies the double selection procedure

in a non-parametric setting with heteroscedastic errors, [39] and [35] proposed estimators based on ℓ1-

penalized estimators based on “1-step” correction in parametric models. Going beyond mean models,

[35] also provides high level conditions for the one-step estimator applied to smooth generalized linear

problems, [7] analyzes confidence regions for a parametric homoscedastic LAD regression under primitive

conditions based on the instrumental LAD regression, and [9] provides two post-selection procedures to

build confidence regions for the logistic regression. None of the aforementioned papers deal with the

problem of the present paper.

Some of the papers above explicitly (or implicitly) aim to achive an important uniformity guarantees

with respect to the (unknown) values of the parameters. These uniform properties translate into more

reliable finite sample performance of these inference procedures because they are robust with respect to

(unavoidable) model selection mistakes. There is now substantial theoretical and empirical evidence on

the potential poor finite sample performance of estimators that rely on perfect model selection to build

confidence regions when applied to models without separation from zero of the coefficients (i.e. small

coefficients). Most of the criticism of these procedures are consequence of negative results established

in [24], [26] and the references therein. This work contributes to this literature by proposing methods

1We also discuss alternative estimators that avoid the use of model selection procedures with estimated data. Those can

be valid under weaker conditions, but they are not semi-parametric efficient, except for some special (homoscedastic) cases.
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that will deliver confidence regions that also have uniformity guarantees for (heteroscedastic) quantile

regression models allowing p ≫ n. Although related in spirit with our previos work, [10, 7, 9], new

tools and major departures are required to accommodate the non-differentiability of the loss function,

heteroscedsaticity of the data, and the non-parametric setting.

Finally, in the process of establishing the main results we also contribute to the literature of high-

dimensional estimation. An intermediary step of the method required the estimation of a weighted least

squares version of Lasso in which weights are estimated. Finite sample bounds of Lasso for the prediction

rate are established to this new case. Finite sample bounds for the prediction norm on the estimation error

of ℓ1-penalized quantile regression in nonparametric models extending results on [3, 17, 38]. We further

developed results on instrumental quantile regression problems in which we allow for the dimension to

increase and estimated instruments.

Notation. In what follows, we work with triangular array data {(ωi,n, i = 1, ..., n) , n = 1, 2, 3, ...}
defined on probability space (Ω,S,Pn), where P = Pn can change with n. Each ωi,n = (y′i,n, z

′
i,n, d

′
i,n)

′

is a vector with components defined below, and these vectors are i.n.i.d. – independent across i,

but not necessarily identically distributed. Thus, all parameters that characterize the distribution

of {ωi,n, i = 1, ..., n} are implicitly indexed by Pn and thus by n. We omit the dependence from

the notation in what follows for notational simplicity. We use array asymptotics to better capture

some finite-sample phenomena and to insure the robustness of conclusions with respect to perturba-

tions of the data-generating process P along various sequences. We use En to abbreviate the nota-

tion n−1
∑n
i=1 and the following empirical process notation, En[f ] := En[f(ωi)] :=

∑n
i=1 f(ωi)/n, and

Gn(f) :=
∑n

i=1(f(ωi) − E[f(ωi)])/
√
n. Since we want to deal with i.n.i.d. data, we also introduce the

average expectation operator: Ē[f ] := EEn[f ] = EEn[f(ωi)] =
∑n

i=1 E[f(ωi)]/n. The l2-norm is denoted

by ‖ · ‖, and the l0-norm, ‖ · ‖0, denotes the number of non-zero components of a vector. We use ‖ · ‖∞ to

denote the maximal element of a vector. Given a vector δ ∈ Rp, and a set of indices T ⊂ {1, . . . , p}, we
denote by δT ∈ Rp the vector in which δTj = δj if j ∈ T , δTj = 0 if j /∈ T . We let δ(k) be a vector with

k non-zero components corresponding to k of the largest components of δ in absolute value. We use the

notation (a)+ = max{a, 0}, a ∨ b = max{a, b}, and a ∧ b = min{a, b}. We also use the notation a . b to

denote a 6 cb for some constant c > 0 that does not depend on n; and a .P b to denote a = OP (b). For

an event E, we say that E wp → 1 when E occurs with probability approaching one as n grows. Given

a p-vector b, we denote support(b) = {j ∈ {1, ..., p} : bj 6= 0}. We also use ρτ (t) = t(τ − 1{t 6 0}) and
ϕτ (t1, t2) = (τ − 1{t1 6 t2}).

2. Setting and Methods

For a quantile index τ ∈ (0, 1), we consider the following partially linear conditional quantile model

yi = diατ + gτ (zi) + ǫi, τ − quantile(ǫi | di, zi) = 0, i = 1, . . . , n, (2.1)

where yi is the outcome variable, di is the policy/treatment variable, and confounding factors are rep-

resented by the variables zi which impacts the equation through an unknown function gτ . The main
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parameter of interest is ατ , which is the quantile treatment effect, which describes the impact of the

treatment on the conditional quantiles.

We assume that the disturbance term ǫi in (2.1) has a positive and finite conditional density at 0,

fi = fǫi(0 | di, zi). (2.2)

In order to perform robust inference with respect to model selection mistakes, we also consider an instru-

mental variable ι0i = ι0(di, zi) with the properties:

Ē[(1{yi 6 diατ + gτ (zi)} − τ)ι0i] = 0, (2.3)

∂
∂α Ē[(1{yi 6 diα+ gτ (zi)} − τ)ι0i]

∣∣
α=α0

= Ē[fiι0idi] 6= 0, (2.4)

and
∂

∂δ
Ē[(1{yi 6 diα+ gτ (zi) + δ′xi} − τ)ι0i]

∣∣∣∣
δ=0

= Ē[fiι0ixi] = 0. (2.5)

The relations (2.3)-(2.4) provide the estimating equation as well as the identification condition for ατ .

Relation (2.5) states that the estimating equation should be immune/insensitive to local perturbations

of the nuisance function gτ in the directions spanned by xi. This orthogonality property is the critical

ingredient in guaranteeing robustness of procedures, proposed below, against the preliminary “crude”

estimation of the nuisance function gτ . In particular, this ingredient delivers robustness to moderate

model selection mistakes that accrue when post-selection estimators of gτ are used.

The (optimal) instrument satisfying (2.3) and (2.5) can be defined as the residual vi in the following

decomposition for the regressor of interest di weighted by the conditional density function, namely

fidi = fimτ (zi) + vi, E[fivi | zi] = 0, i = 1, . . . , n, (2.6)

and, thus, the (optimal) instrument is

ι0i = vi = fidi − fimτ (zi). (2.7)

We should point that we can construct other (non-optimal) instruments satisfying (2.3) by using different

weights f̃i instead of fi in the equation (2.6) and setting ι̃0i = ṽi(f̃i/fi) where ṽi is the new residual

corresponding to f̃i. It turns out that the choice f̃i = fi minimizes the asymptotic variance of the

estimator of α̂ based upon the empirical analog of (2.3), among all the instruments satisfying (2.4) and

(2.5).

We shall use a large number p of technical controls xi = P (zi) to achieve accurate sparse approxima-

tions to the functions gτ and m in (2.1) and (2.6), which take the form:

gτ (zi) = x′iβτ + rgτ i and mτ (zi) = x′iθτ + rmτi. (2.8)

We assume that gτ and mτ are approximately sparse, namely it is possible to choose the parameters βτ

and θτ such that:

‖θτ‖0 6 s, ‖βτ‖0 6 s, and Ē[r2mτi] . s/n and Ē[r2gτ i] . s/n. (2.9)

The latter equation requires that it is possible to choose the sparsity index s so that the mean squared

approximation error is of no larger order than the variance of the oracle estimator for estimating the
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coefficients in the approximation. (See [12] for a detailed discussion of this notion of approximately

sparsity.)

2.1. Known Conditional Density Function. In this subsection we consider the case of known condi-

tional density function fi. This case is of theoretical value since it allows to abstract away from estimating

the conditional density function fi and focus on the principal features of the problem. Moreover, under

homoscedasticity, when fi = f for all i, the unknown constant f will cancel in the definition of the

estimators proposed below and the results are also of practical interest for that case. In what follows, we

use the normalization En[x
2
ij ] = 1, j = 1, . . . , p, to define the algorithms and collect the recommended

choice of tuning parameters in Remark 2.2 below. Recall that for a vector β, β(2s) will truncate to zero

all components of β except the 2s largest components in absolute value.

We will consider two procedures in detail. They are based on ℓ1-penalized quantile regression and ℓ1-

penalized weighted least squares. The first procedure (Algorithm 1) is based on the explicit construction

of the optimal instruments (2.7) and the use of instrumental quantile regression.

Algorithm 1 (Instrumental Quantile Regression based on Optimal Instrument)

(1) Run Post-ℓ1-quantile regression of yi on di and xi; keep fitted value x′iβ̃τ ,

(α̂τ , β̂τ ) ∈ argminα,β En[ρτ (yi − diα− x′iβ)] + λτ‖β‖1
(α̃τ , β̃τ ) ∈ argminα,β En[ρτ (yi − diα− x′iβ)] : support(β) ⊆ support(β̂

(2s)
τ ).

(2) Run Post-Lasso of fidi on fixi; keep the residual ṽi := fi(di − x′iθ̃τ ),

θ̂τ ∈ argminθ En[f
2
i (di − x′iθ)

2] + λ‖Γ̂τθ‖1
θ̃τ ∈ argminθ En[f

2
i (di − x′iθ)

2] : support(θ) ⊆ support(θ̂τ ).

(3) Run Instrumental Quantile Regression of yi − x′iβ̃τ on di using ṽi as the instrument for di,

α̌τ ∈ arg min
α∈Aτ

Ln(α), where Ln(α) :=
{En[(1{yi 6 diα+ x′iβ̃τ} − τ)ṽi]}2

En[(1{yi 6 diα+ x′iβ̃τ} − τ)2ṽ2i ]
, and set β̌τ = β̃τ .

Comment 2.1. In Algorithm 1 we can also work with the corresponding ℓ1-penalized estimators in Steps

1 and 2 instead of the post-selection estimators, though we found that the latter work significantly better

in computational experiments. �

The second procedure (Algorithm 2) creates the optimal instruments implicitly by using a weighted

quantile regression based on double selection.

Comment 2.2 (Choice of Penalty Parameters). We normalize the regressors so that En[x
2
ij ] = 1 through-

out the paper. For γ = 0.05/{n∨ p logn}, we set the penalty levels as

λ := 1.1
√
n2Φ−1(1 − γ), and λτ := 1.1

√
nτ(1− τ)Φ−1(1 − γ). (2.10)

The penalty loading Γ̂τ = diag[Γ̂τjj , j = 1, ..., p] is a diagonal matrix defined by the the following proce-

dure: (1) Compute the Post Lasso estimator θ̃0τ based on λ and initial values Γ̂τjj = max
i6n

fi{En[x2ijf2
i d

2
i ]}1/2.
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Algorithm 2 (Weighted Quantile Regression based on Double Selection)

(1) Run ℓ1-quantile regression of yi on di and xi,

(α̂τ , β̂τ ) ∈ argminα,β En[ρτ (yi − diα− x′iβ)] + λτ‖β‖1
(2) Run Lasso of fidi on fixi,

θ̂τ ∈ argminθ En[f
2
i (di − x′iθ)

2] + λ‖Γ̂τθ‖1

(3) Run quantile regression of fiyi on fidi and {fixij , j ∈ support(β̂
(2s)
τ ) ∪ support(θ̂τ )},

(α̌τ , β̌τ ) ∈ argminα,β En[fiρτ (yi − diα− x′iβ)] : support(β) ⊆ support(β̂
(2s)
τ ) ∪ support(θ̂τ ),

and set Ln(α) := {En[(1{yi 6 diα + x′iβ̌τ} − τ)ṽi]}2/En[(1{yi 6 diα + x′iβ̌τ} − τ)2ṽ2i ], where

ṽi = fi(di − x′iθ̃τ ), and θ̃τ is the post-Lasso estimator associated with θ̂τ .

(2) Compute the residuals v̂i = fi(di − x′iθ̃
0
τ ) and update

Γ̂τjj =
√
En[f2

i x
2
ij v̂

2
i ], j = 1, . . . , p. (2.11)

In Algorithm 1 we have used the following parameter space for the computations:

Aτ = {α ∈ R : |α− α̃τ | 6 10{En[d2i ]}−1/2/ logn}. (2.12)

We recommend setting the truncation parameter to s = 10
logn

{
logn+ n1/3

log(p∨n) ∧
n1/2 log−3/2(p∨n)
maxi6n ‖xi‖∞

}
. �

2.2. Unknown Conditional Density Function. The implementation of the algorithms in Section 2.1

requires the knowledge of the conditional density function fi which is typically unknown and needs to

be estimated (under heteroscedasticity). Following [20] and letting Q(· | di, zi) denote the conditional

quantile function of the outcome, we shall use the observation that

fi =
1

∂Q(τ | di, zi)/∂τ

to estimate fi. Letting Q̂(u | zi, di) denote an estimate of the conditional u-quantile function Q(u | zi, di),
based on ℓ1-penalized quantile regression or the associated post-selection estimator, and h = hn → 0

denote a a bandwidth parameter, we let

f̂i =
2h

Q̂(τ + h | zi, di)− Q̂(τ − h | zi, di)
(2.13)

be an estimator of fi. If the conditional quantile function is three times continuously differentiable, this

estimator is based on the first order partial difference of the estimated conditional quantile function, and

so it has the bias of order h2.

It is also possible to use the following estimator:

f̂i = h

{
3

4
{Q̂(τ + h | zi, di)− Q̂(τ − h | zi, di)} −

1

12
{Q̂(τ + 2h | zi, di)− Q̂(τ − 2h | zi, di)}

}−1

, (2.14)

which has the bias of order h4 under additional smoothness assumptions. We denote by U the finite set

of quantile indices used in the estimation of the conditional density.
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Under mild regularity conditions the estimators (2.13) and (2.14) achieve

f̂i − fi = O

(
hk̄ +max

u∈U

|Q̂(τ + u | di, zi)− Q̂(τ − u | di, zi)|
h

)
, (2.15)

where k̄ = 2 for (2.13) and k̄ = 4 for (2.14).

Then Algorithms 1 and 2 are modified by replacing fi with f̂i.

Algorithm 1′ (Instrumental Quantile Regression with Optimal Instrument)

(1) Run ℓ1-quantile regressions of yi on di and xi to compute (α̂u, β̂
(2s)
u ), u ∈ {τ} ∪ U .

(2) Compute f̂i and run Post-Lasso of f̂idi on f̂ixi to compute the residual ṽi := f̂i(di − x′iθ̃τ ).

(3) Run Instrumental Quantile Regression of yi − x′iβ̃τ on di using ṽi as the instrument for di to

compute α̌τ , and set β̌τ = β̃τ .

Algorithm 2′ (Weighted Quantile Regression after Double Selection)

(1) Run ℓ1-quantile regressions of yi on di and xi to compute (α̂u, β̂
(2s)
u ), u = {τ} ∪ U .

(2) Compute f̂i and run Lasso of f̂idi on f̂ixi to compute θ̂τ .

(3) Run quantile regression of f̂iyi on f̂idi and {f̂ixij , j ∈ support(β̂
(2s)
τ ) ∪ support(θ̂τ )} to compute

(α̌τ , β̌τ ).

Comment 2.3 (Implementation of the estimates f̂i). There are several possible choices of tunning

parameters to construct the estimates f̂i, however, they need to be coordinated with the penalty level λ.

Together with the recommendations made in Remark 2.2, we suggest to construct f̂i as in (2.13) with

bandwidth h := min{n−1/6, τ(1 − τ)/2}. Remark 3.3 below discusses in more detail the requirements

associated with different choices for penalty level λ and bandwidth h. �

2.3. Overview of Main Results on Estimation and Inference. Under mild moment conditions and

approximately sparsity assumptions, we established that the estimator α̌τ , as defined in Algorithm 1′ or

Algorithm 2′, is root-n consistent and asymptotically normal,

σ−1
n

√
n(α̌τ − ατ ) N (0, 1) , (2.16)

where σ2
n = τ(1 − τ)Ē[v2i ]

−1 is the semi-parametric efficiency bound for the partially linear quantile

regression model. The convergence result holds under array asymptotics, permitting the data-generating

process P = Pn to change with n, which implies that these convergence results hold uniformly over

substantive sets of data-generating processes. In particular, our approach and results do not require

separation of regression coefficients away from zero (the so-called “beta-min” conditions) for their validity.

As a consequence, the confidence region defined as

Cξ,n := {α ∈ R : |α− α̌τ | 6 σ̂nΦ−1(1− ξ/2)/
√
n} (2.17)

has asymptotic coverage of 1−ξ provided the estimate σ̂2
n is consistent for σ2

n, namely σ̂2
n/σ

2
n = 1+oP(1).

These confidence regions are asymptotically valid uniformly over a large class of data-generating processes

Pn.
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There are different possible choices of estimators for σn:

σ̂2
1n := τ(1 − τ)En[ṽ

2
i ]

−1, σ̂2
2n := τ(1 − τ){En[f̂2

i (di, x
′
iŤ
)′(di, x′iŤ )]}

−1
11 ,

σ̂2
3n := En[f̂idiṽi]

−2En[(1{yi 6 diα̌τ + x′iβ̌τ} − τ)2ṽ2i ],
(2.18)

where Ť = support(β̂τ ) ∪ support(θ̂τ ) is the set of controls used in the double selection quantile re-

gression. Although all three estimates are consistent under similar regularities conditions, their finite

sample behaviour might differ. Based on the small-sample performance in computational experiments,

we recommend the use of σ̂3n for the optimal IV estimator and σ̂2n for the double selection estimator.

Additionally, the criterion function of the instrumental quantile regression,

Ln(α) =
|En[ϕτ (yi, x′iβ̌τ + diα)ṽi]|2
En[{ϕτ (yi, x′iβ̌τ + diα)ṽi}2]

,

is asymptotically distributed as chi-squared with 1 degree of freedom, when evaluated at the true value

α = ατ , namely

nLn(ατ ) χ2(1). (2.19)

The convergence result also holds under array asymptotics, permitting the data-generating process P =

Pn to change with n, which implies that these convergence results hold uniformly over substantive sets

of data-generating processes. In particular, this result does not rely on the so-called beta-min conditions

for its validity. This property allows the construction of another confidence region:

Iξ,n := {α ∈ Aτ : nLn(α) 6 (1− ξ)− quantile of χ2(1)}, (2.20)

which has asymptotic coverage level of 1 − ξ. These confidence regions too are asymptotically valid

uniformly over a large class Pn of data-generating processes Pn.

3. Main results

In this section we provide sufficient conditions and formally state the main results of the paper.

3.1. Regularity Conditions. Here we provide regularity conditions that are sufficient for validity of

the main estimation and inference result. Throughout the paper, we let c, C, and q be absolute constants,

and let ℓn ր ∞, δn ց 0, and ∆n ց 0 be sequences of absolute positive constants.

We assume that for each n the following condition holds on the data generating process P = Pn.

Condition AS (P). (i) Let (zi)
n
i=1 denote a non-stochastic sequence and P denote a dictionary of

transformations of zi, which may depend on n but not on P. The p-dimensional vector xi = P (zi) of

covariates are normalized so that En[x
2
ij ] = 1, j = 1, . . . , p, and {(yi, di, vi) : i = 1, . . . , n} be indepen-

dent random vectors that obey the model given by (2.1) and (2.6) (ii) Functions gτ and mτ admit an

approximately sparse form. Namely there exists s > 1 and βτ and θτ , which depend on n and P, such

that

mτ (zi) = x′iθτ + rmτi, ‖θτ‖0 6 s, {Ē[r2mτi]}1/2 6 C
√
s/n, (3.21)

gτ (zi) = x′iβτ + rgτi, ‖βτ‖0 6 s, {Ē[r2gτ i]}1/2 6 C
√
s/n. (3.22)
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(iii) The conditional distribution function of ǫi is absolutely continuous with continuously differentiable

density fǫi(· | di, zi) such that 0 < f 6 fi 6 supǫ fǫi|di,zi(ǫ | di, zi) 6 f̄ , supǫ |f ′
ǫi|di,zi(ǫ | di, zi)| < f̄ ′.

(iv) The following moment conditions apply: Ē[d8i ] + Ē[v8i ] 6 C, c 6 E[v2i | zi] 6 C a.s. 1 6 i 6 n,

max
16j6p

{Ē[x2ijd2i ]+ Ē[|x3ijv3i |]} 6 C. (v) We have that Kx = maxi6n ‖xi‖∞, Kq
x log p 6 δnn for some q > 4,

and s satisfies (K2
xs

2 + s3) log3(p ∨ n) 6 nδn.

Condition AS(i) imposes the setting discussed in Section 2 in which the ǫi error term has zero τ -

conditional quantile. The approximate sparsity condition AS(ii) is the main assumption for establishing

the key inferential result. Condition AS(iii) is a standard assumption on the conditional density function

in the quantile regression literature see [20] and the instrumental quantile regression literature [13].

Condition AS(iv) imposes some moment conditions. Condition AS(v) imposes growth conditions on s, p,

Kx and n.

The next condition concerns the behavior of the Gram matrix En[xix
′
i]. Whenever p > n, the empirical

Gram matrix En[xix
′
i] does not have full rank and in principle is not well-behaved. However, we only

need good behavior of smaller submatrices. Define the minimal and maximal m-sparse eigenvalue of a

semi-definite matrix M as

φmin(m)[M ] := min
16‖δ‖06m

δ′Mδ

‖δ‖2 and φmax(m)[M ] := max
16‖δ‖06m

δ′Mδ

‖δ‖2 . (3.23)

To assume that φmin(m)[M ] > 0 requires that all m by m submatrices of M are positive definite. We

shall employ the following condition as a sufficient condition for our results.

Condition SE (P). The maximal and minimal ℓns-sparse eigenvalues are bounded from below and

away from zero, namely with probability at least 1−∆n, for x̃i = [di, x
′
i]
′

κ′ 6 φmin(ℓns)[En[x̃ix̃
′
i]] 6 φmax(ℓns)[En[x̃ix̃

′
i]] 6 κ

′′,

where 0 < κ′ < κ′′ <∞ are absolute constants.

For notational convenience we write φmin(m) := φmin(m)[En[x̃ix̃
′
i]] and φmax(m) := φmax(m)[En[x̃ix̃

′
i]].

It is well-known that the first part of Condition SE is quite plausible for many designs of interest. For

instance, Theorem 3.2 in [32] (see also [40] and [1]) shows that Condition SE holds for i.i.d. zero-mean

sub-Gaussian regressors and s(logn)(log p)/n 6 δn → 0; while Theorem 1.8 [32] (see also Lemma 1

in [4]) shows that Condition SE holds for i.i.d. bounded zero-mean regressors with ‖xi‖∞ 6 Kn a.s.

K2
ns(log

3 n){log(p ∨ n)}/n 6 δn → 0.

