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ROBUST INFERENCE IN HIGH-DIMENSIONAL APPROXIMATELY SPARSE
QUANTILE REGRESSION MODELS

A. BELLONI, V. CHERNOZHUKOV, AND K. KATO

ABSTRACT. This work proposes new inference methods for the estimation of a regression coefficient
of interest in quantile regression models. We consider high-dimensional models where the number of
regressors potentially exceeds the sample size but a subset of them suffice to construct a reasonable
approximation of the unknown quantile regression function in the model. The proposed methods are
protected against moderate model selection mistakes, which are often inevitable in the approximately
sparse model considered here. The methods construct (implicitly or explicitly) an optimal instrument
as a residual from a density-weighted projection of the regressor of interest on other regressors. Under
regularity conditions, the proposed estimators of the quantile regression coefficient are asymptotically
root-n normal, with variance equal to the semi-parametric efficiency bound of the partially linear quan-
tile regression model. In addition, the performance of the technique is illustrated through Monte-carlo
experiments and an empirical example, dealing with risk factors in childhood malnutrition. The nu-
merical results confirm the theoretical findings that the proposed methods should outperform the naive
post-model selection methods in non-parametric settings. Moreover, the empirical results demonstrate

soundness of the proposed methods.

1. INTRODUCTION

Many applications of interest requires the measurement of the distributional impact of a policy (or
treatment) on the relevant outcome variable. Quantile treatment effects have emerged as an important
concepts for measuring such distributional impact (see, e.g., [20]). In this work we focus on the quantile

treatment effect o, of a policy/treatment d of an outcome of interest y in the partially linear model:
7 — quantile(y | z,d) = da, + g-(2).

Here «, is the quantile treatment effect ([27)20]), and g, is the confounding effects of the other covariates
or controls z. To approximate g, we rely on linear combinations of p-dimensional vector of technical
regressors, * = P(z), where we allow for the dimension p to be potentially bigger than the sample size
n to achieve an accurate approximation for g.. This brings forth the need to perform model selection or

regularization.

We propose methods to construct estimates and confidence regions for the coefficient of interest o,
based upon robust post-selection procedures. We establish the (uniform) validity of the proposed meth-
ods in a non-parametric setting. Model selection in those settings (generically) leads to a (moderate)

misspecification of the selected model and traditional arguments based on perfect model selection do not
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apply. Therefore the proposed methods are developed to be robust to (moderate) model selection mis-
takes. The proposed methods achieve the asymptotic semi-parametric efficiency bound for the partially
linear quantile regression model. To do so the conditional densities should be used as weights in the
second step of the method. Typically such density function is unknown and needs to be estimated which

leads to high dimensional model selection problems with estimated data.

The proposed methods proceed in three steps. The first step aims to construct an estimate of the
control function g,. This can be achieved via ¢;-penalized quantile regression estimator [3l [I7, [38] or
quantile regression post-selection based on ¢1-penalized quantile regression [3]. The second step attempts
to properly partial out the confounding factors z from the treatment. The heteroscedasticity in the model
requires us to consider a density-weighted equation, whose estimation is carried out by the heteroscedastic
post-Lasso [34 2]. The third step combines the estimates above to construct an estimate of «g which is
robust to the non-regular estimation in the previous steps. The fact that the estimators in the first two
steps are non-regular is a generic feature of our problem. We propose to implement this last step via
instrumental quantile regression [13] or by a density-weighted quantile regression with all the variables
selected in the previous steps, with the latter step reminiscent of the “post-double selection” method
proposed in [6, T0]. We mostly focus on selection as a means of regularization, but certainly other
regularization (e.g. the use of ¢;-penalized fits per se) is possible, thought performs less well than the

methods we focus on.

Our paper contributes to the new literature on inference (as opposed to estimation) in the high-
dimensional sparse models. Several recent papers study the problem of constructing confidence regions
after model selection allowing p > n. In the case of linear mean regression, [6] proposed a double selection
inference in a parametric with homoscedastic Gaussian errors, [10] studies the double selection procedure
in a non-parametric setting with heteroscedastic errors, [39] and [35] proposed estimators based on ¢;-
penalized estimators based on “l-step” correction in parametric models. Going beyond mean models,
[35] also provides high level conditions for the one-step estimator applied to smooth generalized linear
problems, [7] analyzes confidence regions for a parametric homoscedastic LAD regression under primitive
conditions based on the instrumental LAD regression, and [9] provides two post-selection procedures to
build confidence regions for the logistic regression. None of the aforementioned papers deal with the

problem of the present paper.