3.2. Main results for the case with known density. In this section we begin to state our theoretical

results for the case where density values fi are either known or constant and unknown. The case of

constant density fi = f arises under conditional homoscedasticity, and in this case any constant value

can be used as an “estimate”, since it cancels in the definition of the estimators in Algorithms 1 and 2.

Hence the results of this section are practically useful in homoscedastic cases; otherwise, they serve as

a theoretical preparation of the results for the next subsection, where the unknown densities fi will be

estimated.
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We first show that the optimal IV estimator based on Algorithm 1 with parameters (2.10)-(2.12) is

root-n consistent and asymptotically normal.

Theorem 1 (Optimal IV estimator, conditional density fi is known). Let {Pn} be a sequence of data-

generating processes. Assume conditions AS (P) and SE (P) hold for P = Pn for each n. Then, the

optimal IV estimator α̌τ and the Ln function based on Algorithm 1 with parameters (2.10)-(2.12) obeys

as n→ ∞
σ−1
n

√
n(α̌τ − ατ ) N(0, 1) and nLn(ατ ) χ2(1)

where σ2
n = τ(1 − τ)Ē[v2i ]

−1.

Theorem 1 relies on post model selection estimators which in turn relies on achieving sparse estimates

β̂τ and θ̂τ . The sparsity of θ̂τ is derived in Section A.2 under the recommended penalty choices. The

sparsity of β̂τ is not guaranteed under the recommended choices of penalty level λτ which leads to sharp

rates. We ensure sparsity by truncating to zero the smallest components. Lemma 6 shows that such

operation does not impact the rates of convergence provided the largest 2s non-zero components are

preserved.

We also establish a similar result for the double selection estimator based on Algorithm 2 with param-

eters (2.10)-(2.11).

Theorem 2 (Weighted double selection, known conditional density fi). Let {Pn} be a sequence of data-

generating processes. Assume conditions AS(P) and SE(P) hold for P = Pn for each n. Then, the double

selection estimator α̌τ and the Ln function based on Algorithm 2 with parameters (2.10)-(2.11) obeys as

n→ ∞
σ−1
n

√
n(α̌τ − ατ ) N(0, 1) and nLn(ατ ) χ2(1)

where σ2
n = τ(1 − τ)Ē[v2i ]

−1.

Importantly, the results in Theorems 1 and 2 allows for the data generating process to depend on the

sample size n and have no requirements on the separation from zero of the coefficients. In particular

these results allow for sequences of data generating processes for which perfect model selection is not

possible. In turn this translates into uniformity properties over a large class of data generating process.

Next we formalize these uniform properties. We let Pn the collection of distributions P for the data

{(yi, di, z′i)′}ni=1 such that Conditions AS(P) and SE(P) hold for the given n. This is the collection of all

approximately sparse models where the stated above sparsity conditions, moment conditions, and growth

conditions hold.

Corollary 1 (Uniform
√
n-Rate of Consistency and Uniform Normality). Let Pn be the collection

of all distributions of {(yi, di, z′i)′}ni=1 for which Conditions AS and SE are satisfied for the given n > 1.

Then either the optimal IV or the double selection estimator, α̌τ , are
√
n-consistent and asymptotically

normal uniformly over Pn, namely

lim
n→∞

sup
P∈Pn

sup
t∈R

|P(σ−1
n

√
n(α̌τ − ατ ) 6 t)− P(N(0, 1) 6 t)| = 0.
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Corollary 2 (Uniform Validity of Confidence Regions). Let Pn be the collection of all distributions

of {(yi, di, z′i)′}ni=1 for which Conditions AS and SE are satisfied for the given n > 1. Then the confidence

regions Cξ,n and Iξ,n defined based on either the optimal IV estimator or by the double selection estimator

are asymptotically valid uniformly in n, that is

lim
n→∞

sup
P∈Pn

|P(α0 ∈ Cξ,n)− (1− ξ)| = 0 and lim
n→∞

sup
P∈Pn

|P(α0 ∈ Iξ,n)− (1 − ξ)| = 0.

The uniformity results for the approximately sparse and heteroscedastic case are new even under fixed

p asymptotics.

Comment 3.1. Both algorithms assume that the values of the conditional density function fi, i =

1, . . . , n, are known. In fact it suffices to know them up to a multiplicative constant, which allows to

cover the homoscedastic case, where fi = 1, i = 1, . . . , n. In heteroscedastic settings we shall need to

estimate fi, and we analyze this case in the next subsection. �

3.3. Main Results for the case of unknown density. Next we provide formal results to the case the

conditional probability density function is unknown. In this case it is necessary to estimate the weights

fi, and this estimation has a non-trivial impact on the analysis. Condition D summarizes sufficient

conditions to account for the impact of the density estimation.

Condition D. (i) For a bandwidth h, assume that gu(zi) = x′iβu + rui where the approxima-

tion errors satisfy Ē[r2ui] 6 δnn
−1/2 and |rui| 6 δnh for all i = 1, . . . , n, and the vector βu satisfies

‖βu‖0 6 s, for u = τ, τ ± h, τ ± 2h. (ii) Suppose ‖β̂u‖0 6 Cs and ‖diα̂u + x′iβ̂u − gui − diαu‖2,n 6
C
√
s log(p ∨ n)/n with probability at least 1−∆n for u = τ, τ ± h, τ ± 2h. (iii) K2

xs
2 log(p∨ n) 6 δnnh2,

hk̄
√
s log p 6 δn, h

k̄−1
√
s log p(

√
n log p/λ) 6 δn, h

2k̄√n(
√
n log p/λ) 6 δn, s

2 log2 p 6 δnnh
2, s2 log3 p 6

δnh
4λ2, λs

√
log p 6 δnn (iv) For smτ = s + ns log(n∨p)

h2λ2 +
(
nhk̄

λ

)2
, we have 0 < κ′ < φmin(ℓnsmτ ) 6

φmax(ℓnsmτ ) 6 κ
′′ <∞ with probability 1−∆n.

Comment 3.2. Condition D(i) imposes the approximately sparse assumption for the u-conditional

quantile function for quantile indices u in a neighborhood of the quantile index τ . Condition D(ii)

is a high level condition on the estimates of βu which are typically satisfied by ℓ1-penalized quantile

regression estimators. As before sparsity can be achieved by truncating these vectors. Condition D(iii)

provide growth conditions relating s, p, n, h and λ. Remark 3.3 below discusses specific choices of penalty

level λ and of bandwidth h together with the implied conditions on the triple (s, p, n). �

Next we establish the main inferential results for the case with estimated conditional density weights.

We begin with the optimal IV estimator which is based on Algorithm 1′ with parameters λτ as in (2.10),

Γ̂τ as in (2.11) with fi replaced with f̂i, and Aτ as in (2.12). The choices of λ and h satisfy Condition D.

Theorem 3 (Optimal IV estimator, estimated conditional density f̂i). Let {Pn} be a sequence of data-

generating processes. Assume conditions AS (P) and D (P) hold for P = Pn for each n. Then, the

optimal IV estimator α̌τ and the Ln function based on Algorithm 3 with parameters (2.10)-(2.12) obeys

as n→ ∞
σ−1
n

√
n(α̌τ − ατ ) N(0, 1) and nLn(ατ ) χ2(1)
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where σ2
n = τ(1 − τ)Ē[v2i ]

−1. The result continues to apply if σ2
n is replaced by any of the estimators in

(2.18), namely σ̂kn/σn = 1 + oP(1) for k = 1, 2, 3.

The following is a corresponding result for the double selection estimator based on Algorithm 2′ with

parameters λτ as in (2.10), and Γ̂τ as in (2.11) with fi replaced with f̂i. As before the choices of λ and

h satisfy Condition D and are discussed in detail below.

Theorem 4 (Double selection estimator, estimated conditional density f̂i). Let {Pn} be a sequence of

data-generating processes. Assume conditions AS(P) and D(P) hold for P = Pn for each n. Then, the

double selection estimator α̌τ and the Ln function based on Algorithm 4 with parameters (2.10)-(2.11)

obeys as n→ ∞
σ−1
n

√
n(α̌τ − ατ ) N(0, 1) and nLn(ατ ) χ2(1)

where σ2
n = τ(1 − τ)Ē[v2i ]

−1. The result continues to apply if σ2
n is replaced by any of the estimators in

(2.18), namely σ̂kn/σn = 1 + oP(1) for k = 1, 2, 3.

Comment 3.3 (Choice of Bandwidth h and Penalty Level λ in Step 2). The proofs of Theorems 3 and

4 provide a detailed analysis for generic choice of bandwidth h and the penalty level λ in Step 2 under

Condition D. Here we discuss two particular choices: for γ = 0.05/{n∨ p logn}

(i) λ = h−1
√
nΦ−1(1− γ),

(ii) λ = 1.1
√
n2Φ−1(1− γ).

The choice (i) for λ leads to the optimal prediction rate by adjusting to the slower rate of convergence of

f̂i, see (2.15). The choice (ii) for λ corresponds to the (standard) choice of penalty level in the literature

for Lasso. For these choices Condition D(iii) simplifies to

(i) hk̄
√
s log p 6 δn, h2k̄+1

√
n 6 δn, and K2

xs
2 log2(p ∨ n) 6 δnnh2,

(ii) hk̄−1
√
s log p 6 δn, h2k̄

√
n 6 δn, and s2 log2 p 6 δnnh

4.

For example, using the choice of f̂i as in (2.14) so that k̄ = 4, we have that the following choice growth

conditions suffice for the conditions above:

(i) K3
xs

3 log3(p ∨ n) 6 δnn and h = n−1/6

(ii) (s log(p ∨ n) +K3
x)s

3 log3(p ∨ n) 6 δnn, and h = n−1/8

�

4. Empirical Performance

We present monte-carlo experiments, followed by a data-analytic example.

4.1. Monte-Carlo Experiments. In this section we provide a simulation study to assess the finite

sample performance of the proposed estimators and confidence regions. We shall focus on examining the

inferential properties of the confidence regions based upon Algorithms 1′ and 2′, and contrast them with

the confidence intervals based on naive (standard) selection.
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We considered the following regression model for τ = 1/2:

y = dατ + x′(cyν0) + ǫ, ǫ ∼ N(0, {2− µ+ µd2}/2), (4.24)

d = x′(cdν0) + ṽ, ṽ ∼ N(0, 1), (4.25)

where ατ = 1/2, θ0j = 1/j2, j = 1, . . . , p, x = (1, z′)′ consists of an intercept and covariates z ∼ N(0,Σ),

and the errors ǫ and ṽ are independent. In this case, the optimal instrument is v = ṽ/{
√
π(2− µ+ µd2)}.

The dimension p of the covariates x is 300, and the sample size n is 250. The regressors are correlated

with Σij = ρ|i−j| and ρ = 0.5. The coefficient µ ∈ {0, 1} which makes the conditional density function

of ǫ homoscedastic if µ = 0 and heteroscedastic if µ = 1. The coefficients cy and cd are used to control

the R2 in the equations: y − dατ = x′(cyν0) + ǫ and d = x′(cdν0) + ṽ ; we denote the values of R2 in

each equation by R2
y and R2

d. We consider values (R2
y, R

2
d) in the set {0, .1, .2, . . . , .9} × {0, .1, .2, . . . , .9}.

Therefore we have 100 different designs and we perform 500 Monte-Carlo repetitions for each design. For

each repetition we draw new vectors xi’s and errors ǫi’s and ṽi’s.

The design above with gτ (z) = x′(cyν0) is an approximately sparse model; and the gradual decay of the

components of ν0 rules out typical “separation from zero” assumptions of the coefficients of “important”

covariates. Thus, we anticipate that inference procedures which rely on the model selection in the direct

equation (4.24) only will not perform well in our simulation study. We refer to such selection procedures

as the “naive”/single selection and the call the resulting inference procedures the post “naive”/single

selection inference. To be specific, in our simulation study, the “naive” selection procedure applies ℓ1-

penalized τ -quantile regression of y on d and x to select a subset of covariates that have predictive power

for y, and then runs τ−quantile regression of y on d and the selected covariates, omitting the covariates

that were not selected. This procedure is the standard procedure that is often employed in practice.

The model in (4.24) can be heteroscedastic, since when µ 6= 0 the distribution of the error term might

depend on the main regressor of interest d. Under heteroscedasticity, our procedures require estimations

of the conditional probability density function fi, and we do so via (2.13). We perform estimation of

fi’s even in the homoscedastic case (µ = 0), since we do not want rely on whether the assumption of

homoscedasticity is valid or not. In other words, we use Algorithms 1′ and 2′ in both heteroscedastic

and homoscedastic cases. We use σ̂3n as the standard error for the optimal IV estimator, and σ̂2n as

the standard error for the post double selection estimator. As a benchmark we consider the standard

post-model selection procedure based on ℓ1-penalized quantile regression method (post single selection)

based upon equation (4.24) alone, as define in the previous paragraph.

In Figure 1 we report the results for the homoscedastic case (µ = 0). In our study, we focus on the

quality of inferential procedures – namely on the rejection frequency of the confidence intervals with the

nominal coverage probability of 95%, and so the figure reports these frequencies. Ideally we should see the

rejection rate of 5%, the nominal level, regardless of what the underlying generating process P ∈ Pn is.

The is the so called uniformity property or honesty property of the confidence regions (see, e.g., Romano

and Wolf [31], Romano and Shaikh [30], and Leeb and Pötscher [25]). The top left plot of Figure 1

reports the empirical rejection probabilities for the naive post single selection procedure. These empirical

rejection probabilities deviate strongly away from the nominal level of 5%, demonstrating the striking
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lack of robustness of this standard method. This is perhaps expected due to the Monte-Carlo design

having regression coefficients not well separated from zero (that is, “beta min” condition does not hold

here). In sharp contrast, we see from top right and bottom right and left plots of Figure 1, that both

of our proposed procedures perform substantially better, yielding empirical rejection probabilities close

to the desired nominal level of 5%. We also see from comparing the bottom left plot to other plots that

the confidence regions based on the post-double selection method somewhat outperform the optimal IV

estimator.

Figure 2 we report the results for the heteroscedastic case (µ = 1). The figure displays the (empirical)

rejection probability of the confidence intervals with nominal coverage of 95%. As before, ideally we

should see the empirical rejection probability of 5%. Again the top left figure reports the results for the

confidence intervals based on the naive post model selection estimator. Here too we see the striking lack

of robustness of this standard method; this occurs due to the direct equation (4.24) having coefficients ν0

that are not well separated from zero. We see from top right and bottom right and left plots of Figure 1,

that both of our proposed procedures perform substantially better, however, the optimal IV procedure

does not do as well as in the homoscedastic case. We also see from comparing the bottom left plot to other

plots that the confidence regions based on the post-double selection method significantly outperform the

optimal IV estimator, yielding empirical rejection frequencies close to the nominal level of 5%.

Thus, based on these experiments, we recommend to use the post-double selection procedure over the

optimal IV procedure.

4.2. Inference on Risk Factors in Childhood Malnutrition. The purpose of this section is to

examine practical usefulness of the new methods and contrast them with the standard post-selection

inference (that assumes that selection had worked perfectly).

We will assess statistical significance of socio-economic and biological factors on children’s malnutrition,

providing a methodological follow up on the previous studies done by [15] and [19]. The measure of

malnutrition is represented by the child’s height, which will be our response variable y. The socio-

economic and biological factors will be our regressors x, which we shall describe in more detail below. We

shall estimate the conditional first decile function of the child’s height given the factors (that is, we set

τ = .1). We’d like to perform inference on the size of the impact of the various factors on the conditional

decile of the child’s height. The problem has material significance, so it is important to conduct statistical

inference for this problem responsibly.

The data comes originally from the Demographic and Health Surveys (DHS) conducted regularly in

more than 75 countries; we employ the same selected sample of 37,649 as in Koenker (2012). All children

in the sample are between the ages of 0 and 5. The response variable y is the child’s height in centimeters.

The regressors x include child’s age, breast feeding in months, mothers body-mass index (BMI), mother’s

age, mother’s education, father’s education, number of living children in the family, and a large number

of categorical variables, with each category coded as binary (zero or one): child’s gender (male or female),

twin status (single or twin), the birth order (first, second, third, fourth, or fifth), the mother’s employment

status (employed or unemployed), mother’s religion (Hindu, Muslim, Christian, Sikh, or other), mother’s



ROBUST INFERENCE IN HIGH-DIMENSIONAL SPARSE QUANTILE REGRESSION MODELS 15

0
0.2

0.4
0.6

0.8

0
0.2

0.4
0.6

0.8

0

0.1

0.2

0.3

0.4

0.5

R2
y

Naive Post Selection (C0.05,n) rp(0.05)

R2
d

0
0.2

0.4
0.6

0.8

0
0.2

0.4
0.6

0.8

0

0.1

0.2

0.3

0.4

0.5

R2
y

Optimal IV (C0.05,n) rp(0.05)

R2
d

0
0.2

0.4
0.6

0.8

0
0.2

0.4
0.6

0.8

0

0.1

0.2

0.3

0.4

0.5

R2
y

Double Selection (C0.05,n) rp(0.05)

R2
d

0
0.2

0.4
0.6

0.8

0
0.2

0.4
0.6

0.8

0

0.1

0.2

0.3

0.4

0.5

R2
y

Optimal IV (I0.05,n) rp(0.05)

R2
d

Figure 1. For the homoscedastic design (µ = 0), the figure displays the rejection probabilities of

the following confidence regions with nominal coverage of 95%: (a) the confidence region based upon

naive (single) selection procedure (top left panel), (b) the confidence region C0.05,n based the optimal

IV estimator based on (top right), (c) the confidence region, as defined in Algorithm 1′, I0.05,n based

on the optimal IV procedure (bottom right panel), as defined in Algorithm 1′, and (d) the confidence

region C0.05,n based on the post double selection estimator (bottom left panel), as defined in Algorithm

1′. Each point in each of the plots corresponds to a different data-generating process indexed by pairs

of R2 values (R2
d, R

2
y) varying over the set {0, .1, . . . , .9} × {0, .1, . . . , .9}. The results are based on 500

replications for each of the 100 combinations of R2’s in each equation. The ideal rejection probability

should be 5%, so ideally we should be seeing a flat surface with height 5%.

residence (urban or rural), family’s wealth (poorest, poorer, middle, richer, richest), electricity (yes or

no), radio (yes or no), television (yes or no), bicycle (yes or no), motorcycle (yes or no), and car (yes or

no).

Although the number of covariates – 30 – is substantial, the sample size – 37,649– is much larger

than the number of covariates. Therefore, the dataset is very interesting from a methodological point of

view, since it gives us an opportunity to compare various methods for performing inference to an “ideal”

benchmark:
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Figure 2. For the heteroscedastic design (µ = 1), the figure displays the rejection probabilities of

the following confidence regions with nominal coverage of 95%: (a) the confidence region based upon

naive (single) selection procedure (top left panel), (b) the confidence region C0.05,n based the optimal

IV estimator based on (top right), (c) the confidence region, as defined in Algorithm 1′, I0.05,n based

on the optimal IV procedure (bottom right panel), as defined in Algorithm 1′, and (d) the confidence

region C0.05,n based on the post double selection estimator (bottom left panel), as defined in Algorithm

1′. Each point in each of the plots corresponds to a different data-generating process indexed by pairs

of R2 values (R2
d, R

2
y) varying over the set {0, .1, . . . , .9} × {0, .1, . . . , .9}. The results are based on 500

replications for each of the 100 combinations of R2’s in each equation. The ideal rejection probability

should be 5%, so ideally we should be seeing a flat surface with height 5%.

(1) The “ideal” benchmark here is the standard inference based on the standard quantile regression

estimator without any model selection. Since the number of regressors p is much smaller than

the sample size n, this is a very good option. The latter was proven theoretically in [16] and in

[5] under the p→ ∞, p3/n→ 0 regime. This is also the general option recommended by [20] and

[24] in the fixed p regime. Note that this “ideal” option does not apply in practice when p is

relatively large; however it certainly applies in the present example.
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(2) The standard post-selection inference method is the existing benchmark. This method performs

standard inference on the post-model selection estimator, “assuming” that the model selection

had worked perfectly. While this approach has some justification, we expect it to perform poorly,

based on our computational results and from theoretical results of [24]. In particular, it would

be very interesting to see if it gives misleading results as compared to the “ideal” option.

(3) We propose two methods, one based on the instrumental regression estimator (Algorithm 1) and

another based on double selection (Algorithm 2). The proposed methods do not assume perfect

selection, but rather builds a protection against (moderate) model selection mistakes. From the

theory we would expect the method to give results similar to the “ideal” option in (1).

We now will compare our proposal to the “ideal” benchmark and to the standard post-selection method.

We report the empirical results in Table 4.2. The first column reports results for the option 1, reporting

the estimates and standard errors enclosed in brackets. The second column reports results for option 2,

specifically the point estimates resulting from the use of ℓ1-penalized quantile regression and the post-

penalized quantile regression, reporting the standard errors as if there had been no model selection. The

third column and fourth column report the results for two versions – Algorithm 1 and Algorithm 2 – of

option 3. Each column reports point estimates, the standard errors, and the confidence region obtained

by inverting the robust Ln-statistic. Note that the Algorithms 1 and 2 are applied sequentially to each of

the variables. Similarly, in order to provide estimates and confidence intervals for all variables using the

naive approach, if a covariate was not selected by the ℓ1-penalized quantile regression, it was included in

the post-model selection quantile regression for that variable.

What we see is very interesting. First of all, let us compare “ideal” option (column 1) and the naive

post-selection (column 2). Lasso selection method removes 16 out of 30 variables, many of which are

highly significant, as judged by the “ideal” option. (To judge significance we use normal approximations

and critical value of 3, which allows us to maintain 5% significance level after testing up to 50 hypotheses).

In particular, we see that the following highly significant variables were dropped by Lasso: mother’s BMI,

mother’s age, twin status, birth orders one and two, and indicator of the other religion. The standard

post-model selection inference then makes the assumption that these are true zeros, which lead us to

misleading conclusions about these effects. The standard post-model selection inference then proceeds

to judge the significance of other variables, in some cases deviating sharply and significantly from the

“ideal” benchmark. For example, there is a sharp disagreement on magnitudes of the impact of the birth

order variables and the wealth variables (for “richer” and “richest” categories). Overall, for the naive

post-selection, 8 out of 30 coefficients were more than 3 standard errors away from the coefficients of the

“ideal” option.

We now proceed to compare our proposed options to the “ideal” option. We see approximate agreement

in terms of magnitude, signs of coefficients, and in standard errors. In few instances, for example, for the

car ownership regressor, the disagreements in magnitude may appear large, but they become insignificant

once we account for the standard errors. In particular, the pointwise 95% confidence regions constructed

by inverting the Ln statistics all contain the estimates from the “ideal” option. Moreover, there is
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very little disagreement between Algorithms 1 (optimal IV) and Algorithm 2 (double selection). The

agreement here is good news from the point of view of our theory, since it confirms what we had expected

from our previous analysis. In particular, for the proposed methods, no coefficient estimate was more

than 1.5 standard errors away from the coefficient of the “ideal” option.

The main conclusion from our study is that the standard/naive post-selection inference can give mis-

leading results, confirming our expectations and confirming predictions of [24]. Moreover, the proposed

inference procedures are able to deliver inference of high quality, which is very much in agreement with

the “ideal” benchmark.

5. Discussion

5.1. Variants of the Proposed Algorithms. There are several different ways to implement the se-

quence of steps underlying the two procedures outlined in Algorithms 1 and 2. The estimation of the

control function gτ can be done through other regularization methods like ℓ1-qr instead of the post-ℓ1-

qr estimator. The estimation of the instrument v in Step 2 can be carried out with Dantzig selector,

square-root Lasso or the associated post-model selection could be used instead of Lasso or Post-Lasso.

The instrumental quantile regression can be substituted by a 1-Step estimator from the ℓ1-qr estimator

α̂τ of the form α̌τ = α̂τ + (En[v̂
2
i ])

−1En[ϕτ (yi, α̂τdi + x′iβ̂τ )v̂i].

Other variants can be constructed by using another valid instrument. An instrument ιi = ι(di, zi)

is valid if it satisfies Ē[fiιi | zi] = 0 and Ē[fidiιi] 6= 0. For example, a valid choice of instrument is

ιi = (di − E[di | zi])/fi. Typically this choice of instruments does not lead to a semi-parametric efficient

estimator as the choices proposed in Algorithms 1 and 2 do. Nonetheless, the estimation of E[di | zi] and
fi can be carried out separably which can lead to weaker regularity conditions.

5.2. Connection to Neymanization. In this section we make some connections to Neyman’s C(α)

test ([28, 29]). For the sake of exposition we assume that (yi, xi, di)
n
i=1 are i.i.d. and sparse models,

rmτi = rgτi = 0, i = 1, . . . , n. We consider the estimating equation for ατ :

E[ϕτ (yi, diατ + x′iβτ )ιi] = 0.

Our problem is to find useful instruments ιi such that

∂

∂β
E[ϕτ (yi, diατ + x′iβ)ιi]|β=βτ = 0.

Under this property the estimator of ατ will be “immunized” against “crude” or nonregular estimation

of βτ , for example, via a post-selection procedure or some regularization procedure. Such immunization

ideas are in fact behind Neyman’s classical construction of his C(α) test, so we shall use the term

“Neymanization” to describe such procedure. There will be many instruments ιi that can achieve the

property stated above, and there will be one that is optimal.

The instruments can be constructed by taking ιi := vi/fi, where vi is the residual in the regression

equation:

widi = wimτ (zi) + vi, E[wivi|xi] = 0, (5.26)
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Table 1. Empirical Results

(1) (2) (3)

Optimal IV Double Selection

Variable qr ℓ1-qr Naive α̌τ I0.05,n α̌τ

cage 0.6456 0.6360 0.6458 0.6458 [ 0.6400, 0.6514] 0.6449

(0.0030) (0.0027) (0.0025) (0.0032)

mbmi 0.0603 — 0.0663 0.0550 [ 0.0132, 0.0885] 0.0582

(0.0159) (0.0139) (0.0316) (0.0173)

breastfeeding 0.0691 0.0538 0.0689 0.0689 [ 0.0577, 0.0762] 0.0700

(0.0036) (0.0038) (0.0036) (0.0044)

mage 0.0684 — 0.0454 0.0705 [ 0.0416, 0.0947] 0.0685

(0.0090) (0.0147) (0.0109) (0.0126)

medu 0.1590 0.2036 0.1870 0.1594 [ 0.1246, 0.1870] 0.1566

(0.0136) (0.0145) (0.0153) (0.0154)

edupartner 0.0175 0.0147 0.0460 0.0388 [ 0.0053, 0.0641] 0.0348

(0.0125) (0.0148) (0.0143) (0.0143)

deadchildren -0.0680 — -0.2121 -0.0791 [ -0.3522, 0.0394] -0.1546

(0.1124) (0.0978) (0.0653) (0.1121)

csexfemale -1.4625 -1.0786 -1.5084 -1.5146 [ -1.7166, -1.3322] -1.5299

(0.0948) (0.0897) (0.0923) (0.1019)

ctwintwin -1.7259 — -1.8683 -1.8683 [ -3.3481, -0.4652] -1.9248

(0.3741) (0.2295) (0.1880) (0.7375)

cbirthorder2 -0.7256 — -0.2230 -0.7408 [ -1.0375, -0.3951] -0.6818

(0.1073) (0.0983) (0.1567) (0.1337)

cbirthorder3 -1.2367 — -0.5751 -1.0737 [ -1.4627, -0.7821] -1.1326

(0.1315) (0.1423) (0.1556) (0.1719)

cbirthorder4 -1.7455 -0.1892 -0.7910 -1.7219 [ -2.2968, -1.2723] -1.5819

(0.2244) (0.1938) (0.2796) (0.2193)

cbirthorder5 -2.4014 -0.8459 -1.1747 -2.3700 [ -3.2407, -1.9384] -2.3041

(0.1639) (0.1686) (0.2574) (0.2564)

munemployedemployed 0.0409 — 0.0077 0.0342 [ -0.2052, 0.2172] 0.0379

(0.1025) (0.1077) (0.1055) (0.1124)

mreligionhindu -0.4351 — -0.2423 -0.5129 [ -0.9171, -0.1523] -0.5680

(0.2232) (0.1080) (0.2277) (0.1771)

mreligionmuslim -0.3736 — 0.0294 -0.6177 [ -1.1523, -0.1457] -0.5119

(0.2417) (0.1438) (0.2629) (0.2176)

mreligionother -1.1448 — -0.6977 -1.2437 [ -2.1037, -0.4828] -1.1539

(0.3296) (0.3219) (0.3390) (0.3577)

mreligionsikh -0.5575 — 0.3692 -0.5437 [ -1.5591, 0.4243] -0.3408

(0.2969) (0.1897) (0.3653) (0.3889)

mresidencerural 0.1545 — 0.1085 0.1519 [ -0.1295, 0.3875] 0.1678

(0.0994) (0.1363) (0.1313) (0.1311)

wealthpoorer 0.2732 -0.0183 -0.1946 0.1187 [ -0.1784, 0.5061] 0.2648

(0.1761) (0.1231) (0.1505) (0.1877)

wealthmiddle 0.8699 — 0.9197 0.9113 [ 0.4698, 1.3149] 0.9173

(0.1719) (0.2236) (0.1784) (0.2158)

wealthricher 1.3254 0.3252 0.5754 1.2751 [ 0.7515, 1.5963] 1.4040

(0.2244) (0.1408) ( 0.1964) (0.2505)

wealthrichest 2.0238 1.1167 1.2967 1.9149 [ 1.3086, 2.3893] 2.1133

(0.2596) (0.2263) (0.2427) (0.3318)

electricityyes 0.3866 0.3504 0.7555 0.4263 [ 0.1131, 0.7850] 0.4582

(0.1581) (0.1398) (0.1572) (0.1577)

radioyes -0.0385 — 0.1363 0.0599 [ -0.2100, 0.2682] 0.0640

(0.1218) (0.1214) (0.1294) (0.1207)

televisionyes -0.1633 0.0122 -0.0774 -0.1112 [ -0.3629, 0.0950] -0.0880

(0.1191) (0.1234) (0.0971) (0.1386)

refrigeratoryes 0.1544 0.0899 0.2451 0.1907 [ -0.1642, 0.5086] 0.2001

(0.1774) (0.2081) (0.1716) (0.1891)

bicycleyes 0.1438 — 0.1314 0.1791 [ -0.0036, 0.3506] 0.1438

(0.1048) (0.1016) (0.0853) (0.1121)

motorcycleyes 0.6104 0.4823 0.5883 0.5214 [ 0.2471, 0.8125] 0.5154

(0.1783) (0.1334) (0.1702) (0.1625)

caryes 0.2741 — 0.5805 0.5544 [ -0.0336, 1.0132] 0.5470

(0.2058) (0.2378) (0.2610) (0.2896)
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where wi is a nonnegative weight, a function of (di, zi) only, for example wi = 1 or wi = fi – the latter

choice will in fact be optimal. Note that function mτ (zi) solves the least squares problem

min
h∈H

E
[
{widi − wih(zi)}2

]
, (5.27)

where H is the class of measurable functions h(zi) such that E[w2
i h

2(zi)] < ∞. Our assumption is that

the mτ (zi) is a sparse function x′iθτ , with ‖θτ‖0 6 s so that

widi = wix
′
iθτ + vi, E[wivi|xi] = 0. (5.28)

In finite samples, the sparsity assumption allows to employ post-Lasso and Lasso to solve the least squares

problem above approximately, and estimate ιi. Of course, the use of other structured assumptions may

motivate the use of other regularization methods.

Arguments similar to those in the proofs show that, for
√
n(α− ατ ) = O(1),

√
n{En[ϕτ (yi, diα+ x′iβ̂τ )vi]− En[ϕτ (yi, diα− x′iβτ )ιi]} = oP (1),

for β̂τ based on a sparse estimation procedure, despite the fact that β̂τ converges to βτ at a slower rate

than 1/
√
n. That is, the empirical estimating equations behave as if βτ is known. Hence for estimation

we can use α̌τ as a minimizer of the statistic:

Ln(α) = c−1
n |

√
nEn[ϕτ (yi, diα− x′iβ̂τ )ιi]|2,

where cn = En[ϕ
2
τ (yi, diα − x′iβ̂τ )ι

2
i ]. Since Ln(ατ )  χ2(1), we can also use the statistic directly for

testing hypotheses and for construction of confidence sets.

This is in fact a version of Neyman’s C(α) test statistic, adapted to the present non-smooth set-

ting. The usual expression of C(α) statistic is different. To see a more familiar form, note that

θτ = Ē[w2
i xix

′
i]
−Ē[w2

i dix
′
i], where A

− denotes a generalized inverse of A, and write

ιi = (wi/fi)di − (wi/fi)x
′
iĒ[w

2
i xix

′
i]
−Ē[w2

i dix
′
i], and ϕ̂i := ϕτ (yi, diα+ x′iβ̂τ ),

so that,

Ln(α) = c−1
n |

√
n{En[ϕ̂i(wi/fi)di]− En[ϕ̂i(wi/fi)xi]

′Ē[w2
i xix

′
i]
−Ē[w2

i dix
′
i]}|2.

This is indeed a familiar form of a C(α) statistic.

The estimator α̌τ that minimizes Ln up to oP (1), under suitable regularity conditions,

σ−1
n

√
n(α̌τ − ατ ) N(0, 1), σ2

n = τ(1 − τ)E[fidivi]
−2E[v2i ].

It is easy to show that the smallest value of σ2
n is achieved by using ιi = ι∗i induced by setting wi = fi:

σ∗2
n = τ(1 − τ)E[v∗2i ]−1. (5.29)

Thus, setting wi = fi gives an optimal instrument amongst all “immunizing” instruments generated by

the process described above. Obviously, this improvement translates into shorter confidence intervals and

better testing based on either α̌τ or Ln. While wi = fi is optimal, fi will have to be estimated in practice,

resulting actually in more stringent condition than when using non-optimal, known weights, e.g., wi = 1.

The use of known weights may also give better behavior under misspecification of the model. Under

homoscedasticity, wi = 1 is an optimal weight.
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5.3. Minimax Efficiency. There is also a clean connection to the (local) minimax efficiency analysis

from the semiparametric efficiency analysis. [23] derives an efficient score function for the partially linear

median regression model:

Si = 2ϕτ (yi, diατ + x′iβτ )fi[di −m∗
τ (z)],

where m∗
τ (zi) is mτ (zi) in (5.26) induced by the weight wi = fi:

m∗
τ (zi) =

E[f2
i di|zi]

E[f2
i |zi]

.

Using the assumption m∗
τ (zi) = x′iθ

∗
τ , where ‖θ∗τ‖0 6 s≪ n is sparse, we have that

Si = 2ϕτ (yi, diατ + x′iβτ )v
∗
i ,

which is the score that was constructed using Neymanization. It follows that the estimator based on the

instrument v∗i is actually efficient in the minimax sense (see Theorem 18.4 in [21]), and inference about

ατ based on this estimator provides best minimax power against local alternatives (see Theorem 18.12

in [21]).

The claim above is formal as long as, given a law Qn, the least favorable submodels are permitted as

deviations that lie within the overall model. Specifically, given a law Qn, we shall need to allow for a

certain neighborhood Qδ
n of Qn such that Qn ∈ Qδ

n ⊂ Qn, where the overall model Qn is defined similarly

as before, except now permitting heteroscedasticity (or we can keep homoscedasticity fi = fǫ to maintain

formality). To allow for this we consider a collection of models indexed by a parameter t = (t1, t2):

yi = di(ατ + t1) + x′i(βτ + t2θ
∗
τ ) + ǫi, ‖t‖ 6 δ, (5.30)

fidi = fix
′
iθ

∗
τ + v∗i , E[fiv

∗
i |xi] = 0, (5.31)

where ‖βτ‖0 ∨ ‖θ∗τ‖0 6 s/2 and conditions as in Section 2 hold. The case with t = 0 generates the model

Qn; by varying t within δ-ball, we generate models Qδ
n, containing the least favorable deviations. By

[23], the efficient score for the model given above is Si, so we cannot have a better regular estimator than

the estimator whose influence function is J−1Si, where J = E[S2
i ]. Since our model Qn contains Qδ

n,

all the formal conclusions about (local minimax) optimality of our estimators hold from theorems cited

above (using subsequence arguments to handle models changing with n). Our estimators are regular,

since under Qt
n with t = (O(1/

√
n), o(1)), their first order asymptotics do not change, as a consequence

of Theorems in Section 2. (Though our theorems actually prove more than this.)
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Appendix A. Analysis under High-Level Conditions

This section contains the main tools used in establishing the main inferential results. The high-

level conditions here are intended to be applicable in a variety of settings and they are implied by the

regularities conditions provided in the previous sections. The results provided here are of independent

interest (e.g. properties of Lasso under estimated weights). We establish the inferential results (2.16) and

(2.19) in Section A.3 under high level conditions. To verify these high-level conditions we need rates of

convergence for the estimated instruments v̂ and the estimated confounding function ĝτ (z) = x′β̂τ which

are established in sections A.2 and A.1 respectively. The main design condition relies on the restricted

eigenvalue proposed in [11], namely for x̃i = [di, x
′
i]
′

κc = inf
‖δTc‖16c‖δT ‖1

‖x̃′iδ‖2,n/‖δT‖ (A.32)

where c = (c+1)/(c−1) for the slack constant c > 1, see [11]. It is well known that Condition SE implies

that κc is bounded away from zero if c is bounded, see [11].

A.1. ℓ1-Penalized Quantile Regression. In this section for a quantile index u ∈ (0, 1), we consider

the equation

ỹi = x̃′iηu + rui + ǫi, u-quantile of (ǫi | x̃i, rui) = 0 (A.33)

where we observe {(ỹi, x̃i) : i = 1, . . . , n}, which are independent across i. To estimate ηu we consider

the ℓ1-penalized u-quantile regression estimate

η̂u ∈ argmin
η

En[ρu(ỹi − x̃′iη)] +
λ

n
‖η‖1

and the associated post-model selection estimate

η̃u ∈ argmin
η

{ En[ρu(ỹi − x̃′iη)] : ηj = 0 if η̂uj = 0} . (A.34)

As established in [3] for sparse models and in [17] for approximately sparse models, under the event

that
λ

n
> c‖En[(u − 1{ỹi 6 x̃′iηu + rui})x̃i]‖∞ (A.35)

the estimator above achieves good theoretical guarantees under mild design conditions. Although ηu is

unknown, we can set λ so that the event in (A.35) holds with high probability. In particular, the pivotal

rule proposed in [3] and generalized in [17] proposes to set λ := cnΛ(1− γ | x̃) for c > 1 where

Λ(1− γ | x̃) = (1 − γ)− quantile of ‖En[(u− 1{Ui 6 u})x̃i]‖∞ (A.36)

where Ui ∼ U(0, 1) are independent random variables conditional on x̃i, i = 1, . . . , n. This quantity can

be easily approximated via simulations. Below we summarize the high level conditions we require.

Condition PQR. Let Tu = support(ηu) and normalize En[x̃
2
ij ] = 1, j = 1, . . . , p. Assume that

for some s > 1, ‖ηu‖0 6 s, ‖rui‖2,n 6 C
√
s/n. Further, the conditional distribution function of ǫi

is absolutely continuous with continuously differentiable density fǫ(· | di, zi) such that 0 < f 6 fi 6

supǫ fǫi|di,zi(ǫ | di, zi) 6 f̄ , supǫ f ′
ǫi|di,zi(ǫ | di, zi) < f̄ ′ for fixed constants f , f̄ and f̄ ′.
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Condition PQR is implied by Condition AS. The conditions on the approximation error and near

orthogonality conditions follows from choosing a model ηu that optimally balance the bias/variance

trade-off. The assumption on the conditional density is standard in the quantile regression literature

even with fixed p case developed in [20] or the case of p increasing slower than n studied in [5].

Next we present bounds on the prediction norm of the ℓ1-penalized quantile regression estimator.

Lemma 1. Under Condition PQR, setting λ > cnΛ(1 − γ | x̃), we have with probability 1 − 4γ for n

large enough

‖x̃′i(η̂u − ηu)‖2,n . N :=
λ
√
s

nκ2c
+

1

κ2c

√
s log(p/γ)

n

provided that for Au := ∆2c ∪ {v : ‖x̃′iv‖2,n = N, ‖v‖1 6 8Ccs log(p/γ)/λ}, we have

sup
δ̄∈Au

En[|rui||x̃′iδ̄|2]
En[|x̃′iδ̄|2]

+N sup
δ̄∈Au

En[|x̃′iδ̄|3]
En[|x̃′iδ̄|2]3/2

→ 0.

Lemma 1 establishes the rate of convergence in the prediction norm for the ℓ1-qr estimator. Exact con-

stants are derived in the proof. The extra growth condition required for identification is mild. For instance

we typically have λ ∼
√
log(n ∨ p)/n and for many designs of interest we have infδ∈∆c

‖x̃′iδ‖32,n/En[|x̃′iδ|3]
bounded away from zero (see [3]). For more general designs we have

inf
δ∈Au

‖x̃′iδ‖32,n
En[|x̃′iδ|3]

> inf
δ∈Au

‖x̃′iδ‖2,n
‖δ‖1maxi6n ‖x̃i‖∞

>
κ2c√

s(1 + c)maxi6n ‖x̃i‖∞
∧ λN

8Ccs log(p/γ)maxi6n ‖x̃i‖∞
.

Lemma 2 (Estimation Error of Post-ℓ1-qr). Assume Condition PQR holds, and that the Post-ℓ1-qr is

based on an arbitrary vector η̂u. Let r̄u > ‖rui‖2,n, ŝu > |support(η̂u)| and Q̂ > En[ρu(ỹi − x̃′iη̂u)] −
En[ρu(ỹi − x̃′iηu))] hold with probability 1− γ. Then we have for n large enough, with probability 1− γ −
ǫ− o(1)

‖x̃′i(η̃u − ηu)‖2,n . Ñ :=

√
(ŝu + s) log(p/ε)

nφmin(ŝu + s)
+ f̄ r̄u + Q̂1/2

provided that

sup
‖δ̄‖06ŝu+s

En[|rui||x̃′iδ̄|2]
En[|x̃′iδ̄|2]

+ Ñ sup
‖δ̄‖06ŝu+s

En[|x̃′iδ̄|3]
En[|x̃′iδ̄|2]3/2

→ 0.

Lemma 2 provides the rate of convergence in the prediction norm for the post model selection estimator

despite of possible imperfect model selection. In the current nonparametric setting it is unlikely for the

coefficients to exhibit a large separation from zero. The rates rely on the overall quality of the selected

model by ℓ1-penalized quantile regression and the overall number of components ŝu. Once again the extra

growth condition required for identification is mild. For more general designs we have

inf
‖δ‖06ŝu+s

‖x̃′iδ‖32,n
En[|x̃′iδ|3]

> inf
‖δ‖06ŝu+s

‖x̃′iδ‖2,n
‖δ‖1maxi6n ‖x̃i‖∞

>

√
φmin(ŝu + s)√

ŝu + smaxi6n ‖x̃i‖∞
.
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A.2. Lasso with Estimated Weights. In this section we consider the equation

fidi = fimτ (zi) + vi = fix
′
iθτ + firmτi + vi, E[fivi | zi] = 0 (A.37)

where we observe {(di, zi, xi = P (zi)) : i = 1, . . . , n}, which are independent across i. We do not observe

{fi = fτ (di, zi)}ni=1 directly, but we assume that estimates {f̂i}ni=1 are available. Also, we have that

Tmτ = support(θτ ) is unknown but a sparsity condition holds, namely |Tmτ | 6 s. To estimate θmτ and

vi, we compute

θ̂τ ∈ argmin
θ

En[f̂
2
i (di − x′iθ)

2] +
λ

n
‖Γ̂τθ‖1 and set v̂i = f̂i(di − x′iθ̂τ ), i = 1, . . . , n, (A.38)

where λ and Γ̂τ are the associated penalty level and loadings specified below. The new difficulty is to

account for the impact of estimated weights f̂i. Although this impact on the estimation of θτ is minor,

the estimated weights impact estimates of vi can be more substantial.

We will establish bounds on the penalty parameter λ so that with high probability the following

regularization event occurs
λ

n
> 2c‖Γ̂−1

τ En[fixivi]‖∞. (A.39)

As discussed in [11, 4, 8], the event above allows to exploit the restricted set condition ‖θ̂τT c
mτ

‖1 6
c̃‖θ̂τTmτ − θτ‖1 for some c̃ > 1. Thus rates of convergence for θ̂τ and v̂i defined on (A.38) can be

established based on the restricted eigenvalue κc̃ defined in (A.32) with x̃i = xi.

However, the estimation error in the estimate f̂i of fi could slow the rates of convergence. The following

are sufficient high-level conditions.

Condition WL. For the model (A.37), normalize En[x
2
ij ] = 1, j = 1, . . . , p, and suppose that:

(i) for s > 1 we have ‖θτ‖0 6 s, En[r2mτi] 6 Cs/n, Φ−1(1 − γ/2p) 6 δnn
1/3,

(ii) 0 < f 6 fi 6 f̄ uniformly in n, and 0 < c 6 E[v2i | xi] 6 c̄ <∞, a.s., max
j6p

{Ē[|fixijvi|3]}1/3

{Ē[|fixijvi|2]}1/2 6 C,

(iii) with probability 1−∆n we have maxi6n ‖xi‖∞ 6 Kx,

max
j6p

|(En − Ē)[f2
i x

2
ijv

2
i ]| 6 δn, max

j6p
En[(f̂i − fi)

2x2ijv
2
i ] 6 δn, En[f̂

2
i r

2
mτi] 6 c

2
r , En

[
(f̂2

i −f2
i )

2

f2
i

v2i

]
6 c2f .