Some of the papers above explicitly (or implicitly) aim to achive an important uniformity guarantees
with respect to the (unknown) values of the parameters. These uniform properties translate into more
reliable finite sample performance of these inference procedures because they are robust with respect to
(unavoidable) model selection mistakes. There is now substantial theoretical and empirical evidence on
the potential poor finite sample performance of estimators that rely on perfect model selection to build
confidence regions when applied to models without separation from zero of the coefficients (i.e. small
coefficients). Most of the criticism of these procedures are consequence of negative results established

in [24], [26] and the references therein. This work contributes to this literature by proposing methods

IWe also discuss alternative estimators that avoid the use of model selection procedures with estimated data. Those can

be valid under weaker conditions, but they are not semi-parametric efficient, except for some special (homoscedastic) cases.



ROBUST INFERENCE IN HIGH-DIMENSIONAL SPARSE QUANTILE REGRESSION MODELS 3

that will deliver confidence regions that also have uniformity guarantees for (heteroscedastic) quantile
regression models allowing p > n. Although related in spirit with our previos work, [10, [7, [0], new
tools and major departures are required to accommodate the non-differentiability of the loss function,

heteroscedsaticity of the data, and the non-parametric setting.

Finally, in the process of establishing the main results we also contribute to the literature of high-
dimensional estimation. An intermediary step of the method required the estimation of a weighted least
squares version of Lasso in which weights are estimated. Finite sample bounds of Lasso for the prediction
rate are established to this new case. Finite sample bounds for the prediction norm on the estimation error
of ¢1-penalized quantile regression in nonparametric models extending results on [3| 17, B8]. We further
developed results on instrumental quantile regression problems in which we allow for the dimension to

increase and estimated instruments.

Notation. In what follows, we work with triangular array data {(w;n,i=1,....,n),n = 1,2,3,...}
defined on probability space (2, S,P,,), where P = P,, can change with n. Each win = (i, 2i »,d; )’
is a vector with components defined below, and these vectors are i.n.i.d. — independent across i,
but not necessarily identically distributed. Thus, all parameters that characterize the distribution
of {win,i = 1,...,n} are implicitly indexed by P, and thus by n. We omit the dependence from
the notation in what follows for notational simplicity. We use array asymptotics to better capture
some finite-sample phenomena and to insure the robustness of conclusions with respect to perturba-
tions of the data-generating process P along various sequences. We use E,, to abbreviate the nota-
tion n~' Y | and the following empirical process notation, E,[f] := E,[f(w;)] :== >, f(w;)/n, and
Gn(f) == X1 (f(wi) — E[f(w;)])/+/n. Since we want to deal with in.i.d. data, we also introduce the
average expectation operator: E[f] := EE,[f] = EE,[f(w;)] = Y__, E[f(wi)]/n. The ls-norm is denoted
by || - ||, and the lp-norm, || - ||o, denotes the number of non-zero components of a vector. We use || - | to
denote the maximal element of a vector. Given a vector § € RP, and a set of indices T' C {1,...,p}, we
denote by dr € RP the vector in which dr; = §; if j € T, 67; = 0if j ¢ T. We let §*) be a vector with
k non-zero components corresponding to k of the largest components of § in absolute value. We use the
notation (a); = max{a,0}, a Vb = max{a,b}, and a A b = min{a,b}. We also use the notation a < b to
denote a < ¢b for some constant ¢ > 0 that does not depend on n; and a Sp b to denote a = Op(b). For
an event E, we say that £ wp — 1 when E occurs with probability approaching one as n grows. Given
a p-vector b, we denote support(b) = {j € {1,...,p} : b; # 0}. We also use p,(t) = t(r — 1{t < 0}) and
or(t1,ta) = (1 — 1{t1 < ta}).