(iv) ℓΓ̂τ0 6 Γ̂τ 6 uΓ̂τ0, where Γ̂τ0jj = {En[f̂2
i x

2
ijv

2
i ]}1/2, 1− δn 6 ℓ 6 u 6 C with probability 1−∆n.

Comment A.1. Condition WL(i) is a standard condition on the approximation error that yields the

optimal bias variance trade-off (see [4]) and imposes a growth restriction on p relative to n, in particular

log p = o(n1/3). Condition WL(ii) imposes conditions on the conditional density function and mild

moment conditions which are standard in quantile regression models even with fixed dimensions, see [20].

Condition WL(iii) requires high-level rates of convergence for the estimate f̂i. Several primitive moment

conditions imply first requirement in Condition WL(iii). These conditions allow the use of self-normalized

moderate deviation theory to control heteroscedastic non-Gaussian errors similarly to [2] where there are

no estimated weights. Condition WL(iv) corresponds to the asymptotically valid penalty loading in [2]

which is satisfied by the proposed choice Γ̂τ in (2.11). �

Next we present results on the performance of the estimators generated by Lasso with estimated

weights.
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Lemma 3 (Rates of Convergence for Lasso). Under Condition WL and setting λ > 2c′
√
nΦ−1(1−γ/2p)

for c′ > c > 1, we have for n large enough with probability 1− γ − o(1)

‖f̂ix′i(θ̂τ − θτ )‖2,n 6 2{cf + cr}+
λ
√
s

nκ̂c̃

(
u+

1

c

)

‖θ̂τ − θτ‖1 6 2

√
s{cf + cr}
κ̂2c̃

+
λs

nκ̂c̃κ̂2c̃

(
u+

1

c

)
+

(
1 +

1

2c̃

)
2c‖Γ̂−1

τ0 ‖∞
ℓc− 1

n

λ
{cf + cr}2

where c̃ = ‖Γ̂−1
τ0 ‖∞‖Γ̂τ0‖∞(uc+ 1)/(ℓc− 1)

Lemma 3 above establishes the rate of convergence for Lasso with estimated weights. This automati-

cally leads to bounds on the estimated instrument v̂i obtained with Lasso through the identity

v̂i − vi = (f̂i − fi)
vi
fi

+ f̂ix
′
i(θτ − θ̂τ ) + f̂irmτi. (A.40)

The Post-Lasso estimator applies the least squares estimator to the model selected by the Lasso estimator

(A.38),

θ̃τ ∈ arg min
θ∈Rp

{
En[f̂

2
i (di − x′iθ)

2] : θj = 0, if θ̂τj = 0
}
, set ṽi = f̂i(di − x′iθ̃τ ).

It aims to remove the bias towards zero induced by the ℓ1-penalty function which is used to select

components. Sparsity properties of the Lasso estimator θ̂τ under estimated weights follows similarly to

the standard Lasso analysis derived in [2]. By combining such sparsity properties and the rates in the

prediction norm we can establish rates for the post-model selection estimator under estimated weights.

The following result summarizes the properties of the Post-Lasso estimator.

Lemma 4 (Model Selection Properties of Lasso and Properties of Post-Lasso). Suppose that Condition

WL holds, and κ′ 6 φmin({s + n2

λ2 {c2f + c2r}}/δn) 6 φmax({s + n2

λ2 {c2f + c2r}}/δn) 6 κ′′ for some positive

and bounded constants κ′, κ′′. Then the data-dependent model T̂mτ selected by the Lasso estimator with

λ > 2c′
√
nΦ−1(1− γ/2p) for c′ > c > 1, satisfies with probability 1− γ − o(1):

‖θ̃τ‖0 = |T̂mτ | . s+
n2

λ2
{c2f + c2r} (A.41)

Moreover, the corresponding Post-Lasso estimator obeys

‖x′i(θ̃τ − θτ )‖2,n .P cf + cr +

√
|T̂mτ | log(p ∨ n)

n
+
λ
√
s

nκc
.

A.3. Instrumental Quantile Regression with Estimated Data. Next we turn to analyze the in-

strumental quantile regression discussed in Section 2. Condition IQR below suffices to make the impact

of the estimation of instruments negligible to the first order asymptotics of the estimator α̌τ . Primitive

conditions that imply Condition IQR are provided and discussed in the main text.

Let (d, z) ∈ D×Z. In this section for h̃ = (g̃, ι̃), where g̃ is a function of variable z, and the instrument

ι̃ is a function that maps (d, x) 7→ ι̃(d, z) we write

ψα̃,h̃(yi, di, zi) = ψα̃,g̃,ι̃(yi, di, zi) = (τ − 1{yi 6 g̃(zi) + diα})ι̃(di, zi) = (τ − 1{yi 6 g̃i + diα})ι̃i.

We assume that the estimated functions ĝ and ι̂ satisfy the following condition.
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Condition IQR. For some sequences δn → 0 and ∆n → 0 with probability at least 1−∆n:

(i) fyi|di,zi(y | di, zi) 6 f̄ , f ′
yi|di,zi(y | di, zi) 6 f̄ ′; Ē[fiι0i | zi] = 0, 0 < c 6 |Ē[fidiι0i]|, and

maxi6n{E[ι40i]}1/2 ∨ {E[d4i ]}1/2 6 C;
(ii) {α : |α− ατ | 6 n−1/2/δn} ⊂ Aτ , where Aτ is a (possibly random) compact interval;

(iii) the estimated quantities ĥ = (ĝ, ι̂) satisfy

max
i6n

{1 + |ι0i|+ |̂ιi − ι0i|}1/2‖gτi − ĝi‖2,n 6 δnn−1/4, |En[fiι0i{ĝi − gτi}]| 6 δnn−1/2

‖ι̂i − ι0i‖2,n 6 δn, ‖gτi − ĝi‖2,n · ‖ι̂i − ι0i‖2,n 6 δnn−1/2,
(A.42)

sup
α∈Aτ

∣∣∣(En − Ē)
[
ψα,ĥ(yi, di, zi)− ψα,h0(yi, di, zi)

]∣∣∣ 6 δn n−1/2 (A.43)

|α̌τ − ατ | 6 δn and En[ψα̌τ ,ĥ
(yi, di, zi)]| 6 δn n−1/2 (A.44)

(iv) ‖ι̂i − ι0i‖2,n 6 δn and ‖1{|ǫi| 6 |di(ατ − α̌τ ) + gτi − ĝi|}‖2,n 6 δ2n.

Lemma 5. Under Condition IQR(i,ii,iii) we have

{Ē[fidiι0i]−1Ē[τ(1 − τ)ι20i]Ē[fidiι0i]
−1}−1/2

√
n(α̌τ − ατ ) N(0, 1).

Moreover, if additionally IQR(iv) holds we have

nLn(ατ ) χ2(1)

and the variance estimator is consistent, namely

En[f̂idi ι̂i]
−1

En[(τ − 1{yi 6 ĝi + diα̌τ})2ι̂2i ]En[f̂idi ι̂i]−1 →P Ē[fidiι0i]
−1Ē[τ(1 − τ)ι20i]Ē[fidiι0i]

−1.

Appendix B. Results for Section 3

Proof of Theorem 1. We will verify Condition IQR and the result follows by Lemma 5. Condition IQR(i)

is assumed.

Condition SE implies that κc is bounded away from zero for n sufficiently large. Step 1 relies on

Post-ℓ1-qr. By the truncation we have ŝτ = ‖β̃τ‖0 6 Cs for any C > 2. Thus, by Condition SE

φmin(ŝτ + s) is bounded away from zero since ŝτ + s 6 ℓns for large enough n with probability 1 −∆n.

Moreover, Condition PQR is implied by Condition AS. Lemma 6 ensures that ‖β̂(2s)
τ −βτ‖1 6 2‖β̂τ−βτ‖1

and ‖x̃′i(β̂
(2s)
τ − βτ )‖2,n 6 ‖x̃′i(β̂τ − βτ )‖2,n +

√
φmax(s)/s‖β̂τ − βτ‖1 since φmax(k)/k is decreasing in

k. Therefore, by Lemma 2 we have ‖x′i(β̃τ − βτ )‖2,n .P
√
s log(n ∨ p)/n provided the side conditions

required in Lemmas 1 and 2. To verify those side conditions for Lemma 2 let x̃i = (di, x
′
i)

′ and δ = (δd, δ
′
x)

′.

By Condition SE and En[|di|3] .P Ē[|di|3] 6 C, we have

inf
‖δ‖06s+Cs

‖x̃′

iδ‖3
2,n

En[|x̃′
iδ|3]

> inf
‖δ‖06s+Cs

{φmin(s+Cs)}3/2‖δ‖3

4En[|x′
iδx|3]+4|δd|3En[|di|3]

> inf
‖δ‖06s+Cs

{φmin(s+Cs)}3/2‖δ‖3

4Kx‖δx‖1φmax(s+Cs)‖δx‖2+4‖δ‖3En[|di|3]

>
{φmin(s+Cs)}3/2

4Kx

√
s+Csφmax(s+Cs)+4En[|di|3]

&P
1

Kx
√
s
.

The relation above and the conditions K2
xs

2 log2(p ∨ n) 6 δnn and λ .
√
n log(p ∨ n) yields

n
√
φmin(s+Cs)

λ
√
s+
√
sn log(p∨n)

inf
‖δ‖06s+Cs

‖x̃′

iδ‖3
2,n

En[|x̃′
iδ|3]

&P
√
n

Kxs log(p∨n) → ∞.
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Moreover, noting that ‖δx‖ ∨ |δd| 6 ‖δ‖, we have

sup
‖δ‖06s+Cs

En[|rgτi| |x̃′

iδ|2]
‖x̃′

iδ‖2
2,n

6 2 sup
‖δ‖06s+Cs

En[|rgτi| |x′

iδx|2]+En[|rgτi|d2i δ2d]
φmin(s+Cs)‖δ‖2

6 2 sup
‖δ‖06s+Cs

‖rgτi‖2,n

√
φmax(s+Cs)‖δx‖Kx‖δx‖1

φmin(s+Cs)‖δx‖2 +
‖rgτi‖2,n‖d2i‖2,n

φmin(s+Cs)

6 C
√

s
n
Kx

√
s+Cs

φmin(s+Cs)
→ 0.

The verification of the side condition for Lemma 1 follows similarly.

Step 2 relies on Post-Lasso. Condition WL(i) and (ii) are implied by Conditions AS. Indeed, the

moment conditions in AS imply the first part, the second part Φ−1(1 − γ/2p) 6 δnn
1/3 is implied by

log(1/γ) . log(p ∨ n) and log3 p 6 δnn. Next we establish Condition WL(iii) under known conditional

density. The first condition is implied by Lemma 8 under the moment conditions and the growth condition

K4
x log p 6 δnn and fi 6 f̄ . Since f̂i = fi the other requirements in WL(iii) follows.

Next we establish Condition WL(iv). Note that

maxj6p |En[x2ij(fidi)2]− Ē[x2ij(fidi)
2]| 6 maxj6p |(En − Ē)[x2ij(fidi)

2]| .P δn and

maxj6p |En[f2
i x

2
ijv

2
i ]− Ē[f2

i x
2
ijv

2
i ]| 6 maxj6p |(En − Ē)[f2

i x
2
ijv

2
i ]| .P δn

by Lemma 8 because Ē[f2
i x

2
ijv

2
i ] is bounded away from zero and from above. Thus Γ̂τ0jj is bounded away

from zero and from above with probability 1− o(1). Next note that

(maxi6n f
2
i )Ē[x

2
ij(fidi)

2] 6 f
4
maxj6p Ē[x

2
ijd

2
i ] 6 C, and

(maxi6n f
2
i )Ē[x

2
ij(fidi)

2] = (maxi6n f
2
i )Ē[x

2
ij(v

2
i + 2mτi(zi)fivi + f2

i m
2
τi(zi))]

= (maxi6n f
2
i )Ē[x

2
ijv

2
i ] + (maxi6n f

2
i )Ē[x

2
ijf

2
i m

2
τi(zi)] > Ē[f2

i x
2
ijv

2
i ].

Therefore, the initial penalty loadings {(maxi6n f
2
i )En[x

2
ij(fidi)

2]}j=1,...,p satisfy Condition WL(iv) with

ℓ→ 1 and u 6 C. By Lemma 4 and the growth conditions we have that the penalty loadings Γ̂τjj using v̂i

also satisfy Γ̂τ0jj − δn 6 Γ̂τjj 6 uΓ̂τ0jj. Thus, by Lemma 4 we have ‖x′i(θ̃τ − θτ )‖2,n .P
√
s log(n ∨ p)/n

and ‖θ̃τ‖0 .P s.

Step 3 relies on instrumental quantile regression. Condition IQR(iii) relation (A.42) follows by the

rates for β̃τ and θ̃τ and the growth condition K2
xs

2 log2(p ∨ n) 6 δnn.

To show Condition IQR(iii) relation (A.43) we will consider the class of functions

F = {1{yi 6 x′iβ + diα} − 1{yi 6 x′iβτ + diα} : ‖β‖0 6 Cs, ‖β − βτ‖ 6 C
√
s log(p ∨ n)/n}.

Since F is the union of
(
p
Cs

)
VC classes of dimension Cs, it satisfies logN(ε‖F‖2,Pn,F ,Pn) . Cs log(p ∨

n) + Cs log(1/ε).

Note that

sup
α∈Aτ

∣∣∣(En − Ē)
[
ϕτ (yi, x

′
iβ̃τ + diα)v̂i − ϕτ (yi, gτi + diα)vi

]∣∣∣

6 sup
α∈Aτ

∣∣∣(En − Ē)
[
ϕτ (yi, x

′
iβ̃τ + diα){v̂i − vi}

]∣∣∣+ (B.45)

+ sup
α∈Aτ

∣∣∣(En − Ē)
[
{ϕτ (yi, x′iβ̃τ + diα)− ϕτ (yi, x

′
iβτ + diα)}vi

]∣∣∣+ (B.46)
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+ sup
α∈Aτ

∣∣(En − Ē) [{ϕτ (yi, x′iβτ + diα)− ϕτ (yi, gτi + diα)}vi]
∣∣ . (B.47)

To bound (B.45), we write v̂i− vi = fix
′
i{θ̃τ − θτ}+ firmτi. Substitute the equation above into (B.45).

Using triangle inequality and Lemma 9 together with the entropy bounds for F and

G = {δ : ‖x′iδ‖2,n 6 C
√
s log(p ∨ n)/n, ‖δ‖0 6 Cs},

we have

(B.45).(i) = sup
α∈Aτ

∣∣∣(En − Ē)
[
ϕτ (yi, x

′
iβ̃τ + diα)fix

′
i{θ̃τ − θτ}

]∣∣∣ .P

√
Cs log(p ∨ n)

n

√
s log(p ∨ n)

n

(B.45).(ii) = sup
α∈Aτ

∣∣∣(En − Ē)
[
ϕτ (yi, x

′
iβ̃τ + diα)firmτi

]∣∣∣ .P

√
Cs log(p ∨ n)

n

√
s

n

To bound (B.46), by Lemma 10, ‖x′i{β̃τ−βτ}‖2,n .P
√
s log(p ∨ n)/n, Ē[(1{yi 6 a}−1{yi 6 b})2v2i ] 6

Ē[f̄ v2i |a− b|], and ‖v2i ‖2,n .P {Ē[v4i ]}1/2, we have

sup
α∈Aτ

∣∣∣(En − Ē)
[
{ϕτ (yi, x′iβ̃τ + diα)− ϕτ (yi, x

′
iβτ + diα)}vi

]∣∣∣

.P

√
Cs log(p ∨ n) logn

n

(
{Ē[v4i ]}1/2f̄

√
Cs log(p ∨ n)

n
+

√
s log(p ∨ n)

n
{Ē[v4i ]}1/2

)1/2

= oP (n
−1/2)

provided that s3 log3(p ∨ n) log2 n 6 δnn. Similarly, to bound (B.47), by Lemma 10 and ‖rgτi‖2,n .P√
s/n, we have

sup
α∈Aτ

∣∣(En − Ē) [{ϕτ (yi, x′iβτ + diα)− ϕτ (yi, gτi + diα)}vi]
∣∣

.P

√
logn

n

(
{Ē[v4i ]}1/2f̄‖rgτi‖

1/2
2,n + {Ē[v4i ]}1/2

√
logn

n

)1/2

= oP (n
−1/2).

Next we verify the second part of Condition IQR(iii) relation (A.44). To show

|En[ϕτ (yi, x′iβ̃τ + diα̌τ )v̂i]| .P δn n−1/2

consider that

Ln(α̌τ ) =
{En[ϕτ (yi, x′iβ̃τ + diα̌τ )v̂i]}2

En[ϕ2
τ (yi, x

′
iβ̃τ + diα̌τ )v̂2i ]

= min
α∈Aτ

{En[ϕτ (yi, x′iβ̃τ + diα)v̂i]}2

En[ϕ2
τ (yi, x

′
iβ̃τ + diα)v̂2i ]

6
1

τ2(1− τ)2En[v̂2i ]
min
α∈Aτ

{En[ϕτ (yi, x′iβ̃τ + diα)v̂i]}2

Letting ϕ̂i(α) = ϕτ (yi, x
′
iβ̃τ + diα), ϕi(α) = ϕτ (yi, gτi + diα) we have

|En[ϕ̂i(α)v̂i]| 6 |(En − Ē)[ϕ̂i(α)v̂i − ϕi(α)vi]|+ |Ē[ϕ̂i(α)v̂i]− Ē[ϕi(α)vi]|+ |En[ϕi(α)vi]|
.P δn n

−1/2 + δn|α− ατ |+ |En[ϕi(α)vi]|

where the bias term |Ē[ϕ̂i(α)v̂i] − Ē[ϕi(α)vi]| .P δn n
−1/2 + δn|α − ατ | follows from relations (H.74),

(H.75), and (H.77) in the Supplementary Appendix. Therefore,
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{ En[ϕ̂i(α̌τ )v̂i] }2
En[v̂2i ]

6 Ln(α̌τ ) 6
{En[v̂2i ]}−1

τ2(1− τ)2
min
α∈Aτ

{ En[ϕ̂i(α)v̂i] }2

.P
{En[v̂2i ]}−1

τ2(1− τ)2
min

α∈{α:|α−ατ |6n−1/2/δn}
{ δn n−1/2 + δn|α− ατ |+ |En[ϕi(α)vi]| }2

.P
{En[v̂2i ]}−1

τ2(1− τ)2
{ δn n−1/2 + δn|α∗ − ατ |+ |En[ϕi(α∗)vi]| }2

where α∗ ∈ argminα∈{α:|α−ατ |6n−1/2/δn} |En[ϕi(α)vi]|. It follows that |α∗−ατ | .P n−1/2 and |En[ϕi(α∗)vi]| .P
n−1 maxi6n |vi|. Therefore, since maxi6n |vi| .P n1/4 by Ē[v4i ] 6 C, we have

|En[ϕ̂i(α̌τ )v̂i]| .P
δnn

−1/2

τ(1 − τ)
.

�

Proof of Theorem 2. The analysis of Step 1 and 2 are identical to the corresponding analysis in the proof

of Theorem 1. Define (ỹi; x̃i) = (fiyi; fidi, fixi), since fi = f(di, xi) and 0 < f 6 fi 6 f̄ , by Lemma 2

we have ‖x′iβ̌τ − gτi‖2,n .P
√
s log(p ∨ n)/n and |α̌τ − ατ | 6 δn. (Note that the verification of the side

conditions follows as the verification for Step 1 since 0 < f 6 fi 6 f̄ .)

Next we construct instruments from the first order conditions of Step 3. Let T̂ ∗
τ denote the variables

selected in Steps 1 and 2: T̂ ∗
τ := support(β̂

(2s)
τ ) ∪ support(θ̂τ ). By the first order conditions of the the

weighted quantile regression optimization problem, (α̌τ , β̌τ ) are such that there are si ∈ ∂ρτ (yi − diα̌τ −
x′iβ̌τ ), i = 1, . . . , n, such that

En[sifi(di, x
′
iT̂∗

τ

)′] = 0.

Trivially En[sifi(di, x
′
iT̂∗

τ

)](1,−θ̂′τ )′ = 0 since it is a linear combination of the equations above. Therefore,

defining v̂i = fi(di − x′
iT̂∗

τ

θ̂τ ), we have En[siv̂i] = 0. Moreover, since si = ϕτ (yi, diα̌τ + x′iβ̌τ ) if yi 6=
diα̌τ + x′iβ̌τ ,

|En[ϕτ (yi, diα̌τ + x′iβ̌τ )v̂i]| 6 |En[siv̂i]|+ En[1{yi = diα̌τ + x′iβ̌τ}|v̂i|]
6 En[1{yi = diα̌τ + x′iβ̌τ}|v̂i − vi|] + En[1{yi = diα̌τ + x′iβ̌τ}|vi|]
6

√
(1 + |T̂ ∗

τ |)/n‖v̂i − vi‖2,n +maxi6n |vi|(1 + |T̂ ∗
τ |)/n.

When the right side is oP (n
−1/2), the double selection estimator α̌τ approximately minimizes

L̃n(α) =
|En[ϕτ (yi, diα+ x′iβ̌τ )v̂i]|2
En[{ϕτ (yi, diα+ x′iβ̌τ )}2v̂2i ]

,

Since |T̂ ∗
τ | .P s,

√
s‖v̂i − vi‖2,n = oP (1), s

3 6 δnn, and maxi6n |vi| .P n1/6 by Ē[v6i ] 6 C we have

√
(1 + |T̂ ∗

τ |)/n‖v̂i − vi‖2,n +max
i6n

|vi|(1 + |T̂ ∗
τ |)/n .P

√
s/n‖v̂i − vi‖2,n + n1/6s/n = o(n−1/2).

The result follows by Lemma 5. �
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B.1. Proof of Theorems for Unknown Density.

Proof of Theorem 3. The proof is similar to the proof of Theorem 1 as we will also verify Condition IQR

and the result follows by Lemma 5. The requirement on the conditional density function in IQR(i) is

assumed in Condition AS. By setting ι0i = vi the other moment conditions in IQR(i) are assumed in

Condition AS. The analysis of α̂τ , α̃τ , β̂τ and β̃τ in Step 1 is the same as in Theorem 1. Therefore Aτ

satisfies the requirement in IQR(ii). Moreover, |α̌τ − ατ | .P
√
s log(n ∨ p)/n satisfies the first part of

(A.44), and ‖x′iβ̃τ − gτi‖2,n .P
√
s log(n ∨ p)/n. The second condition in IQR(iv) also follows since

‖1{|ǫi| 6 |di(ατ − α̌τ ) + gτi − ĝi|}‖22,n 6 En[1{|ǫi| 6 |di(ατ − α̌τ )|+ |x′i(β̃τ − βτ )|+ |rgτi|}]
6 En[1{|ǫi| 6 3|di(ατ − α̌τ )|}] + En[1{|ǫi| 6 3|x′i(β̃τ − βτ )|}]
+En[1{|ǫi| 6 3|rgτi|}] .P f̄Kx

√
s2 log(n ∨ p)/n.