2. SETTING AND METHODS
For a quantile index 7 € (0, 1), we consider the following partially linear conditional quantile model
yi = dior + 9. (2;) + €, T— quantile(e; | d;,2z;) =0, i=1,...,n, (2.1)

where y; is the outcome variable, d; is the policy/treatment variable, and confounding factors are rep-

resented by the variables z; which impacts the equation through an unknown function g,. The main
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parameter of interest is «,, which is the quantile treatment effect, which describes the impact of the

treatment on the conditional quantiles.
We assume that the disturbance term ¢; in (2]) has a positive and finite conditional density at 0,
fi=fe. (0] di, 2:). (2.2)

In order to perform robust inference with respect to model selection mistakes, we also consider an instru-

mental variable vo; = 19(d;, z;) with the properties:

E[(1{y; < diay + g-(21)} = 7)e0i] =0, (2.3)
axBl({yi < dia+ - (20)} = Mol | o, = Elfitoidi] # 0, (2.4)

and
%E[(l{yi <dia+ g- () + 82} — 7)eoi] . = E[fitoirs] = 0. (2.5)

The relations (Z3)-(24) provide the estimating equation as well as the identification condition for a..
Relation (2.H) states that the estimating equation should be immune/insensitive to local perturbations
of the nuisance function g, in the directions spanned by x;. This orthogonality property is the critical
ingredient in guaranteeing robustness of procedures, proposed below, against the preliminary “crude”
estimation of the nuisance function g.. In particular, this ingredient delivers robustness to moderate

model selection mistakes that accrue when post-selection estimators of g, are used.

The (optimal) instrument satisfying [2.3]) and (23] can be defined as the residual v; in the following

decomposition for the regressor of interest d; weighted by the conditional density function, namely
fidi = fimr(z:) +vi, E[fivi]| 2z]=0, i=1,...,n, (2.6)
and, thus, the (optimal) instrument is
toi = v; = fid; — fimr(2;). (2.7)

We should point that we can construct other (non-optimal) instruments satisfying (23] by using different
weights f; instead of f; in the equation (26 and setting Zo; = ;(fi/f;) where ©; is the new residual
corresponding to ﬁ It turns out that the choice ﬁ = f; minimizes the asymptotic variance of the

estimator of @ based upon the empirical analog of (2.3), among all the instruments satisfying (24 and
@&3).
We shall use a large number p of technical controls 2; = P(z;) to achieve accurate sparse approxima-
tions to the functions g, and m in 2] and (2Z.6]), which take the form:
9r(2i) = i Br +1gri and mr(2;) = ;07 + Ty (2.8)
We assume that g, and m. are approximately sparse, namely it is possible to choose the parameters 3

and 6, such that:

10110 < s, |IB-llo < s, and E[r2,;] < s/n and E[r2 ] < s/n. (2.9)

mTi gTi

The latter equation requires that it is possible to choose the sparsity index s so that the mean squared

approximation error is of no larger order than the variance of the oracle estimator for estimating the
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coefficients in the approximation. (See [I2] for a detailed discussion of this notion of approximately

sparsity.)

2.1. Known Conditional Density Function. In this subsection we consider the case of known condi-
tional density function f;. This case is of theoretical value since it allows to abstract away from estimating
the conditional density function f; and focus on the principal features of the problem. Moreover, under
homoscedasticity, when f; = f for all ¢, the unknown constant f will cancel in the definition of the
estimators proposed below and the results are also of practical interest for that case. In what follows, we
use the normalization E,, [xfj] =1,j5=1,...,p, to define the algorithms and collect the recommended
choice of tuning parameters in Remark below. Recall that for a vector 8, 8(3%) will truncate to zero

all components of 8 except the 2s largest components in absolute value.

We will consider two procedures in detail. They are based on ¢1-penalized quantile regression and £;-
penalized weighted least squares. The first procedure (Algorithm 1) is based on the explicit construction

of the optimal instruments ([2.7)) and the use of instrumental quantile regression.

Algorithm 1 (Instrumental Quantile Regression based on Optimal Instrument)
(1) Run Post-¢1-quantile regression of y; on d; and x;; keep fitted value I;BT,
(@r, Br) € argming s En[pr (i — dia — 2i8)] + A [|8]1
(@r,Br) € argming,s Balps (yi — dia— 218)] : support(8) C support (32).
(2) Run Post-Lasso of f;d; on f;x;; keep the residual v; := f;(d; — a:;@),
0, € argming E,[f2(d; — 2}6)2] + A| T2

~ —~

0, € argming E,[f?(d; — 2.0)?] : support(#) C support(6,).
(3) Run Instrumental Quantile Regression of y; — 3:;57 on d; using v; as the instrument for d;,

< ds 3% A\]2
&, € arg min Ln(Oé), where Ln(a) = {En[(l{yl <dia+ IZQT} 7’)'01]}
aEA, E.[(H{y: < dia + 2} B, } — 7)207]

K3

, and set 3, = BT.

Comment 2.1. In Algorithm 1 we can also work with the corresponding ¢;-penalized estimators in Steps
1 and 2 instead of the post-selection estimators, though we found that the latter work significantly better

in computational experiments. 0

The second procedure (Algorithm 2) creates the optimal instruments implicitly by using a weighted

quantile regression based on double selection.

Comment 2.2 (Choice of Penalty Parameters). We normalize the regressors so that E,[z7;] = 1 through-

out the paper. For v = 0.05/{n V plogn}, we set the penalty levels as

A= 1.1yn207 (1 — ), and A, := 1.1y/nr(1 — 1)@ (1 — 7). (2.10)

The penalty loading fT = diag[ijj, j=1,..,p] is a diagonal matrix defined by the the following proce-

dure: (1) Compute the Post Lasso estimator #% based on \ and initial values ijj = m<axfi{En [z fRd2}Y2.
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Algorithm 2 (Weighted Quantile Regression based on Double Selection)
(1) Run ¢;-quantile regression of y; on d; and x;,

(@r, B;) € argming g En[pr (4 — diax — 28)] + A |81
(2) Run Lasso of f;d; on f;x;,
0, € argming B, [f2(d; — 2}0)?] + A||T 0|1
(3) Run quantile regression of f;y; on fid; and {f;x;;,7 € support(AQS)) U support(@.)},
(¢r, Br) € argming, g By [fipr (y; — dio — x/3)] : support(8) C support(5+**)) U support(,),
and set Ln(a) = {Ea[(1{y: < diev + 218, } — 7)5/Bnl(Lps < dice + o} — 7)752), where

v; = fi(d; — xﬁT), and §T is the post-Lasso estimator associated with 9\7.
(2) Compute the residuals 7; = f;(d; — #,6°) and update
Trjj = /EalfPa307], 5=1,...,p. (2.11)

In Algorithm 1 we have used the following parameter space for the computations:

A, ={aeR:|a—a,| <10{E,[d?]}"Y2/logn}. (2.12)
: /2 o=
We recommend setting the truncation parameter to s = lolgo'n, {logn + 101;’(;/;") A "l:a)l(oi g”/i(ﬁv")} . O

2.2. Unknown Conditional Density Function. The implementation of the algorithms in Section 2.1]
requires the knowledge of the conditional density function f; which is typically unknown and needs to
be estimated (under heteroscedasticity). Following [20] and letting Q(- | d;, 2;) denote the conditional
quantile function of the outcome, we shall use the observation that

1

fi= 0Q(r | d;, ) /07

to estimate f;. Letting @(u | 2;,d;) denote an estimate of the conditional u-quantile function Q(u | z;, d;),
based on {;-penalized quantile regression or the associated post-selection estimator, and h = h,, — 0

denote a a bandwidth parameter, we let
~ 2h
fi== = (2.13)
Q(T+ h | Z“dl) — Q(T —h | Z“dl)

be an estimator of f;. If the conditional quantile function is three times continuously differentiable, this

estimator is based on the first order partial difference of the estimated conditional quantile function, and

so it has the bias of order h2.