Next we establish rates for f̂i. Under Condition D we have

‖fi − f̂i‖2,n .P
1

h

√
s log(n ∨ p)

n
+ hk̄ and max

i6n
|f̂i − fi| .P δn (B.48)

where k̄ depends on the estimator. Let U denote the set of quantile indices used in the calculation of f̂i.

Step 2 relies on Post-Lasso with estimated weights. Condition WL(i) and (ii) are implied by Conditions

AS. Indeed, the moment conditions in AS imply the first part, and Φ−1(1− γ/2p) 6 δnn
1/3 is implied by

log(1/γ) . log(p∨n) and log3 p 6 δnn. The first part of Condition WL(iii) is implied by Lemma 8 under

the moment conditions and the growth condition K4
x log p 6 δnn. Condition WL(iv) follows similarly as

in the proof of Theorem 1 using the uniform consistency in (B.48).

The second part of Condition WL(iii) follows from (B.48) and Condition WL(iv) since

max
j6p

En[(f̂i − fi)
2x2ijv

2
i ] 6 max

i6n
|f̂i − fi|2

{
max
j6p

(En − Ē)[x2ijv
2
i ] + max

j6p
Ē[x2ijv

2
i ]

}
.P δn.

The third part of Condition WL(iii) follows from (B.48) and Condition WL(i,ii) since

c2r = En[f̂
2
i r

2
mτi] 6 max

i6n
{|f̂i − fi|+ |fi|}En[r2mτi] .P s/n.

To show the fourth part of Condition WL(iii) we note that maxi6n f̂
2
i (fi+Ch

k̄)2 .P C and 1/mini6n f
2
i 6

C. Letting δu = β̃u − βu and ϑu = α̃u − αu, for u ∈ U , we have

c2f = En[(f̂i − fi)
2v2i /f

2
i ]

.P h
2k̄
En[v

2
i ] + h−2

∑

u∈U
En[v

2
i (x

′
iδu)

2 + v2i d
2
iϑ

2
u + v2i r

2
ui]

(B.49)

Conditional on {zi, i = 1, . . . , n}, note the following relations for u ∈ U

En[v
2
i r

2
ui] .P Ē[v2i r

2
ui] = En[r

2
uiE[v

2
i | zi]] 6 En[r

2
ui] maxi6n E[v

2
i | zi] . s/n

En[v
2
i d

2
iϑ

2
u] = En[v

2
i d

2
i ]ϑ

2
u 6 {En[v4i ]En[d4i ]}1/2ϑ2u .P s log(p ∨ n)/n

En[v
2
i (x

′
iδu)

2] = En[(x
′
iδu)

2E[v2i | zi]] + (En − Ē)[v2i (x
′
iδu)

2]

6 En[(x
′
iδu)

2] maxi6n E[v
2
i | zi] + ‖δu‖2 sup‖δ‖06‖δu‖0,‖δ‖=1 |(En − Ē)[{vix′iδ}2]|

To bound the last term we have ‖x′iδu‖22,n .P s log(n∨p)/n and ‖δu‖0 6 2Cs with probability 1−∆n by

Condition D. Then we apply Lemma 11 with Xi = vixi. Thus, we can takeK = {E[maxi6n ‖Xi‖2∞]}1/2 6
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Kx{Ē[maxi6n v
2
i ]}1/2 . n1/8Kx (since Ē[v8i ] 6 C), and Ē[(δ′Xi)

2] 6 En[(x
′
iδ)

2] maxi6n E[v
2
i | zi] 6

Cφmax(‖δ‖0)‖δ‖2. Therefore,

sup‖δ‖062Cs,‖δ‖=1

∣∣(En − Ē)
[
{vix′iδ}2

]∣∣ .P
{
K2

xn
1/4s log3 n log(p∨n)

n +

√
K2

xn
1/4s log3 n log(p∨n)

n φmax(2Cs)

}

.

{
Kx log3 n
n1/4

Kxs log(p∨n)
n1/2 +

√
Kx log3 n
n1/4

Kxs log(p∨n)
n1/2 φmax(2Cs)

}

under the conditions K4
x 6 δnn

4/q, q > 4, and K2
xs

2 log2(p ∨ n) 6 δnn, and φmax(s/δn) being bounded

from above with probability 1−∆n by Condition SE. Therefore,

c2f .P
s log(n ∨ p)

h2n
+ h2k̄.

Under Condition WL, by Lemma 4 we have

‖θ̃τ‖0 .P
n2{c2f + c2r}

λ2
+ s . s̃mτ := s+

ns log(n ∨ p)
h2λ2

+

(
nhk̄

λ

)2

and

‖x′i(θ̃τ − θτ )‖2,n .p
1

h

√
s log(n ∨ p)

n
+ hk̄ +

λ
√
s

n

where we used that φmax(s̃mτ/δn) 6 C, and that λ >
√
nΦ−1(1− γ/2p) ∼

√
n log(p/γ) so that

√
s̃mτ log p

n
.

1

h

√
s log p

n
+ hk̄.

For convenience we write x̃i = (di, x
′
i)

′ and we will consider the following classes of functions

K = {x′iβ : ‖β‖0 6 Cs, ‖β − βτ‖ 6 C
√
s log(p ∨ n)/n}

F = {τ − 1{yi 6 x′iβ + diα} : ‖β‖0 6 Cs, ‖β − βτ‖ 6 C
√
s log(p ∨ n)/n, |α− ατ | 6 δn}

G = {x′iδ : ‖x′iδ‖2,n 6 C{ 1
h

√
s log p/n+ hk̄ + λ

√
s

n }, ‖δ‖0 6 Cs̃mτ}

J =

{
f̃i :

‖η̃u‖0 6 Cs, ‖x̃′iη̃u −Q(u | di, zi)‖2,n 6 C
√
s log(p ∨ n)/n,

‖x̃′iη̃u −Q(u | di, zi)‖∞ 6 δnh, u ∈ U

} (B.50)

We have that K and F are the union of
(
p
Cs

)
VC classes of dimension Cs and G is the union of

(
p
s̃mτ

)
VC

classes of dimension Cs̃mτ . Thus, logN(ε‖F‖2,Pn,F ,Pn) . Cs log p+Cs log(1/ε) and logN(ε‖G‖2,Pn ,G,Pn) .
Cs̃mτ log p+ Cs̃mτ log(1/ε) where ‖F‖2,Pn 6 1 and G(y, d, x) = maxδ∈G |x′iδ|. Under the choice of band-

width h in Condition D, we have CKx

√
s2 log(n ∨ p)/n 6 δnh, and the functions in J are uniformly

bounded above and below. Moreover, J is the union of
(
p
Cs

)k̄
VC classes of dimension C′s so that

logN(ε‖J‖2,Pn,J ,Pn) . Cs log p+ Cs log(1/ε) where J(y, d, z) = supf̃∈J |f̃(y, d, z)|.

Next we provide bounds required by IQR(iii). We have

{En[(v̂i − vi)
2]}1/2 6 {En[{(f̂i − fi)(di − x′iθ̃τ )}2]}1/2 + {En[{fix′i(θτ − θ̃τ )}2]}1/2 + {En[{firmτi}2]}1/2

.P {En[{(f̂i − fi)vi/fi}2]}1/2 + {En[{(f̂i − fi)x
′
i(θτ − θ̃τ )}2]}1/2

+{En[{(f̂i − fi)rmτi}2]}1/2 +maxi6n fi{‖x′i(θτ − θ̃τ )‖2,n + ‖rmτi‖2,n}
.P cf +maxi6n |f̂i − fi| ‖x′i(θτ − θ̃τ )‖2,n
+ 1
h

√
s log(n∨p)

n + hk̄ + λ
n

√
s.
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Therefore, since maxi6n |v̂i − vi| .P δn and maxi6n |vi| .P n1/6 since Ē[v6i ] 6 C, we have

maxi6n{1 + |vi|+ |v̂i − vi|}1/2‖gτi − x′iβ̃τ‖2,n .P n
−1/4

{
maxi6n{1+|vi|+|v̂i−vi|}

n1/6

s log(p∨n)
n1/3

}1/2

{En[(v̂i − vi)
2]}1/2 .P (1/h){s log(p ∨ n)/n}1/2 + hk̄ + λ

n

√
s . δn,

{En[(v̂i − vi)
2]}1/2‖gτi − x′iβ̃τ‖2,n .P

{
1
h

√
s log(p∨n)

n + hk̄
}√

s log(p∨n)
n

. n−1/2
{

1
h
s log(p∨n)
n1/2 + hk̄

√
s log(p ∨ n)

}

The last condition in (A.42) follows from Lemma 7 and the entropy bounds on K

|En[fivi{x′iβ̃τ − gτi}| .P supw∈K |En[fiι0i{wi − gτi}]| .P
√

s log(n∨p)
n

√
{maxi6n v

2
i+E[v2i ]}s log(p∨n)

n

.P n
−1/2

{
maxi6n v

2
i +E[v2i ]

n1/3

s2 log2(n∨p)
n2/3

}1/2

Next we verify (A.43). Let ϕ̂i(α) = ϕτ (yi, x
′
iβ̂τ +diα), ϕi(α) = ϕτ (yi, x

′
iβτ +diα). To show Condition

IQR(ii) note that

sup
α∈Aτ

∣∣(En − Ē) [ϕ̂i(α)v̂i − ϕτ (yi, gτi + diα)vi]
∣∣

6 sup
α∈Aτ

∣∣(En − Ē) [ϕ̂i(α)(v̂i − vi)]
∣∣+ (B.51)

+ sup
α∈Aτ

∣∣(En − Ē) [{ϕ̂i(α) − ϕi(α)}vi]
∣∣+ (B.52)

+ sup
α∈Aτ

∣∣(En − Ē) [{ϕi(α) − ϕτ (yi, gτi + diα)}vi]
∣∣ . (B.53)

To bound (B.51), we write v̂i − vi = v̂i − fi
f̂i
v̂i +

fi
f̂i
v̂i − vi = v̂i(f̂i − fi)/f̂i + fix

′
i{θ̃τ − θτ} + firmτi.

Substitute the equation above into (B.51) and using the triangle inequality we have

(B.51) 6 sup
α∈Aτ

∣∣∣(En − Ē)
[
ϕ̂i(α)(di − x′

iθ̃τ )(f̂i − fi)
]∣∣∣+ sup

α∈Aτ

∣∣∣(En − Ē)
[
ϕ̂i(α)fix

′
i{θ̃τ − θτ}

]∣∣∣+ sup
α∈Aτ

∣∣(En − Ē) [ϕ̂i(α)firmτi]
∣∣

Recall that fǫ|d,z(0 | d, z) = f(d, z) and rmτ = rmτ (d, z) = m(z) − x′θτ . We consider the following

combinations of F , G and J :

H1 = {(y, d, z) 7→ w1(y, d, z) · {d− x′θτ − w2(y, d, z)} · {w3(y, d, x) − f(d, z)} : w1 ∈ F , w2 ∈ G, w3 ∈ J }
H2 = {(y, d, z) 7→ w1(y, d, z) · f(d, z) · w2(y, d, z) : w1 ∈ F , w2 ∈ G}
H3 = {(y, d, z) 7→ w1(y, d, z) · f(d, z)rmτ (d, z) : w1 ∈ F}

Consider the event Ω := { f̂i ∈ J , x′iθ̃τ ∈ G, and τ − 1{yi 6 diα+ x′iβ̃τ} ∈ F for any α ∈ Aτ }. Under Ω
we have

(B.51) 6 sup
w∈H1

∣∣(En − Ē) [w(yi, di, zi)]
∣∣+ sup

w∈H2

∣∣(En − Ē) [w(yi, di, zi)]
∣∣+ sup

w∈H3

∣∣(En − Ē) [w(yi, di, zi)]
∣∣
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By Lemma 9 together with entropy bounds based on the entropy bounds for F , G, and J , we have

supw∈H1

∣∣(En − Ē) [w(yi, di, zi)]
∣∣ .P

√
s̃mτ log(p∨n)

n
supw∈H1{(En ∨ Ē)[w2]}1/2

.

√
s̃mτ log(p∨n)

n
supw∈H1{(En ∨ Ē)[{v2i (f̃i − fi)

2 + r2mτi(f̃i − fi)
2 + (x′

iδ)
2(f̃i − fi)

2]}1/2

. n−1/2
{

1
h

√
s̃mτ s log(n∨p)√

n
+ hk̄

√
s̃mτ log(n ∨ p) + λ

n

√
s̃mτ s log(n ∨ p)

}

supw∈H2

∣∣(En − Ē) [w(yi, di, zi)]
∣∣ .P

√
s̃mτ log(p∨n)

n
f̄ supδ∈G{En[(x

′
iδ)

2]}1/2

. n−1/2
{

1
h

√
s̃mτ s log p√

n
+ hk̄

√
s̃mτ log(n ∨ p) + λ

n

√
s̃mτs log(n ∨ p)

}

supw∈H3

∣∣(En − Ē) [w(yi, di, zi)]
∣∣ .P

√
s log(p∨n)

n
f̄{En[r

2
mτi]}1/2 . n−1/2

{
Cs2 log(p∨n)

n

}1/2

where we used that |w1| 6 1, f̃i and fi are uniformly bounded and (B.49). Plugging in the definition of

s̃mτ we require the following conditions to hold:

hk̄
√
s log(n ∨ p) 6 δn, hk̄−1

√
s log(n ∨ p)

√
n log(n∨p)

λ 6 δn, h2k̄
√
n

√
n log(n∨p)

λ 6 δn
s2 log2(n∨p)

nh2 6 δn,
s2 log3(n∨p)

h4λ2 6 δn,
λ
ns
√
log(n ∨ p) 6 δn.

The bounds of (B.52) and (B.53) follows as in the proof of Theorem 1 (since these are not impacted

by the estimation of density function). The verification of Condition IQR(iii),

|En[ϕτ (yi, x′iβ̃τ + diα̌τ )v̂i]| 6 δn n−1/2,

also follows as in the proof of Theorem 1.

The consistency of σ̂1n follows from ‖ṽi− vi‖2,n →P 0 and the moment conditions. The consistency of

σ̂3,n follow from Lemma 5. Next we show the consistency of σ̂2
2n = {En[f̌2

i (di, x
′
iŤ
)′(di, x′iŤ )]}

−1
11 . Because

fi > f , sparse eigenvalues of size ℓns are bounded away from zero and from above with probability 1−∆n,

and maxi6n |f̂i − fi| = oP (1) by Condition D, we have

{En[f̂2
i (di, x

′
iŤ
)′(di, x

′
iŤ
)]}−1

11 = {En[f2
i (di, x

′
iŤ
)′(di, x

′
iŤ
)]}−1

11 + oP (1).

So that σ̂2n − σ̃2n →P 0 for

σ̃2
2n = {En[f2

i (di, x
′
iŤ
)′(di, x

′
iŤ
)]}−1

11 = {En[f2
i d

2
i ]− En[f

2
i dix

′
iŤ
]{En[f2

i xiŤx
′
iŤ
]}−1

En[f
2
i xiŤ di]}−1.

Next define θ̌τ [Ť ] = {En[f2
i xiŤx

′
iŤ
]}−1En[f

2
i xiŤ di] which is the least squares estimator of regressing fidi

on fixiŤ . Let θ̌τ denote the associated p-dimensional vector. By definition fix
′
iθτ = fidi− firmτ − vi, so

that

σ̃−2
2n = En[f

2
i d

2
i ]− En[f

2
i dix

′
iθ̌τ ]

= En[f
2
i d

2
i ]− En[fidifix

′
iθτ ]− En[fidifix

′
i(θ̌τ − θτ )]

= En[fidivi]− En[fidifirmτi]− En[fidifix
′
i(θ̌τ − θτ )]

= En[v
2
i ] + En[vifimτ (zi)]− En[fidifirmτi]− En[fidifix

′
i(θ̌ − θ0)]

We have that |En[fivix′iθτ ]| = oP (δn) since Ē[fivix
′
iθτ ] = 0 and Ē[(vifimτ (zi))

2] 6 Ē[v2i f
2
i d

2
i ] 6 f̄

2{Ē[v4i ]Ē[d4i ]}1/2 6
C. Moreover, En[fidifirmτi] 6 f̄2

i ‖di‖2,n‖rmτi‖2,n = oP (δn), |En[fidifix′i(θ̌ − θτ )]| 6 ‖di‖2,n‖fix′i(θ̌τ −
θτ )‖2,n = oP (δn) since |Ť | .P ŝm + s and support(θ̂τ ) ⊂ Ť .

�
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Proof of Theorem 4. The analysis of Step 1 and 2 are identical to the corresponding analysis for Algorithm

1’. Let T̂ ∗
τ denote the variables selected in Step 1 and 2: T̂ ∗

τ = support(β̂
(2s)
τ ) ∪ support(θ̂τ ). Using the

same arguments as in the proof of Theorem 3, we have

|T̂ ∗
τ | .P ŝ∗τ = s+

ns log p

h2λ2
+

(
nhk̄

λ

)2

.

Next we establish preliminary rates for β̌τ and α̌τ . Note that since f̂i is a positive function of (di, zi),

all the results in Section A.1 apply for (ỹi, x̃i) = (f̂iyi, f̂i(di, x
′
i)

′) since these results are conditional on

(di, z
′
i)’. For ητ = (ατ , β

′
τ )

′, η̂τ = (α̂τ , β̂
(2s)
τ

′)′ and η̌τ = (α̌τ , β̌
′
τ )

′ be the solution of

η̌τ ∈ argmin
η

En[f̂iρτ (yi − (di, x
′
iT̂∗

τ

)η)]

where f̂i = f̂i(di, xi) > 0. By definition support(β̂τ ) ⊂ T̂ ∗
τ so that

En[f̂i{ρτ (yi − (di, x
′
i)η̌τ )− ρτ (yi − (di, x

′
i)ητ )}] 6 En[f̂i{ρτ (yi − (di, x

′
i)η̂τ )− ρτ (yi − (di, x

′
i)ητ )}]

Therefore we have

Ē[f̂i{ρτ (yi − (di, x
′
i)η̌τ )− ρτ (yi − (di, x

′
i)ητ )}] 6 |(En − Ē)[f̂i{ρτ (yi − (di, x

′
i)η̌τ )− ρτ (yi − (di, x

′
i)ητ )}]|

+En[f̂i{ρτ (yi − (di, x
′
i)η̂τ )− ρτ (yi − (di, x

′
i)ητ )}]

(B.54)

To bound the first term in (B.54) consider the class of functions

H = {ρτ (yi − (di, x
′
i)η)− ρτ (yi − (di, x

′
i)ητ ) : ‖η‖0 6 C′ŝ∗τ , ‖(di, x′i)(η − ητ )‖2,n 6 C

√
ŝ∗τ log p/n}

Note that f̂i is constructed based on the class of functions J defined in (B.50) which is the union of
(
p
Cs

)2

uniformly bounded VC classes of dimension C′s. Therefore,

sup
η∈H

|(En − Ē)[f̂i{ρτ (yi − (di, x
′
i)η)− ρτ (yi − (di, x

′
i)ητ )}]| .P

√
ŝ∗τ log(n ∨ p)

n

√
ŝ∗τ log p

n
.

To bound the last term in (B.54) let δ = η̂τ−ητ , and note that, conditional on (di, x
′
i), since ‖(di, x′i)′δ‖2,n .P√

s log(p ∨ n)/n, ‖rgτi‖2,n .P
√
s/n and maxi6n f̂i ∧ f̂−1

i .P 1, by Lemma 15 we have

En[f̂i{ρτ(yi − (di, x
′
i)η̂τ )− ρτ (yi − (di, x

′
i)ητ )}] .P

s log(p ∨ n)
n

.

Similarly, Lemma 13 with (ỹi; x̃i) := (f̂iyi; f̂idi, f̂ixi), implies that for δ = η̌τ − ητ ,

‖(di, x′i)δ‖22,n ∧ {q̄A‖(di, x′i)δ‖2,n} . Ē[f̂i{ρτ (yi − (di, x
′
i)η̌τ )− ρτ (yi − (di, x

′
i)ητ )}] +

√
ŝ∗τ
n

‖(di, x′i)δ‖2,n√
φmin(ŝ∗τ )

.

Combining these relations with 1/φmin(ŝ
∗
τ ) .P 1 by Condition D, we have

‖(di, x′i)′δ‖22,n ∧ {q̄A‖(di, x′i)δ‖2,n} .P
√
ŝ∗τ
n
‖(di, x′i)δ‖2,n +

ŝ∗τ log p

n

which leads to ‖(di, x′i)(η̌τ − ητ )‖2,n .P
√

ŝ∗τ log p
n .

Next we construct instruments from the first order conditions of Step 3. By the first order conditions

for (α̌τ , β̌τ ) in the weighted quantile regression we have for si ∈ ∂ρτ (yi − diα̌τ − x′iβ̌τ ) that

En[sif̂i(di, x
′
iT̂∗

τ

)′] = 0.
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Since si = ϕτ (yi, diα̌τ + x′iβ̌τ ) if yi 6= diα̌τ + x′iβ̌τ , by taking linear combination of the equation above

(1,−θ̃τ ) and defining v̂i = f̂i(di − x′
iT̂∗

τ

θ̃τ ) we have

|En[ϕτ (yi, diα̌τ + x′iβ̌τ )v̂i]| 6 |En[siv̂i]|+ En[1{yi = diα̌τ + x′iβ̌τ}|v̂i|]
6 En[1{yi = diα̌τ + x′iβ̌τ}|v̂i − vi|] + En[1{yi = diα̌τ + x′iβ̌τ}|vi|]
6

√
(1 + |T̂ ∗

τ |)/n‖v̂i − vi‖2,n +maxi6n |vi|(1 + |T̂ ∗
τ |)/n.

When the right side is oP (n
−1/2), the double selection estimator α̌τ approximately minimizes

L̃n(α) =
|En[ϕτ (yi, diα+ x′iβ̌τ )v̂i]|2
En[{ϕτ (yi, diα+ x′iβ̌τ )}2v̂2i ]

,

and we have L̃n(α̌τ ) = oP (n
−1/2) since |T̂ ∗

τ | .P ŝ∗τ , provided that
√
ŝ∗τ‖v̂i − vi‖2,n = oP (1), and

maxi6n |vi| .P n1/4 by Ē[v4i ] 6 C.

The remaining growth conditions required to apply Lemma 5 follow from the same requirements used

in the proof of Theorem 3

hk̄
√
s log(n ∨ p) 6 δn, hk̄−1

√
s log(n ∨ p)

√
n log(n∨p)

λ 6 δn, h2k̄
√
n

√
n log(n∨p)

λ 6 δn
s2 log2(n∨p)

nh2 6 δn,
s2 log3(n∨p)

h4λ2 6 δn,
λ
ns
√
log(n ∨ p) 6 δn.