It is also possible to use the following estimator:

—1
fi=n {g{@@ ] zd) — @ — b | 21,di)} — 1@+ 2] z0,di) — Gl — 21 zl-,d»}}  (2.14)

which has the bias of order h* under additional smoothness assumptions. We denote by U the finite set

of quantile indices used in the estimation of the conditional density.
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Under mild regularity conditions the estimators (2I3) and ([2I4) achieve
N F Q di,zi) = Q(r — u | dy, 2
ih—o <hk+max|cz<¢+u| 20) = Q(r — u| z>|>

2.15
ueU h ’ ( )

where k = 2 for (2I3) and k = 4 for (ZI4).
Then Algorithms 1 and 2 are modified by replacing f; with ﬁ

Algorithm 1’ (Instrumental Quantile Regression with Optimal Instrument)
(1) Run ¢;-quantile regressions of y; on d; and x; to compute (Qi, (25)) ue{TUl.
(2) Compute fi and run Post-Lasso of fidi on fixi to compute the residual v; := fi(di — x;@)
(3) Run Instrumental Quantile Regression of y; — x;BT on d; using v; as the instrument for d; to

compute &,, and set B, = ET.

Algorithm 2’ (Weighted Quantile Regression after Double Selection)
(1) Run ¢;-quantile regressions of y; on d; and x; to compute (Qi, By S)) u={T}UlU.
(2) Compute f; and run Lasso of f;d; on f;z; to compute 0.

(3) Run quantile regression of flyl on fzd and {fzx”,j € support(S; B )) U support( )} to compute
(ar, ﬂ‘r)

Comment 2.3 (Implementation of the estimates ﬁ) There are several possible choices of tunning
parameters to construct the estimates ﬁ, however, they need to be coordinated with the penalty level A.
Together with the recommendations made in Remark 2.2] we suggest to construct ﬁ as in (ZI3) with
bandwidth  := min{n~6 7(1 — 7)/2}. Remark below discusses in more detail the requirements

associated with different choices for penalty level A and bandwidth h. O

2.3. Overview of Main Results on Estimation and Inference. Under mild moment conditions and
approximately sparsity assumptions, we established that the estimator ¢, as defined in Algorithm 1’ or

Algorithm 2’, is root-n consistent and asymptotically normal,
o, 'n(d, —ar) ~ N(0,1), (2.16)

where 02 = 7(1 — 7)E[v?] 7! is the semi-parametric efficiency bound for the partially linear quantile
regression model. The convergence result holds under array asymptotics, permitting the data-generating
process P = P, to change with n, which implies that these convergence results hold uniformly over
substantive sets of data-generating processes. In particular, our approach and results do not require

separation of regression coefficients away from zero (the so-called “beta-min” conditions) for their validity.
As a consequence, the confidence region defined as
ni={aeR: |a—a,| <5, 2 (1—¢€/2)/vn} (2.17)

has asymptotic coverage of 1 — ¢ provided the estimate 52 is consistent for o2, namely 52 /o2 = 1+o0p(1).
These confidence regions are asymptotically valid uniformly over a large class of data-generating processes
P,.
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There are different possible choices of estimators for o,,:

Py = (BT, 5, = 71— AP ) o1
agn = En[fldlal]_2En[(1{yl < did‘l' + :E;BT} - 7)25?]7

where T = support(@) U support(@) is the set of controls used in the double selection quantile re-
gression. Although all three estimates are consistent under similar regularities conditions, their finite
sample behaviour might differ. Based on the small-sample performance in computational experiments,

we recommend the use of 73, for the optimal IV estimator and &5, for the double selection estimator.

Additionally, the criterion function of the instrumental quantile regression,
_ |En[(p‘r(yiu x;BT + dia)ai]|2
Enl[{or (yi, 2} Br + dia)v;}?]

is asymptotically distributed as chi-squared with 1 degree of freedom, when evaluated at the true value

L,(@)

o = o, namely

nLn (o) ~ x*(1). (2.19)
The convergence result also holds under array asymptotics, permitting the data-generating process P =
P, to change with n, which implies that these convergence results hold uniformly over substantive sets
of data-generating processes. In particular, this result does not rely on the so-called beta-min conditions

for its validity. This property allows the construction of another confidence region:
Ten = f{a € A, :nL,(a) < (1 — &) — quantile of x*(1)}, (2.20)

which has asymptotic coverage level of 1 — £. These confidence regions too are asymptotically valid

uniformly over a large class P,, of data-generating processes P,,.

3. MAIN RESULTS

In this section we provide sufficient conditions and formally state the main results of the paper.

3.1. Regularity Conditions. Here we provide regularity conditions that are sufficient for validity of
the main estimation and inference result. Throughout the paper, we let ¢, C, and g be absolute constants,

and let ¢, 00,0, \,0, and A,, \, 0 be sequences of absolute positive constants.
We assume that for each n the following condition holds on the data generating process P = P,,.

Condition AS (P). (i) Let (z;)!, denote a non-stochastic sequence and P denote a dictionary of
transformations of z;, which may depend on n but not on P. The p-dimensional vector x; = P(z;) of
covariates are normalized so that E, [xfj] =1,5=1,...,p, and {(yi,ds,v;) : i = 1,...,n} be indepen-
dent random vectors that obey the model given by (21)) and (Z4) (ii) Functions g, and m. admit an
approzimately sparse form. Namely there exists s > 1 and Br and 6., which depend on n and P, such
that

s, {E[2. )2 <0V, (3.21)
s, B[22 < CV/s/n. (3.22)

m‘r(zz) = I{LGT + Tmris ||97'||0

97(21) :x;BT—i_rgTiu HﬁTHO

NN
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(iii) The conditional distribution function of €; is absolutely continuous with continuously differentiable
density fe,(- | di,zi) such that 0 < f < fi < sup, fe;ja;,= (¢ | diszi) < f, sup|flq, .. (e | diszi)| < f'.
(iv) The following moment conditions apply: E[dS] + Evf] < C, ¢ < E[p? | 2] < C as. 1 < i < n,

[max {E[Ifjdf] +E[|x§’jv§’ I} <C. (v) We have that K, = max;<p ||Zi||co, KIlogp < dpn for some q > 4,
ISP

and s satisfies (K25 + %) log®(p V n) < nd,,.

Condition AS(i) imposes the setting discussed in Section 2] in which the €; error term has zero 7-
conditional quantile. The approximate sparsity condition AS(ii) is the main assumption for establishing
the key inferential result. Condition AS(iii) is a standard assumption on the conditional density function
in the quantile regression literature see [20] and the instrumental quantile regression literature [I3].
Condition AS(iv) imposes some moment conditions. Condition AS(v) imposes growth conditions on s, p,
K, and n.

The next condition concerns the behavior of the Gram matrix E,, [z;2}]. Whenever p > n, the empirical
Gram matrix E,[z;z;] does not have full rank and in principle is not well-behaved. However, we only
need good behavior of smaller submatrices. Define the minimal and maximal m-sparse eigenvalue of a
semi-definite matrix M as

o' Mo & M$

Ganin () [M] and Gmax(m)[M] = max o

‘= min ——
1<l6lo<m ||0]|?

(3.23)

To assume that ¢min(m)[M] > 0 requires that all m by m submatrices of M are positive definite. We

shall employ the following condition as a sufficient condition for our results.

Condition SE (P). The mazimal and minimal £, s-sparse eigenvalues are bounded from below and

away from zero, namely with probability at least 1 — A,,, for &; = [d;, x})’
H/ g Qbmin(gns)[En [ilj;]] g (bmax(éns)[En[jzi;“ g H//v
where 0 < k' < k" < 00 are absolute constants.

For notational convenience we write @min (M) := Pmin (M)[Ey [2:7}]] and dmax(m) 1= Pmax(m)[En[Z:Z5]]-
It is well-known that the first part of Condition SE is quite plausible for many designs of interest. For
instance, Theorem 3.2 in [32] (see also [40] and [I]) shows that Condition SE holds for i.i.d. zero-mean
sub-Gaussian regressors and s(logn)(logp)/n < J§, — 0; while Theorem 1.8 [32] (see also Lemma 1
in [4]) shows that Condition SE holds for i.i.d. bounded zero-mean regressors with ||z;||cc < K, a.s.

K2s(log® n){log(pVn)}/n < 4§, — 0.

3.2. Main results for the case with known density. In this section we begin to state our theoretical
results for the case where density values f; are either known or constant and unknown. The case of
constant density f; = f arises under conditional homoscedasticity, and in this case any constant value
can be used as an “estimate”, since it cancels in the definition of the estimators in Algorithms 1 and 2.
Hence the results of this section are practically useful in homoscedastic cases; otherwise, they serve as
a theoretical preparation of the results for the next subsection, where the unknown densities f; will be

estimated.
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We first show that the optimal IV estimator based on Algorithm 1 with parameters (ZI0)-(212) is

root-n consistent and asymptotically normal.