(Note that the additional condition required by the analysis

ŝ∗τ log(n ∨ p)√
n

.P
s log(n ∨ p)√

n
+
s log3/2(n ∨ p)

h2λ

√
n log(n ∨ p)

λ
+ h2k̄

√
n
n log(n ∨ p)

λ2
6 δn

is implied by the previous requirements.)

The consistent estimation of σn follows as in the proof of Theorem 3. �

Appendix C. Auxiliary Inequalities

Lemma 6. Consider β̂ and β0 where ‖β0‖0 6 s, and denote β̂(m) as the vector β̂ truncated to have only

its m > s largest components. We have that

‖β̂(m) − β0‖1 6 2‖β̂ − β0‖1
‖x′i(β̂(2m) − β0)‖2,n 6 ‖x′i(β̂ − β0)‖2,n +

√
φmax(m)/m‖β̂ − β0‖1.

Lemma 7 (Maximal inequality via symmetrization). Let Z1, . . . , Zn be arbitrary independent stochastic

processes and F a finite set of measurable functions. For any τ ∈ (0, 1/2), and δ ∈ (0, 1) we have that

with probability at least 1− 4τ − 4δ

max
f∈F

|Gn(f(Zi))| 6
{
4
√

2 log(2|F|/δ) Q
(
max
f∈F

√
En[f(Zi)2], 1− τ

)}
∨ 2max

f∈F
Q

(
|Gn(f(Zi))|,

1

2

)
.

Lemma 8. Fix arbitrary vectors x1, . . . , xn ∈ R
p with maxi6n ‖xi‖∞ 6 Kx. Let ζi (i = 1, . . . , n) be

independent random variables such that Ē[|ζi|q] < ∞ for some q > 4. Then we have with probability

1− 8τ

max
16j6p

|(En − Ē)[x2ijζ
2
i ]| 6 4

√
log(2p/τ)

n
K2
x(Ē[|ζi|q]/τ)4/q
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Let us call a threshold function x : Rn 7→ R k-sub-exchangeable if, for any v, w ∈ Rn and any vectors

ṽ, w̃ created by the pairwise exchange of the components in v with components in w, we have that

x(ṽ) ∨ x(w̃) > [x(v) ∨ x(w)]/k. Several functions satisfy this property, in particular x(v) = ‖v‖ with

k =
√
2, x(v) = ‖v‖∞ with k = 1, and constant functions with k = 1.

Lemma 9 (Exponential inequality for separable empirical process). Consider a separable empirical pro-

cess Gn(f) = n−1/2
∑n

i=1{f(Zi)−E[f(Zi)]} and the empirical measure Pn for Z1, . . . , Zn, an underlying

independent data sequence. Let K > 1 and τ ∈ (0, 1) be constants, and en(F ,Pn) = en(F , Z1, . . . , Zn) be

a k-sub-exchangeable random variable, such that

∫ supf∈F ‖f‖2,Pn/4

0

√
logN(ǫ,F ,Pn)dǫ 6 en(F ,Pn) and sup

f∈F
varPf 6

τ

2
(4kcKen(F ,Pn))2

for some universal constant c > 1, then

P

{
sup
f∈F

|Gn(f)| > 4kcKen(F ,Pn)
}
6

4

τ
EP

([∫ supf∈F ‖f‖2,Pn/2

0

ǫ−1N(ǫ,F ,Pn)−{K2−1}dǫ

]
∧ 1

)
+ τ.

Proof. See [3], Lemma 18 and note that the proof does not use that Zi’s are i.i.d., only independent

which was the requirement of Lemma 17 of [3]. The statement then follows by a change of variables of

ǫ = ǫ̃‖F‖2,Pn. �

Lemma 10. Suppose that for all 0 < ε 6 ε0

N(ε,F ,Pn) 6 (ω/ε)m and N(ε,F2,Pn) 6 (ω/ε)m, (C.55)

for some ω which can grow with n. Then, as n grows we have

sup
f∈F

|Gn(f)| .P

√
m log(ω ∨ n)

(
sup
f∈F

Ē[f2] +

√
m log(n ∨ ω)

n

(
sup
f∈F

En[f
4] ∨ Ē[f4]

)1/2
)1/2

.

Proof. The result is derived in [5]. �

Lemma 11. Let Xi, i = 1, . . . , n, be independent random vectors in Rp be such that
√
E[max16i6n ‖Xi‖2∞] 6

K. Let

δn := 2
(
C̄K

√
k log(1 + k)

√
log(p ∨ n)

√
logn

)
/
√
n,

where C̄ is the universal constant. Then,

E

[
sup

‖α‖06k,‖α‖=1

∣∣En
[
(α′Xi)

2 − E[(α′Xi)
2]
]∣∣
]
6 δ2n + δn sup

‖α‖06k,‖α‖=1

√
Ē[(α′Xi)2].

Proof. It follows from Theorem 3.6 of [33], see [10] for details. �
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Supplementary Appendix for
“Robust Inference in High-dimensional Approximately Sparse

Quantile Regression Models”

Appendix D. Auxiliary Inequalities

Proof of Lemma 6. The first inequality follows from the triangle inequality

‖β̂(m) − β0‖1 6 ‖β̂ − β̂(m)‖1 + ‖β̂ − β0‖1

and the observation that ‖β̂ − β̂(m)‖1 = min‖β‖06m ‖β̂ − β‖1 6 ‖β̂ − β0‖1 since m > s = ‖β0‖0.

By the triangle inequality we have

‖x′i(β̂(2m) − β0)‖2,n 6 ‖x′i(β̂(2m) − β̂)‖2,n + ‖x′i(β̂ − β0)‖2,n.

Note that for integer k > 2, ‖β̂(km) − β̂(km−m)‖0 6 m and β̂ − β̂(2m) =
∑

k>3{β̂(km) − β̂(km−m)}.
Moreover, given the monotonicity of the components, ‖β̂(km+m) − β̂(km)‖ 6 ‖β̂(km) − β̂(km−m)‖1/

√
m.

Then, we have

‖x′i(β̂ − β̂(2m))‖2,n = ‖x′i
∑
k>3{β̂(km) − β̂(km−m)}‖2,n

6
∑

k>3 ‖x′i{β̂(km) − β̂(km−m)}‖2,n
6
√
φmax(m)

∑
k>3 ‖β̂(km) − β̂(km−m)‖

6
√
φmax(m)

∑
k>2

‖β̂(km)−β̂(km−m)‖1√
m

=
√
φmax(m) ‖β̂−β̂

(m)‖1√
m

6
√
φmax(m) ‖β̂−β0‖1√

m
.

where the last inequality follows from the arguments used to show the first result. �

Lemma 12 (Moderate Deviation Inequality for Maximum of a Vector). Suppose that

Sj =
∑n

i=1 Uij√∑n
i=1 U

2
ij

,

where Uij are independent variables across i with mean zero. We have that

P

(
max
16j6p

|Sj | > Φ−1(1− γ/2p)

)
6 γ

(
1 +

A

ℓ3n

)
,

where A is an absolute constant, provided that for ℓn > 0

0 6 Φ−1(1− γ/(2p)) 6
n1/6

ℓn
min

16j6p
M [Uj]− 1, M [Uj ] :=

(
1
n

∑n
i=1 EU

2
ij

)1/2
(
1
n

∑n
i=1E|U3

ij |
)1/3 .
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Appendix E. Results for Section A.1

Proof of Lemma 1. Let δ = η̂u − ηu and define

R̂(η) = En[ρu(ỹi − x̃′iη)]− En[ρu(ỹi − x̃′iηu − rui)]− En[(u− 1{ỹi 6 x̃′iηu + rui})(x̃′iη − x̃′iηu − rui)].

By Lemma 14, R̂(η) > 0, Ē[R̂(ηu)] 6 f̄‖rui‖22,n/2 and with probability at least 1 − γ, R̂(ηu) 6 R̄γ :=

4max{f̄‖rui‖22,n, ‖rui‖2,n
√
log(8/γ)/n} 6 4Cs log(p/γ)/n. By definition of η̂u we have

R̂(η̂u)− R̂(ηu) + En[(u− 1{ỹi 6 x̃′iηu + rui})x̃′i]δ = En[ρu(ỹi − x̃′iη̂u)]− En[ρu(ỹi − x̃′iηu)]

6 λ
n‖ηu‖1 − λ

n‖η̂u‖1.
(E.56)

Let N =
√
8cR̄γ/f + 10

f

{
f̄‖rui‖2,n + 3cλ

√
s

nκ2c
+

8(1+2c)
√
s log(16p/γ)√
nκ2c

+
8c

√
nR̄γ

√
log(16p/γ)

λ{s log(p/γ)/n}1/2

}
denote the

upper bound in the rate of convergence. Note that N > {s log(p/γ)/n}1/2. Suppose that the result is

violated, so that ‖x̃′iδ‖2,n > N . Then by convexity of the objective function in (A.34), there is also a

vector δ̃ such that ‖x̃′iδ̃‖2,n = N , and

En[ρu(ỹi − x̃′i(δ̃ + ηu))] − En[ρu(ỹi − x̃′iηu)] 6
λ
n‖ηu‖1 − λ

n‖δ̃ + ηu‖1. (E.57)

Next we will show that with high probability such δ̃ cannot exist implying that ‖x̃′iδ‖2,n 6 N .

By the choice of λ > cΛ(1− γ | x̃) the event Ω1 := {λn > c‖En[(u − 1{ỹi 6 x̃′iηu + rui})x̃i]‖∞} occurs

with probability at least 1−γ. The event Ω2 := {R̂1(ηu) 6 R̄γ} also holds with probability at least 1−γ.
Under Ω1 ∩ Ω2, and since R̂(η) > 0, we have

−R̂(ηu)− λ
cn‖δ̃‖1 6 R̂(ηu + η̃)− R̂(ηu) + En[(u− 1{ỹi 6 x̃′iηu + rui})x̃′i]δ̃

= En[ρu(ỹi − x̃′i(δ̃ + ηu))]− En[ρu(ỹi − x̃′iηu)]

6 λ
n‖ηu‖1 − λ

n‖δ̃ + ηu‖1
(E.58)

so that for c = (c+ 1)/(c− 1)

‖δ̃T c
u
‖1 6 c‖δ̃Tu‖1 +

nc

λ(c− 1)
R̂(ηu).

To establish that δ̃ ∈ Au := ∆2c ∪ {v : ‖x̃′iv‖2,n = N, ‖v‖1 6 2cnR̄γ/λ} we consider two cases. If

‖δ̃T c
u
‖1 > 2c‖δ̃Tu‖1 we have

1

2
‖δ̃T c

u
‖1 6

nc

λ(c− 1)
R̂(ηu)

and consequentially

‖δ̃‖1 6 {1 + 1/(2c)}‖δ̃T c
u
‖1 6

2nc

λ
R̂(ηu).

Otherwise ‖δ̃T c
u
‖1 6 2c‖δ̃Tu‖1, and we have

‖δ̃‖1 6 (1 + 2c)‖δ̃Tu‖1 6 (1 + 2c)
√
s‖x̃′iδ̃‖2,n/κ2c.

Thus with probability 1− 2γ, δ̃ ∈ Au.



ROBUST INFERENCE IN HIGH-DIMENSIONAL SPARSE QUANTILE REGRESSION MODELS 3

Therefore, under Ω1 ∩ Ω2, from (E.57), applying Lemma 16 (part (1) and (3) to cover δ̃ ∈ Au), for

‖x̃′iδ̃‖2,n = N with probability at least 1− 4γ we have

Ē[ρu(ỹi − x̃′
i(δ̃ + ηu))]− Ē[ρu(ỹi − x̃′

iηu)] 6 λ
n
‖δ̃‖1 + ‖x̃′

iδ̃‖2,n√
n

{
8(1+2c)

√
s

κ2c
+

8cnR̄γ

λN

}√
log(16p/γ)

6 2cR̄γ + ‖x̃′
iδ̃‖2,n

[
3cλ

√
s

nκ2c
+
{

8(1+2c)
√

s
κ2c

+
8cnR̄γ

λN

} √
log(16p/γ)√

n

]

where we used the bound for ‖δ̃‖1 6 (1 + 2c)
√
s‖x̃′iδ̃‖2,n/κ2c + 2nc

λ R̄γ .

Using Lemma 13, since by assumption supδ̄∈Au

En[|rui||x̃′

iδ̄|2]
En[|x̃′

iδ̄|2]
→ 0, we have

Ē[ρu(ỹi − x̃′i(ηu + δ̃))− ρu(ỹi − x̃′iηu)] > −f̄‖rui‖2,n‖x̃′iδ̃‖2,n +
f‖x̃′iδ̃‖22,n

4
∧ q̄Auf‖x̃′iδ̃‖2,n

Note that N < 4q̄Au for n sufficiently large by the assumed side condition, so that the minimum on

the right hand side is achieved for the quadratic part. Therefore we have

f‖x̃′iδ̃‖22,n
4

6 2cR̄γ + ‖x̃′iδ̃‖2,n
{
f̄‖rui‖2,n +

3cλ
√
s

nκ2c
+

8(1 + 2c)
√
s log(16p/γ)√
nκ2c

+
8c

√
nR̄γ

√
log(16p/γ)

λN

}

which implies that

‖x̃′iδ̃‖2,n 6
√
8cR̄γ/f +

8

f

{
f̄‖rui‖2,n +

3cλ
√
s

nκ2c
+

8(1 + 2c)
√
s log(16p/γ)√
nκ2c

+
8c

√
nR̄γ

√
log(16p/γ)

λN

}

which violates the assumed condition that ‖x̃′iδ̃‖2,n = N since N > {s log(p/γ)/n}1/2. �

Proof of Lemma 2. Let δ̂u = η̂u − ηu. By optimality of η̃u in (A.34) we have with probability 1− γ

En[ρu(ỹi − x̃′iη̃u)]− En[ρu(ỹi − x̃′iηu)] 6 En[ρu(ỹi − x̃′iη̂u)]− En[ρu(ỹi − x̃′iηu)] 6 Q̂. (E.59)

Let N = 2f̄ r̄u+Aε,n+2Q̂1/2 denote the upper bound in the rate of convergence where Aε,n is defined

below. Suppose that the result is violated, so that ‖x̃′i(η̃u − ηu)‖2,n > N . Then by convexity of the

objective function in (A.34), there is also a vector δ̃u such that ‖x̃′iδ̃u‖2,n = N , ‖δ̃u‖0 = ‖η̃u−ηu‖0 6 ŝu+s
and

En[ρu(ỹi − x̃′i(ηu + δ̃u))]− En[ρu(ỹi − x̃′iηu)] 6 Q̂. (E.60)

Next we will show that with high probability such δ̃u cannot exist implying that ‖x̃′i(η̃u − ηu)‖2,n 6 N

with high probability.

By Lemma 16, with probability at least 1− ε, we have

|(En − Ē)[ρu(ỹi − x̃′i(ηu + δ̃u))− ρu(ỹi − x̃′iηu)]|
‖x̃′iδ̃u‖2,n

6 8

√
(ŝu + s) log(16p/ε)

nφmin(ŝu + s)
=: Aε,n. (E.61)

Thus combining relations (E.59) and (E.61), we have

Ē[ρu(ỹi − x̃′i(ηu + δ̃u))] − Ē[ρu(ỹi − x̃′iηu)] 6 ‖x̃′iδ̃u‖2,nAε,n + Q̂

with probability at least 1 − ε. Invoking the sparse identifiability relation of Lemma 13, with the same

probability, since sup‖δ‖06ŝu+s
En[|rui| |x̃′

iθ|2]
En[|x̃′

iθ|2]
→ 0 by assumption,

(f‖x̃′iδ̃u‖22,n/4) ∧
(
q̃ŝuf‖x̃′iδ̃u‖2,n

)
6 ‖x̃′iδ̃u‖2,n

{
f̄‖rui‖2,n +Aε,n

}
+ Q̂.
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where q̃ŝu :=
f3/2

2f̄ ′ inf‖δ‖06ŝu+s
‖x̃′

iθ‖3
2,n

En[|x̃′
iθ|3]

.

Under the assumed growth condition, we have N < 4q̃ŝu for n sufficiently large and the minimum is

achieved in the quadratic part. Therefore, for n sufficiently large, we have

‖x̃′iδ̃u‖2,n 6 f̄‖rui‖2,n +Aε,n + 2Q̂1/2 < N

Thus with probability at least 1− ε− γ− o(1) we have ‖x̃′iδ̃u‖2,n < N which contradicts its definition.

Therefore, ‖x̃′i(η̃u − ηu)‖2,n 6 N with probability at least 1− γ − ε− o(1). �

E.1. Technical Lemmas for High-Dimensional Quantile Regression.

Lemma 13. For a subset A ⊂ Rp let

q̄A = (1/2) · (f3/2/f̄ ′) · inf
δ∈A

En

[
|x̃′iδ|2

]3/2
/En

[
|x̃′iδ|3

]

and assume that for all δ ∈ A

Ē
[
|rui| · |x̃′iδ|2

]
6 (f/[4f̄ ′])Ē[|x̃′iδ|2].

Then, we have

Ē[ρu(ỹi − x̃′i(ηu + δ))]− Ē[ρu(ỹi − x̃′iηu)] >
f‖x̃′iδ‖22,n

4
∧
{
q̄Af‖x̃′iδ‖2,n

}
− f̄‖rui‖2,n‖x̃′iδ‖2,n.

Proof of Lemma 13. Let T = support(ηu), Qu(η) := Ē[ρu(ỹi − x̃′iη)], Ju = (1/2)En [fix̃ix̃
′
i] and define

‖δ‖u = ‖J1/2
u δ‖. The proof proceeds in steps.

Step 1. (Minoration). Define the maximal radius over which the criterion function can be minorated

by a quadratic function

rA = sup
r

{
r : Qu(ηu + δ)−Qu(ηu) + f̄‖rui‖2,n‖x̃′iδ‖2,n >

1

2
‖δ‖2u, for all δ ∈ A, ‖δ‖u 6 r

}
.

Step 2 below shows that rA > q̄A. By construction of rA and the convexity of Qu(·) and ‖ · ‖u,

Qu(ηu + δ)−Qu(ηu) + f̄‖rui‖2,n‖x̃′iδ‖2,n >
>

‖δ‖2
u

2 ∧
{

‖δ‖u

rA
· inf δ̃∈A,‖δ̃‖u>rA

Qu(ηu + δ̃)−Qu(ηu) + f̄‖rui‖2,n‖x̃′iδ̃‖2,n
}

>
‖δ‖2

u

2 ∧
{

‖δ‖u

rA

r2A
4

}
>

‖δ‖2
u

2 ∧ {q̄A‖δ‖u} .

Step 2. (rA > q̄A) Let Fỹ|x̃ denote the conditional distribution of ỹ given x̃. From [18], for any two

scalars w and v we have that

ρu(w − v)− ρu(w) = −v(u− 1{w 6 0}) +
∫ v

0

(1{w 6 z} − 1{w 6 0})dz. (E.62)
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We will use (E.62) with w = ỹi − x̃′iηu and v = x̃′iδ. Using the law of iterated expectations and mean

value expansion, we obtain for t̃x̃i,t ∈ [0, t]

Qu(ηu + δ)−Qu(ηu) + f̄‖rui‖2,n‖x̃′iδ‖2,n >
Qu(ηu + δ)−Qu(ηu) + Ē [(u− 1{ỹi 6 x̃′iηu})x̃′iδ] =
= Ē

[∫ x̃′

iδ

0
Fỹi|x̃i

(x̃′iηu + t)− Fỹi|x̃i
(x̃′iηu)dt

]

= Ē
[∫ x̃′

iδ

0 tfỹi|x̃i
(x̃′iηu) +

t2

2 f
′
ỹi|x̃i

(x̃′iηu + t̃x̃,t)dt
]

> ‖δ‖2u − 1
6 f̄

′Ē[|x̃′iδ|3]− Ē
[∫ x̃′

iδ

0 t[fỹi|x̃i
(x̃′iηu)− fỹi|x̃i

(gui)]dt
]

> 1
2‖δ‖2u + 1

4fĒ[|x̃′iδ|2]− 1
6 f̄

′Ē[|x̃′iδ|3]− (f̄ ′/2)Ē
[
|x̃′iηu − gui| · |x̃′iδ|2

]
.

(E.63)

where the first inequality follows noting that Fỹi|x̃i
(x̃′iηu+rui) = u and |Fỹi|x̃i

(x̃′iηu+rui)−Fỹi|x̃i
(x̃′iηu)| 6

f̄ |rui|.

Moreover, by assumption we have

Ē
[
|x̃′iηu − gui| · |x̃′iδ|2

]
= Ē

[
|rui| · |x̃′iδ|2

]

6 (f/8)(2/f̄ ′)Ē[|x̃′iδ|2]
(E.64)

Note that for any δ such that ‖δ‖u 6 q̄A we have ‖δ‖u 6 q̄A 6 (1/2)·(f3/2/f̄ ′)·Ē
[
|x̃′iδ|2

]3/2
/Ē
[
|x̃′iδ|3

]
,

it follows that (1/6)f̄ ′Ē[|x̃′iδ|3] 6 (1/8)fĒ[|x̃′iδ|2]. Combining this with (E.64) we have

1

4
f Ē[|x̃′iδ|2]−

1

6
f̄ ′Ē[|x̃′iδ|3]− (f̄ ′/2)Ē

[
|x̃′iηu − gui| · |x̃′iδ|2

]
> 0. (E.65)

Combining (E.63) and (E.65) we have rA > q̄A. �

Lemma 14. Under Condition PQR we have Ē[R̂(ηu)] 6 f̄‖rui‖22,n/2, R̂(ηu) > 0 and

P (R̂(ηu) > 4max{f̄‖rui‖22,n, ‖rui‖2,n
√
log(8/γ)/n}) 6 γ.

Proof of Lemma 14. We have that R̂(ηu) > 0 by convexity of ρu. Let ǫui = ỹi − x̃′iηu − rui. By Knight’s

identity, R̂(ηu) = −En[rui
∫ 1

0
1{ǫui 6 −trui} − 1{ǫui 6 0} dt > 0.

Ē[R̂(ηu)] = En[rui
∫ 1

0 Fyi|x̃i
(x̃′iηu + (1− t)rui)− Fyi|x̃i

(x̃′iηu + rui) dt]

6 En[rui
∫ 1

0
f̄ truidt] 6 f̄‖rui‖22,n/2.

Therefore P (R̂(ηu) 6 2f̄‖rui‖22,n) > 1/2 by Markov’s inequality.

Define zui := −
∫ 1

0
1{ǫui 6 −trui}−1{ǫui 6 0} dt, so that R̂(ηu) = En[ruizui]. We have P (En[ruizui] 6

2f̄‖rui‖22,n) > 1/2 so that for t > 4f̄‖rui‖22,n we have by Lemma 2.3.7 in [37]

1

2
P (|En[ruizui]| > t) 6 2P (|En[ruizuiǫi]| > t/4)

Since the ruizuiǫi is a symmetric random variable and |zui| 6 1, by Theorem 2.15 in [14] we have

P (
√
n|En[ruizuiǫi]| > t̄

√
En[r2ui]) 6 P (

√
n|En[ruizuiǫi]| > t̄

√
En[r2uiz

2
ui]) 6 2 exp(−t̄2/2) 6 γ/8

for t̄ >
√
2 log(8/γ). Setting t = 4max{f̄‖rui‖22,n, ‖rui‖2,n

√
log(8/γ)/n} we have

P (En[ruizui] > t) 6 4P (En[ruizuiǫi] > t/4) 6 γ.
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�

Lemma 15. Under Condition PQR, for ‖η̂u‖0 6 k, N 6 ‖x̃′i(η̂u− ηu)‖2,n 6 N̄ , we have with probability

1− γ

En[ρu(ỹi−x̃′iη̂u)]−En[ρu(ỹi−x̃′iηu)] 6
‖x̃′i(η̂u − ηu)‖2,n√

n

{
4 + 4

√
(k + s) log(16p{1 + 3

√
n log(N̄/N)}/γ)

φmin(k + s)

}

+f̄‖x̃′i(η̂u − ηu)‖22,n + f̄‖rui‖2,n‖x̃′i(η̂u − ηu)‖2,n.

Proof of Lemma 15. It follows from

En[ρu(ỹi− x̃′iη̂u)−ρu(ỹi− x̃′iηu)] 6 |(En− Ē)[ρu(ỹi− x̃′iη̂u)ρu(ỹi− x̃′iηu)]|+Ē[ρu(ỹi− x̃′iη̂u)−ρu(ỹi− x̃′iηu)]

where the first term is bounded by Lemma 16 and the second term is bounded by (E.63) noting that

En

[∫ x̃′

iδ

0

Fỹi|x̃i
(x̃′iηu + t)− Fỹi|x̃i

(x̃′iηu)dt

]
6 f̄En

[∫ x̃′

iδ

0

tdt

]
6 f̄‖x̃′iδ‖22,n.

�

Lemma 16. Conditional on {x̃1, . . . , x̃n} we have with probability 1− γ, for vectors in the restricted set

sup

δ ∈ ∆c,

N 6 ‖x̃′
iδ‖2,n 6 N̄

∣∣∣∣Gn

(
ρu(ỹi − x̃′

i(ηu + δ))− ρu(ỹi − x̃′
iηu)

‖x̃′
iδ‖2,n

)∣∣∣∣ 6 4 +
4(1 + c)

κc

√
s log(16p{1 + 3

√
n log(N̄/N)}/γ)

Similarly, for sparse vectors

sup

1 6 ‖δ‖0 6 k,

N 6 ‖x̃′
iδ‖2,n 6 N̄

∣∣∣∣Gn

(
ρu(ỹi − x̃′

i(ηu + δ))− ρu(ỹi − x̃′
iηu)

‖x̃′
iδ‖2,n

)∣∣∣∣ 6 4 + 4

√
k log(16p{1 + 3

√
n log(N̄/N)}/γ)

φmin(k)

Similarly, for ℓ1-bounded vectors

sup

‖δ‖1 6 R1,

N 6 ‖x̃′
iδ‖2,n 6 N̄

∣∣∣∣Gn

(
ρu(ỹi − x̃′

i(ηu + δ))− ρu(ỹi − x̃′
iηu)

‖x̃′
iδ‖2,n

)∣∣∣∣ 6 4 + 4
R1

N

√
log(16p{1 + 3

√
n log(N̄/N)}/γ)

Proof of Lemma 16. Let wi(b) = ρu(ỹi− x̃′iηu+b)−ρu(ỹi− x̃′iηu) 6 |b|. Note that wi(b)−wi(a) 6 |b−a|.

For any δ ∈ Rp, since ρu is 1-Lipschitz, we have

var
(
Gn

(
wi(x̃

′

iδ)
‖x̃′

iδ‖2,n

))
6

En[{wi(x̃
′

iδ)}2]

‖x̃′
iδ‖2

2,n
6

En[|x̃′

iδ|2]
‖x̃′

iδ‖2
2,n
6 1.

Then, by Lemma 2.3.7 in [36] (Symmetrization for Probabilities) we have for any M > 1

P

(
sup
δ∈∆c

∣∣∣∣Gn
(
wi(x̃

′
iδ)

‖x̃′iδ‖2,n

)∣∣∣∣ >M
)
6

2

1−M−2
P

(
sup
δ∈∆c

∣∣∣∣G
o
n

(
wi(x̃

′
iδ)

‖x̃′iδ‖2,n

)∣∣∣∣ >M/4

)

where Gon is the symmetrized process.
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Consider Ft = {δ ∈ ∆c : ‖x̃′iδ‖2,n = t}. We will consider the families of Ft for t ∈ [N, N̄ ]. For any

δ ∈ Ft, t 6 t̃ we have
∣∣∣Gon

(
wi(x̃

′

iδ)
t − wi(x̃

′

iδ(t̃/t))

t̃

)∣∣∣ 6
∣∣∣Gon

(
wi(x̃

′

iδ)
t − wi(x̃

′

iδ(t̃/t))
t

)∣∣∣+
∣∣∣Gon

(
wi(x̃

′

iδ(t̃/t))
t − wi(x̃

′

iδ(t̃/t))

t̃

)∣∣∣
= 1

t

∣∣Gon
(
wi(x̃

′
iδ)− wi(x̃

′
iδ[t̃/t])

)∣∣+
∣∣Gon

(
wi(x̃

′
iδ(t̃/t))

)∣∣ ·
∣∣ 1
t − 1

t̃

∣∣
6

√
nEn

(
|x̃′

iδ|
t

)
|t−t̃|
t +

√
nEn (|x̃′iδ|) t̃t

∣∣ 1
t − 1

t̃

∣∣

= 2
√
nEn

(
|x̃′

iδ|
t

) ∣∣∣ t−t̃t
∣∣∣ 6 2

√
n
∣∣∣ t−t̃t

∣∣∣ .

Let T be a ε-net {N =: t1, t2, . . . , tK := N̄} of [N, N̄ ] such that |tk − tk+1|/tk 6 1/[2
√
n]. Note that we

can achieve that with |T | 6 3
√
n log(N̄/N).

Therefore we have

sup
δ∈∆c

∣∣∣∣G
o
n

(
wi(x̃

′
iδ)

‖x̃′iδ‖2,n

)∣∣∣∣ 6 1 + sup
t∈T

sup
δ∈∆c,‖x̃′

iδ‖2,n=t

∣∣∣∣G
o
n

(
wi(x̃

′
iδ)

t

)∣∣∣∣ =: 1 +Ao.

P (Ao > K) 6 minψ>0 exp(−ψK)E[exp(ψAo)]

6 8p|T |minψ>0 exp(−ψK) exp
(
8ψ2 s(1+c)2

κ2
c

)

6 8p|T | exp(−K2/[16 s(1+c)2

κ2
c

])

where we set ψ = K/[16 s(1+c)2

κ2
c

] and bounded

E [exp (ψAo)] 6(1) 2|T | sup
t∈T

E

[
exp

(
ψ sup

δ∈∆c,‖x̃′
iδ‖2,n=t

G
o
n

(
wi(x̃

′
iδ)

t

))]

6(2) 2|T | sup
t∈T

E

[
exp

(
2ψ sup

δ∈∆c,‖x̃′
iδ‖2,n=t

G
o
n

(
x̃′
iδ

t

))]

6(3) 2|T | sup
t∈T

E

[
exp

(
2ψ

[
sup

δ∈∆c,‖x̃′
i
δ‖2,n=t

2
‖δ‖1
t

]
max
j6p

|Go
n(x̃ij)|

)]

6(4) 2|T |E
[
exp

(
4ψ

√
s(1 + c)

κc

max
j6p

|Go
n(x̃ij)|

)]

6(5) 4p|T |max
j6p

E

[
exp

(
4ψ

√
s(1 + c)

κc

G
o
n(x̃ij)

)]

6(6) 8p|T | exp
(
8ψ2 s(1 + c)2

κ2
c

)

where (1) follows by exp(maxi∈I |zi|) 6 2|I|maxi∈I exp(zi), (2) by contraction principle (Theorem 4.12

[22]), (3) |Gon(x̃′iδ)| 6 ‖δ‖1‖Gon(x̃i)‖∞, (4)
√
s(1 + c)‖x̃′iδ‖2,n/‖δ‖1 > κc, (6) En[x

2
ij ] = 1 and exp(z) +

exp(−z) 6 2 exp(z2/2).

The second result follows similarly by noting that

sup
16‖δ‖06k,‖x̃′

iδ‖2,n=t

‖δ‖1
t
6 sup

16‖δ‖06k,‖x̃′
iδ‖2,n=t

√
k‖x̃′iδ‖2,n

t
√
φmin(k)

=

√
k√

φmin(k)
.

The third result follows similarly by noting that for ant t ∈ [N, N̄ ]

sup
‖δ‖16R1,‖x̃′

iδ‖2,n=t

‖δ‖1
t
6
R1

N
.

�
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Appendix F. Results for Section A.2

Lemma 17 (Choice of λ). Suppose Condition WL holds, let c′ > c > 1, γ = 1/(n ∨ p), and λ =

2c′
√
nΦ−1(1− γ/2p). Then for n > n0(δn, c

′, c) large enough

P (λ/n > 2c‖Γ̂−1
τ0 En[fixivi]‖∞) > 1− γ{1 + o(1)}+ 4∆n.

Proof of Lemma 17. Since Γ̂τ0jj =
√
En[f̂2

i x
2
ijv

2
i ] and Γτ0jj =

√
En[f2

i x
2
ijv

2
i ], with probability at least

1−∆n we have

max
j6p

|Γ̂τ0jj − Γτ0jj | 6 max
j6p

√
En[(f̂i − fi)2x2ijv

2
i ] 6 δ

1/2
n

by Condition WL(iii). Further, Condition WL implies that Γτ0jj is bounded away from zero and from

above uniformly in j = 1, . . . , p and n. Thus we have ‖Γ̂−1
τ0 Γτ0‖∞ →P 1, so that ‖Γ̂−1

τ0 Γτ0‖∞ 6
√
c′/c

with probability 1−∆n for n > n0(δn, c
′, c,Γτ0). By the triangle inequality

‖Γ̂−1
τ0 En[fixivi]‖∞ 6 ‖Γ̂−1

τ0 Γτ0‖∞‖Γ−1
τ0 En[fixivi]‖∞ (F.66)

Using Lemma 12, based on self-normalized moderate deviation theory, we have

P


max

j6p

∣∣∣∣∣∣

√
nEn[fixijvi]√
En[f2

i x
2
ijv

2
i ]

∣∣∣∣∣∣
> Φ−1(1− γ/2p)


 6 2pΦ(Φ−1(1− γ/2p))(1 + o(1)) 6 γ{1 + o(1)}

by Condition WL. �

Proof of Lemma 3. Let δ̂ = θ̂τ − θτ . By definition of θ̂τ we have

En[f̂
2
i (x

′
iδ̂)

2]− 2En[f̂
2
i (di − x′iθτ )xi]

′δ̂ = En[f̂
2
i (di − x′iθ̂τ )

2]− En[f̂
2
i (di − x′iθτ )

2]

6 λ
n‖Γ̂τθτ‖1 − λ

n‖Γ̂τ θ̂τ‖1 6 λ
n‖Γ̂τ δ̂Tmτ ‖1 − λ

n‖Γ̂τ δ̂T c
mτ

‖1
6 λ

nu‖Γ̂τ0δ̂Tmτ ‖1 − λ
nℓ‖Γ̂τ0δ̂T c

mτ
‖1

(F.67)

Therefore, using that c2f = En[(f̂
2
i − f2

i )
2v2i /f

2
i ] and c

2
r = En[f̂

2r2mτi], we have

En[f̂
2
i (x

′
iδ̂)

2] 6 2En[(f̂
2
i − f2

i )vixi/fi]
′δ̂ + 2En[f̂

2
i rmτixi]

′δ̂ + 2(Γ̂−1
0 En[fivixi])

′(Γ̂τ0δ̂) +
λ
n
u‖Γ̂τ0δ̂Tmτ ‖1 − λ

n
ℓ‖Γ̂τ0δ̂Tc

mτ
‖1

6 2{cf + cr}{En[f̂
2
i (x

′
iδ̂)

2]}1/2 + 2‖Γ̂−1
0 En[f

2
i (di − x′

iθτ )xi]‖∞‖Γ̂τ0δ̂‖1 + λ
n
u‖Γ̂τ0δ̂Tmτ ‖1 − λ

n
ℓ‖Γ̂τ0δ̂Tc

mτ
‖1

6 2{cf + cr}{En[f̂
2
i (x

′
iδ̂)

2]}1/2 + λ
cn

‖Γ̂τ0δ̂‖1 + λ
n
u‖Γ̂τ0δ̂Tmτ ‖1 − λ

n
ℓ‖Γ̂τ0δ̂Tc

mτ
‖1

6 2{cf + cr}{En[f̂
2
i (x

′
iδ̂)

2]}1/2 + λ
n

(
u+ 1

c

)
‖Γ̂τ0δ̂Tmτ ‖1 − λ

n

(
ℓ− 1

c

)
‖Γ̂τ0δ̂Tc

mτ
‖1

(F.68)

Let c̃ = cu+1
cℓ−1 ‖Γ̂τ0‖∞‖Γ̂−1

τ0 ‖∞. If δ̂ 6∈ ∆c̃ we have
(
u+ 1

c

)
‖Γ̂τ0δ̂Tmτ ‖1 6

(
ℓ− 1

c

)
‖Γ̂τ0δ̂T c

mτ
‖1 so that

{En[f̂2
i (x

′
iδ̂)

2]}1/2 6 2{cf + cr}.

Otherwise assume δ̂ ∈ ∆c̃. In this case (F.68) yields

En[f̂
2
i (x

′
iδ̂)

2] 6 2{cf + cr}{En[f̂
2
i (x

′
iδ̂)

2]}1/2 + λ
n

(
u+ 1

c

)
‖Γ̂τ0δ̂Tmτ ‖1 − λ

n

(
ℓ− 1

c

)
‖Γ̂τ0δ̂Tc

mτ
‖1

6 2{cf + cr}{En[f̂
2
i (x

′
iδ̂)

2]}1/2 + λ
n

(
u+ 1

c

)√
s{En[f̂

2
i (x

′
iδ̂)

2]}1/2/κ̂c̃

which implies

{En[f̂2
i (x

′
iδ̂)

2]}1/2 6 2{cf + cr}+
λ
√
s

nκ̂c̃

(
u+

1

c

)
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To establish the ℓ1-bound, first assume that δ̂ ∈ ∆2c̃. In that case

‖δ̂‖1 6 (1 + 2c̃)‖δ̂Tmτ ‖1 6
√
s{En[f̂2

i (x
′
iδ̂)

2]}1/2/κ̂2c̃ 6 2

√
s{cf + cr}
κ̂2c̃

+
λs

nκ̂c̃κ̂2c̃

(
u+

1

c

)
.

Otherwise note that δ̂ 6∈ ∆2c̃ implies that
(
u+ 1

c

)
‖Γ̂τ0δ̂Tmτ ‖1 6 1

2 ·
(
ℓ− 1

c

)
‖Γ̂τ0δ̂T c

mτ
‖1 so that (F.68)

gives

1

2

λ

n
·
(
ℓ − 1

c

)
‖Γ̂τ0δ̂T c

mτ
‖1 6 {En[f̂2

i (x
′
iδ̂)

2]}1/2
(
2{ĉf + ĉr} − {En[f̂2

i (x
′
iδ̂)

2]}1/2
)
6 {ĉf + ĉr}2.

Therefore

‖δ̂‖1 6
(
1 +

1

2c̃

)
‖δ̂T c

mτ
‖1 6

(
1 +

1

2c̃

)
‖Γ̂−1

τ0 ‖∞‖Γ̂τ0δ̂T c
mτ

‖1 6
(
1 +

1

2c̃

)
2c‖Γ̂−1

τ0 ‖∞
ℓc− 1

n

λ
{ĉf + ĉr}2

�

Proof of Lemma 4. Note that ‖f̂‖2∞ and ‖Γ̂−1
0 ‖∞ are uniformly bounded with probability going to one.

Under the assumption on the design, for M defined in Lemma 21 we have that minm∈M φmax(m ∧ n) is
uniformly bounded. Thus by Lemma 21

ŝm .P

[
n{ĉf + ĉr}

λ
+
√
s

]2
.

The bound then follows from Lemma 18. �

F.1. Technical Results for Post-Lasso with Estimated Weights.

Lemma 18 (Performance of the Post-Lasso). Under Conditions WL, let T̂mτ denote the support selected

by θ̂τ , and θ̃τ be the Post-Lasso estimator based on T̂mτ . Then we have for ŝmτ = |T̂mτ |

‖f̂i(mτi − x′iθ̃τ )‖2,n .P

√
φmax(ŝmτ )

φmin(ŝmτ )

cf

mini6n f̂i
+

√
ŝmτ

√
log p√

n φmin(ŝmτ )mini6n f̂i
+ min

support(θ)⊆T̂mτ

‖f̂i(mτi − x′iθ)‖2,n

Moreover, if in addition λ satisfies (A.39), and ℓΓ̂τ0 6 Γ̂τ 6 uΓ̂τ0 with u > 1 > ℓ > 1/c in the first stage

for Lasso, then we have with high probability

min
support(θ)⊆T̂mτ

‖f̂i(mτi − x′iθ)‖2,n 6 3{cf + cr}+
(
u+

1

c

)
λ
√
s

nκc̃mini6n f̂i
+ 3f̄C

√
s/n.

Proof of Lemma 18. Let F = diag(f), F̂ = diag(f̂), X = [x1; . . . ;xn]
′ and for a set of indices S ⊂

{1, . . . , p} we define PS = FX [S](FX [S]′FX [S])−1FX [S]′ and P̂S = F̂X [S](X [S]′F̂ ′F̂X [S])−1F̂X [S]′

denote the projection matrix on the columns associated with the indices in S. Since fidi = fimτi + vi

we have that f̂idi = f̂imτi + vif̂i/fi and we have

F̂mτ − F̂Xθ̃τ = (I − P̂T̂mτ
)F̂mτ − P̂T̂mτ

F̂F−1v

where I is the identity operator. Therefore

‖F̂mτ − F̂Xθ̃τ‖ 6 ‖(I − P̂T̂mτ
)F̂mτ‖+ ‖P̂T̂mτ

F̂F−1v‖. (F.69)



10 ROBUST INFERENCE IN HIGH-DIMENSIONAL SPARSE QUANTILE REGRESSION MODELS

Since ‖F̂X [T̂mτ ]/
√
n(X [T̂mτ ]

′F̂ ′F̂X [T̂mτ ]/n)
−1‖ 6 ‖F̂−1‖∞

√
1/φmin(ŝmτ ), the last term in (F.69) satis-

fies

‖P̂T̂mτ
F̂F−1v‖ 6 ‖F̂−1‖∞

√
1/φmin(ŝmτ ) ‖X [T̂mτ ]

′F̂ 2F−1v/
√
n‖

6 ‖F̂−1‖∞
√
1/φmin(ŝmτ )

{
‖X [T̂mτ ]

′{F̂ 2 − F 2}F−1v/
√
n‖+ ‖X [T̂mτ ]

′Fv/
√
n‖
}

6 ‖F̂−1‖∞
√
1/φmin(ŝmτ )

{
‖X [T̂mτ ]

′{F̂ 2 − F 2}F−1v/
√
n‖+

√
ŝmτ‖X ′Fv/

√
n‖∞

}
.

Condition WL(iii) implies that

‖X [T̂mτ ]
′{F̂ 2 − F 2}F−1v/

√
n‖ 6 sup

‖α‖06ŝmτ ,‖α‖61

|α′X [T̂mτ ]
′{F̂ 2 − F 2}F−1v/

√
n| 6

√
n
√
φmax(ŝmτ )ĉf .

Under Condition WL(iv), by Lemma 12 we have

‖X ′Fv/
√
n‖∞ .P

√
log p max

16j6p

√
En[f2

i x
2
ijv

2
i ].

Moreover, ConditionWL(iv) also implies max16j6p
√
En[f2

i x
2
ijv

2
i ] .P 1 since max16j6p |(En−Ē)[f2

i x
2
ijv

2
i ]| 6

δn with probability 1−∆n, and max16j6p Ē[f
2
i x

2
ijv

2
i ] 6 f̄

2c̄2Ē[x2ij ] . 1.

The last statement follows from noting that the Lasso solution provides an upper bound to the ap-

proximation of the best model based on T̂mτ , and the application of Lemma 3. �

Lemma 19 (Empirical pre-sparsity for Lasso). Let T̂mτ denote the support selected by the Lasso esti-

mator, ŝmτ = |T̂mτ |, assume λ/n > c‖En[Γ̂−1
τ0 fixivi]‖∞, and ℓΓ̂τ0 6 Γ̂τ 6 uΓ̂τ0 with u > 1 > ℓ > 1/c.

Then, for c0 = (uc+ 1)/(ℓc− 1) and c̃ = (uc+ 1)/(ℓc− 1)‖Γ̂τ0‖∞‖Γ̂−1
τ0 ‖∞ we have

√
ŝmτ 6 2

√
φmax(ŝmτ )(1 + 3‖f̂‖∞)‖Γ̂−1

0 ‖∞c0
[
n{ĉf + ĉr}

λ
+

√
s‖Γ̂τ0‖∞

κc̃mini6n f̂i

]
.

Proof of Lemma 19. Let F̂ = diag(f̂), Rmτ = (rmτ1, . . . , rmτn)
′, and X = [x1; . . . ;xn]

′. We have from

the optimality conditions that the Lasso estimator θ̂τ satisfies

2En[Γ̂
−1
j f̂2

i xi(di − x′iθ̂τ )] = sign(θ̂τj)λ/n for each j ∈ T̂mτ .

Therefore, noting that ‖Γ̂−1Γ̂0‖∞ 6 1/ℓ, we have
√
ŝmτλ = 2‖(Γ̂−1X ′F̂ 2(D −Xθ̂τ ))T̂mτ

‖

6 2‖(Γ̂−1X ′FV )T̂mτ
‖+ 2‖(Γ̂−1X ′(F̂ 2 − F 2)F−1V )T̂mτ

‖+ 2‖(Γ̂−1X ′F̂ 2Rmτ )T̂mτ
‖+ 2‖(Γ̂−1X ′F̂ 2X(θτ − θ̂τ ))T̂mτ

‖

6
√
ŝmτ ‖Γ̂−1Γ̂0‖∞‖Γ̂−1

τ0X
′F ′V ‖∞ + 2n

√
φmax(ŝmτ )‖Γ̂−1‖∞{cf + ‖F̂‖∞cr}+

2n
√
φmax(ŝmτ )‖F̂‖∞‖Γ̂−1‖∞‖f̂ix′

i(θ̂τ − θτ )‖2,n,

6
√
ŝmτ (1/ℓ) n‖Γ̂−1

τ0X
′FV ‖∞ + 2n

√
φmax(ŝmτ )

‖Γ̂−1
0 ‖∞
ℓ

(cf + ‖F̂‖∞cr + ‖F̂‖∞‖f̂ix′
i(θ̂τ − θτ )‖2,n),

where we used that

‖(X ′F̂ 2(θτ − θ̂τ ))T̂mτ
‖

6 sup‖δ‖06ŝmτ ,‖δ‖61 |δ′X ′F̂ 2X(θτ − θ̂τ )| 6 sup‖δ‖06ŝmτ ,‖δ‖61 ‖δ′X ′F̂ ′‖‖F̂X(θτ − θ̂τ )‖
6 sup‖δ‖06ŝmτ ,‖δ‖61{δ′X ′F̂ 2Xδ}1/2‖F̂X(θτ − θ̂τ )‖ 6 n

√
φmax(ŝmτ )‖f̂i‖∞‖f̂ix′i(θτ − θ̂τ )‖2,n,

‖(X ′(F̂ 2 − F 2)F−1V )T̂mτ
‖ 6 sup‖δ‖06ŝmτ ,‖δ‖61 |δ′X ′(F̂ 2 − F 2)F−1V |

6 sup‖δ‖06ŝmτ ,‖δ‖61 ‖Xδ‖ ‖(F̂ 2 − F 2)F−1V ‖ 6 n
√
φmax(ŝmτ )ĉf
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Since λ/c > ‖Γ̂−1
τ0X

′FV ‖∞, and by Lemma 3, ‖f̂ix′i(θ̂τ − θτ )‖2,n 6 2{ĉf + ĉr}+
(
u+ 1

c

) λ
√
s‖Γ̂τ0‖∞

nκc̃ mini6n f̂i
we

have

√
ŝmτ 6

2
√
φmax(ŝmτ )

‖Γ̂−1
0 ‖∞

ℓ

[
nĉf
λ (1 + 2‖F̂‖∞) + nĉr

λ 3‖F̂‖∞ + ‖F̂‖∞
(
u+ 1

c

) √
s‖Γ̂τ0‖∞

κc̃ mini6n f̂i

]

(
1− 1

cℓ

) .

The result follows by noting that (u+ [1/c])/(1− 1/[ℓc]) = c0ℓ by definition of c0. �

Lemma 20 (Sub-linearity of maximal sparse eigenvalues). Let M be a semi-definite positive matrix. For

any integer k > 0 and constant ℓ > 1 we have φmax(⌈ℓk⌉)(M) 6 ⌈ℓ⌉φmax(k)(M).

Lemma 21 (Sparsity bound for Estimated Lasso under data-driven penalty). Consider the Lasso esti-

mator θ̂τ , let ŝmτ = |T̂mτ |, and assume that λ/n > c‖En[Γ̂−1
τ0 fixivi]‖∞. Consider the set

M =



m ∈ N : m > 8(1 + 3‖f̂‖∞)2‖Γ̂−1

0 ‖2∞c20

[
n{cf + cr}

λ
+

√
s‖Γ̂τ0‖∞

κc̃ mini6n f̂i

]2
 .

Then,

ŝmτ 6 4

(
min
m∈M

φmax(m ∧ n)
)
(1 + 3‖f̂‖∞)2‖Γ̂−1

0 ‖2∞c20

[
n{cf + cr}

λ
+

√
s‖Γ̂τ0‖∞

κc̃mini6n f̂i

]2
.

Proof of Lemma 21. Let Ln = 2(1+3‖f̂‖∞)‖Γ̂−1
0 ‖∞c0

[
n{cf+cr}

λ +
√
s‖Γ̂τ0‖∞

κc̃ mini6n f̂i

]
. Rewriting the conclusion

in Lemma 19 we have

ŝmτ 6 φmax(ŝmτ )L
2
n. (F.70)

Note that ŝmτ 6 n by optimality conditions. Consider any M ∈ M, and suppose ŝmτ > M . Therefore

by the sublinearity of the maximum sparse eigenvalue (see Lemma 20)

ŝmτ 6

⌈
ŝmτ
M

⌉
φmax(M)L2

n.

Thus, since ⌈k⌉ 6 2k for any k > 1 we have

M 6 2φmax(M)L2
n

which violates the condition that M ∈ M. Therefore, we have ŝmτ 6M .

In turn, applying (F.70) once more with ŝmτ 6 (M ∧ n) we obtain

ŝmτ 6 φmax(M ∧ n)L2
n.

The result follows by minimizing the bound over M ∈ M. �



12 ROBUST INFERENCE IN HIGH-DIMENSIONAL SPARSE QUANTILE REGRESSION MODELS

Appendix G. Relevant Approximations Rates for f̂

Let Q̂(u | x̃) = x̃′η̂u for u = τ−h, τ+h. Using a Taylor expansion for the conditional quantile function

Q(· | x̃), assuming that sup|τ̃−τ |6h |Q′′′(τ̃ | x̃)| 6 C we have

|Q̂′(τ | x̃)−Q′(τ | x̃)| 6 |Q(τ + h | x̃)− x̃′η̂τ+h|+ |Q(τ − h | x̃)− x̃′η̂τ−h|
h

+ Ch2.

In turn, to estimate fi, the conditional density at Q(τ | x̃), we set f̂i = 1/Q̂′(τ | x̃i) which leads to

|fi − f̂i| =
|Q̂′(τ | x̃i)−Q′(τ | x̃i)|
Q̂′(τ | x̃i)Q′(τ | x̃i)

= (f̂ifi) · |Q̂′(τ | x̃i)−Q′(τ | x̃i)|. (G.71)

Lemma 22 (Bound Rates for Density Estimator). Let x̃ = (d, x), suppose that c 6 fi 6 C, supǫ f
′
ǫi|x̃i

(ǫ |
x̃i) 6 f̄ ′ 6 C, i = 1, . . . , n, uniformly in n. Assume further that with probability 1 − ∆n we have for

u = τ − h, τ + h that

‖x̃′i(η̂u−ηu)+rui‖2,n 6
C

κc

√
s log(p ∨ n)

n
, ‖η̂u−ηu‖1 6

C

κ2
c

√
s2 log(p ∨ n)

n
and |η̂u1−ηu1| 6

C

κc

√
s log(p ∨ n)

n
.

Then if sup
|τ̃−τ |6h

|Q′′′(τ̃ | x̃)| 6 C, max
i6n

‖xi‖∞
√
s2 log(p ∨ n) + maxi6n |di|

√
s log(p ∨ n) 6 δnhκ

2
c

√
n and

max
u=τ+h,τ−h

‖rui‖∞ 6 hδn we have

‖fi − f̂i‖2,n .P
1

hκc

√
s log(n ∨ p)

n
+ h2, and

max
i6n

|fi − f̂i| .P max
u=τ+h,τ−h

‖rui‖∞
h

+
maxi6n ‖xi‖∞

hκ2
c

√
s2 log(n ∨ p)

n
+

maxi6n |di|∞
hκc

√
s log(n ∨ p)

n
+ h2.

Proof. Letting (δuα; δ
u
β) = ηu − η̂u and x̃i = (di, x

′
i)

′ we have that

|f̂i − fi| 6 |fif̂i x̃
′

i(ητ+h−η̂τ+h)+rgτ+h,i−x̃′

i(ητ−h−η̂τ−h)−rgτ−h,i

2h |+ Ch2

= h−1(fif̂i)|x′iδτ+hβ + diδ
τ+h
α + rgτ+h,i − x′iδ

τ−h
β − diδ

τ−h
α − rgτ−h,i}|+ Ch2

6 h−1(fif̂i)
{
Kx‖ητ+h‖1 +Kx‖ητ−h‖1 + |di| · |δτ+hα |+ |di| · |δτ−hα |+ |rgτ+h,i − rgτ−h,i|

}
+ Ch2.

The result follows because for sequences dn → 0, cn → 0 we have |f̂i − fi| 6 |f̂ifi|cn + dn implies that

f̂i(1 − ficn) 6 fi + dn. Since fi is bounded, ficn → 0 which implies that f̂i is bounded. Therefore,

|f̂i − fi| . cn + dn. We take dn = Ch2 → 0 and

cn = h−1
{
Kx‖ητ+h‖1 +Kx‖ητ−h‖1 + |di| · |δτ+hα |+ |di| · |δτ−hα |+ |rgτ+h,i − rgτ−h,i|

}
→P 0

by the growth condition.

Moreover, we have

‖(f̂i − fi)/fi‖2,n . ‖f̂ix̃′
i(η̂τ+h − ητ+h) + f̂irgτ+h,i‖2,n + ‖f̂ix̃′

i(η̂τ−h − ητ−h) + f̂irgτ+h,i‖2,n
h

+ Ch2.

By the previous result f̂i is uniformly bounded from above with high probability. Thus, the result follows

by the assumed prediction norm rate ‖x̃′i(η̂u − ηu) + rui‖2,n .P (1/κc)
√
s log(p ∨ n)/n.

�
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Appendix H. Results for Section A.3

Let (d, z) ∈ D×Z. In this section for h̃ = (g̃, ι̃), where g̃ is a function of variable z, and the instrument

ι̃ is a function on (d, x) 7→ ι̃(d, x) we write

ψα̃,h̃(yi, di, zi) = ψα̃,g̃,ι̃(yi, di, zi) = (τ − 1{yi 6 g̃(zi) + diα})ι̃(di, xi) = (τ − 1{yi 6 g̃i + diα})ι̃i.

For a fixed α̃ ∈ R, g̃ : Z → R, and ι̃ : D ×Z → R we define

Γ(α̃, h̃) := Ē[ψα̃,h̃(yi, di, zi)]

We use the following notation. Let ι̃i = ι̃(di, zi) and g̃i = g̃(zi), h0 = (gτ , z0) and ĥ = (ĝ, ẑ). The partial

derivative of Γ with respect to α at (α̃, h̃) is denoted by Γα(α̃, h̃) and the directional derivative with

respect to [ĥ− h0] at (α̃, h̃) is denote as

Γh(α̃, h̃)[ĥ− h0] = lim
t→0

Γ(α̃, h̃+ t[ĥ− h0])− Γ(α̃, h̃)

t
.

Proof of Lemma 5. Steps 1-4 we use IQR(i-iii). In Steps 5 and 6 we will also use IQR(iv).

Step 1. (Normality result) We have

(0)︷ ︸︸ ︷
En[ψα̌τ ,ĥ

(yi, di, zi)] = En[ψατ ,h0(yi, di, zi)] + En[ψα̌τ ,ĥ
(yi, di, zi)− ψατ ,h0(yi, di, zi)]

= En[ψατ ,h0(yi, di, zi)]︸ ︷︷ ︸
(I)

+Γ(α̌τ , ĥ)︸ ︷︷ ︸
(II)

+n−1/2
Gn(ψα̌τ ,ĥ

− ψα̌τ ,h0)︸ ︷︷ ︸
(III)

+n−1/2
Gn(ψα̌τ ,h0 − ψατ ,h0)︸ ︷︷ ︸

(IV )

Condition IQR(iii), relation (A.44), yields that with probability at least 1−∆n we have |(0)| . δnn−1/2.

Step 2 below establishes that |(II) + Ē[fidiι0i](α̌τ − ατ )| .P δnn−1/2 + δn|α̌τ − ατ |.

Condition IQR(iii), relation (A.43), shows that with probability at least 1−∆n we have |(III)| . δnn−1/2.

We now proceed to bound term (IV ). By Condition IQR(iii) we have with probability at least 1−∆n

that |α̌τ − ατ | 6 δn. Observe that

(ψα,h0 − ψατ ,h0)(yi, di, zi) = (1{yi 6 gτi + diατ} − 1{yi 6 gτi + diα})ι0i
= (1{ǫi 6 0} − 1{ǫi 6 di(α − ατ )})ι0i,

so that |(ψα,h0 − ψατ ,h0)(yi, di, zi)| 6 1{|ǫi| 6 δn|di|}|ι0i| whenever |α − ατ | 6 δn. Since the class of

functions {(y, d, z) 7→ (ψα,h0 − ψατ ,h0)(y, d, z) : |α − ατ | 6 δn} is a VC subgraph class with VC index

bounded by some constant independent of n, using (a version of) Theorem 2.14.1 in [36], we have

sup
|α−ατ |6δn

|Gn(ψα,h0 − ψατ ,h0)| .P (Ē[1{|ǫi| 6 δn|di|}ι20i])1/2 .P δ1/2n .

This implies that |IV | .P δ1/2n n−1/2.

Combining the bounds for (0), (II)-(IV) above we have

Ē[fidiι0i](α̌τ − ατ ) = En[ψατ ,h0(yi, di, zi)] + OP (δ
1/2
n n−1/2) +OP (δn)|α̌τ − ατ |.
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Since Ē[ψατ ,h0(yi, di, zi)] = 0 and Ē[ι20i] 6 C, by the Lyapunov CLT we have

(I) = En[ψατ ,h0(yi, di, zi)] N(0, Ē[τ(1 − τ)ι20i])

and the first assertion follows by noting that Ē[fidiι0i] > c > 0.

Step 2. (Bounding Γ(α, ĥ) for |α− ατ | 6 δn which covers (II)) We have

Γ(α, ĥ) = Γ(α, h0) + Γ(α, ĥ)− Γ(α, h0)

= Γ(α, h0) + {Γ(α, ĥ)− Γ(α, h0)− Γh(α, h0)[ĥ− h0]}+ Γh(α, h0)[ĥ− h0].
(H.72)

Because Γ(ατ , h0) = 0, by Taylor expansion there is some α̃ ∈ [ατ , α] such that

Γ(α, h0) = Γ(ατ , h0) + Γα(α̃, h0)(α− ατ ) = {Γα(ατ , h0) + ηn} (α− ατ )

where |ηn| 6 δnEn[|d2i ι0i|] .P δnC by relation (H.79) in Step 4 and moment conditions in IQR(i).

Combining the argument above with relations (H.74), (H.75) and (H.77) in Step 3 below we have

Γ(α, ĥ) = Γh(ατ , h0)[ĥ− h0] + Γ(ατ , h0) + {Γα(ατ , h0) +OP (δnĒ[|d2i ι0i|])}(α− ατ ) +OP (δnn
−1/2)

= Γα(ατ , h0)(α − ατ ) +OP (δn|α− ατ |Ē[|d2i z0i|] + δnn
−1/2)

(H.73)

Step 3. (Relations for Γh) The directional derivative Γh with respect the direction ĥ − h0 at a point

h̃ = (g̃, z̃) is given by

Γh(α, h̃)[ĥ− h0] = −En[fǫi|di,zi(di(α− ατ ) + g̃i − gτi)ι̃0i{ĝi − gτi}] + Ē[(τ − 1{yi 6 g̃i + diα}){ι̂i − ι0i}]

Note that when Γh is evaluated at (ατ , h0) we have with probability 1−∆n

|Γh(ατ , h0)[ĥ− h0]| = | − En[fiι0i{ĝi − gτi}]| 6 δnn−1/2 (H.74)

by Condition IQR(iii) (A.42) and by P (yi 6 gτi + diατ | di, zi) = τ . The expression for Γh also leads to

the following bound

∣∣∣Γh(α, h0)[ĥ− h0] − Γh(ατ , h0)[ĥ− h0]
∣∣∣ =

= En[{fǫi|di,zi(0)− fǫi|di,zi(di(α− ατ ))}ι0i{ĝi − gτi}] + En[{Fi(0)− Fi(di(α− ατ ))}{ι̂i − ι0i}]
6 En[|α− ατ | f̄ ′|diι0i| |ĝi − gτi|] + En[f̄ |(α− ατ )di| |̂ιi − ι0i|]
6 |α− ατ | · ‖ĝi − gτi‖2,n{f̄ ′En[ι20id

2
i ]}1/2 + |α− ατ | · {En[(ι̂i − ι0i)

2]}1/2{En[d2i ]}1/2
.P |α− ατ |δn

(H.75)

The second directional derivative Γhh at h̃ = (g̃, ι̃) with respect to the direction ĥ−h0 can be bounded

by

∣∣∣Γhh(α, h̃)[ĥ− h0, ĥ− h0]
∣∣∣ =

∣∣∣−En[f
′
ǫi|di,zi(di(α− ατ ) + g̃i − gτi)ι̃i{ĝi − gτi}2]

+2En[fǫi|di,zi(di(α− ατ ) + g̃i − gτi){ĝi − gτi}{ι̂i − ι0i}]
∣∣

6 f̄ ′max
i6n

|ι̃i|‖ĝi − gτi‖22,n + 2f̄‖ĝi − gτi‖2,n‖ι̂i − ι0i‖2,n.
(H.76)
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In turn, since h̃ ∈ [h0, ĥ], |ι̃(di, zi)| 6 |ι0(di, zi)|+ |̂ι(di, zi)− ι0(di, zi)|, we have that

∣∣∣Γ(α, ĥ)− Γ(α, h0) − Γh(α, h0)
[
ĥ− h0

]∣∣∣ 6 suph̃∈[h0,ĥ]

∣∣∣Γhh(α, h̃)
[
ĥ− h0, ĥ− h0

]∣∣∣

6 f̄ ′
(
max
i6n

{|ι0i|+ |̂ιi − ι0i|}
)
‖ĝi − gτi‖22,n+

+2f̄‖ĝi − gτi‖2,n‖ι̂i − ι0i‖2,n
.P δnn

−1/2

(H.77)

where the last relation is assumed in Condition IQR(iii).

Step 4. (Relations for Γα) By definition of Γ, its derivative with respect to α at (α, h̃) is

Γα(α, h̃) = −En[fǫi|di,zi(di(α− ατ ) + g̃i − gτi)di ι̃i].

Therefore, when the function above is evaluated at α = ατ and h̃ = h0, since for fǫi|di,zi(0) = fi we have

Γα(ατ , h0) = −En[fidiι0i] = −Ē[fidiι0i]− (En − Ē)[fidiι0i] = −Ē[fidiι0i] +OP (n
−1/2). (H.78)

Moreover, Γα also satisfies

|Γα(α, h0)− Γα(ατ , h0)| =
∣∣En[fǫi|di,zi(di(α− ατ ))ι0idi]− En[fǫi|di,zi(0)ι0idi]

∣∣
6 |α− ατ |f̄ ′En[|d2i ι0i|]

(H.79)

Step 5. (Estimation of Variance) First note that

|En[f̂idi ι̂i]− Ē[fidiι0i]|
= |En[f̂idi ι̂i]− En[fidiι0i]|+ |En[fidiι0i]− Ē[fidiι0i]|
6 |En[(f̂i − fi)di ι̂i]|+ |En[fidi(ι̂i − ι0i)]|+ |En[fidiι0i]− Ē[fidiι0i]|
6 |En[(f̂i − fi)di(ι̂i − ι0i)]|+ |En[(f̂i − fi)diι0i]|
+‖fidi‖2,n‖ι̂i − ι0i‖2,n + | En[fidiι0i]− Ē[fidiι0i]|
.P ‖(f̂i − fi)di‖2,n‖ι̂i − ι0i‖2,n + ‖f̂i − fi‖2,n‖diι0i‖2,n
+‖fidi‖2,n‖ι̂i − ι0i‖2,n + |En[fidiι0i]− Ē[fidiι0i]|
.P δn

(H.80)

because fi, f̂i 6 C, Ē[d
4
i ] 6 C, Ē[ι

4
0i] 6 C by Condition IQR(ii) and Conditions IQR(iii) and (iv).

Next we proceed to control the other term of the variance. We have

| ‖ψα̌τ ,ĥ
(yi, di, zi)‖2,n − ‖ψατ ,h0(yi, di, zi)‖2,n| 6 ‖ψα̌τ ,ĥ

(yi, di, zi)− ψατ ,h0(yi, di, zi)‖2,n
6 ‖ψα̌τ ,ĥ

(yi, di, zi)− (τ − 1{yi 6 diα̌τ + g̃i})ι0i‖2,n + ‖(τ − 1{yi 6 diα̌τ + g̃i})ι0i − ψατ ,h0(yi, di, zi)‖2,n
6 ‖ι̂i − ι0i‖2,n + ‖(1{yi 6 diατ + gτi} − 1{yi 6 diα̌τ + g̃i})ι0i‖2,n
6 ‖ι̂i − ι0i‖2,n + ‖ι20i‖

1/2
2,n‖1{|ǫi| 6 |di(ατ − α̌τ ) + gτi − g̃i|}‖1/22,n

.P δn
(H.81)

by IQR(ii) and IQR(iv). Also, |En[ψ2
ατ ,h0

(yi, di, zi)] − Ē[ψ2
ατ ,h0

(yi, di, zi)]| .P δn by independence and

bounded moment conditions in Condition IQR(ii).
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Step 6. (Main Step for χ2) Note that the denominator of Ln(ατ ) was analyzed in relation (H.81) of

Step 5. Next consider the numerator of Ln(ατ ). Since Γ(ατ , h0) = Ē[ψατ ,h0(yi, di, zi)] = 0 we have

En[ψατ ,ĥ
(yi, di, zi)] = (En − Ē)[ψατ ,ĥ

(yi, di, zi)− ψατ ,h0(yi, di, zi)] + Γ(ατ , ĥ) + En[ψατ ,h0(yi, di, zi)].

By Condition IQR(iii) and (H.73) with α = ατ , it follows that

|(En − Ē)[ψατ ,ĥ
(yi, di, zi)− ψατ ,h0(yi, di, zi)]| 6 δnn−1/2 and |Γ(ατ , ĥ)| .P δnn−1/2.

The identity nA2
n = nB2

n + n(An − Bn)
2 + 2nBn(An − Bn) for An = En[ψατ ,ĥ

(yi, di, xi)] and Bn =

En[ψατ ,h0(yi, di, xi)] .P {Ē[wiz20i]}1/2n−1/2 yields

nLn(ατ ) =
n|En[ψατ ,ĥ

(yi, di, zi)]|2

En[ψ2
ατ ,ĥ

(yi, di, zi)]

=
n|En[ψατ ,h0(yi, di, zi)]|2 +OP (δn)

Ē[τ(1 − τ)ι20i] +OP (δn)
=
n|En[ψατ ,h0(yi, di, zi)]|2

Ē[τ(1 − τ)ι20i]
+OP (δn)

since τ(1−τ)Ē[ι20i] is bounded away from zero because C 6 |Ē[fidiι0i]| = |Ē[viι0i]| 6 {Ē[v2i ]Ē[ι20i]}1/2 and

Ē[v2i ] is bounded above uniformly. The result then follows since
√
nEn[ψατ ,h0(yi, di, zi)]  N(0, τ(1 −

τ)Ē[ι20i]).
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