Theorem 1 (Optimal IV estimator, conditional density f; is known). Let {P,} be a sequence of data-
generating processes. Assume conditions AS (P) and SE (P) hold for P = P,, for each n. Then, the
optimal IV estimator &, and the L, function based on Algorithm 1 with parameters (210)-(212) obeys

as n — oo
o 'n(d, —ar) ~ N(0,1) and nL,(a;) ~ x*(1)

where 02 = 7(1 — 7)E[v?] L.

Theorem [ relies on post model selection estimators which in turn relies on achieving sparse estimates
37 and 9\7. The sparsity of 9\7 is derived in Section [A.2] under the recommended penalty choices. The
sparsity of ET is not guaranteed under the recommended choices of penalty level A\, which leads to sharp
rates. We ensure sparsity by truncating to zero the smallest components. Lemma [6] shows that such
operation does not impact the rates of convergence provided the largest 2s non-zero components are

preserved.

We also establish a similar result for the double selection estimator based on Algorithm 2 with param-

eters (2.10)-211).

Theorem 2 (Weighted double selection, known conditional density f;). Let {P,} be a sequence of data-
generating processes. Assume conditions AS(P) and SE(P) hold for P =P, for each n. Then, the double
selection estimator &, and the L, function based on Algorithm 2 with parameters (Z10)-(211]) obeys as

n— 0o
o ' n(d, —az) ~ N(0,1) and nLy(a;) ~ x*(1)

where 02 = 7(1 — 7)E[v?] L.

Importantly, the results in Theorems [Tl and 2 allows for the data generating process to depend on the
sample size n and have no requirements on the separation from zero of the coefficients. In particular
these results allow for sequences of data generating processes for which perfect model selection is not
possible. In turn this translates into uniformity properties over a large class of data generating process.
Next we formalize these uniform properties. We let P,, the collection of distributions P for the data
{(yi, di, 2;)' Y such that Conditions AS(P) and SE(P) hold for the given n. This is the collection of all

approximately sparse models where the stated above sparsity conditions, moment conditions, and growth

conditions hold.

Corollary 1 (Uniform /n-Rate of Consistency and Uniform Normality). Let P, be the collection
of all distributions of {(yi,d;, z[) }1_; for which Conditions AS and SE are satisfied for the given n > 1.
Then either the optimal IV or the double selection estimator, &, are y/n-consistent and asymptotically
normal uniformly over Py, namely

lim sup sup [P(o, ' vn(dr —ar) <t)—P(N(0,1) < t)| = 0.
nTOOPEP, tER
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Corollary 2 (Uniform Validity of Confidence Regions). Let P, be the collection of all distributions
of {(yi, d;, z})'}1_; for which Conditions AS and SE are satisfied for the given n > 1. Then the confidence
regions Ce n, and ZL¢ , defined based on either the optimal IV estimator or by the double selection estimator
are asymptotically valid uniformly in n, that is
lim sup [P(aw €Cepn) —(1—§)|=0 and lim sup |[Plag €Zepn) — (1 —&)| =0.
n=oopep, N pep,
The uniformity results for the approximately sparse and heteroscedastic case are new even under fixed

p asymptotics.

Comment 3.1. Both algorithms assume that the values of the conditional density function f;, i =
1,...,n, are known. In fact it suffices to know them up to a multiplicative constant, which allows to
cover the homoscedastic case, where f; = 1,7 = 1,...,n. In heteroscedastic settings we shall need to

estimate f;, and we analyze this case in the next subsection. O

3.3. Main Results for the case of unknown density. Next we provide formal results to the case the
conditional probability density function is unknown. In this case it is necessary to estimate the weights
fi, and this estimation has a non-trivial impact on the analysis. Condition D summarizes sufficient

conditions to account for the impact of the density estimation.

Condition D. (i) For a bandwidth h, assume that g,(z;) = xiBu + Tuwi where the approzima-
tion errors satisfy E[r2,] < 8,n Y2 and |ry;| < Oph for all i = 1,...,n, and the vector 3, satisfies
1Bullo < s, for w = 7,7 £ h,7 £ 2h. (i) Suppose |\Eu|\0 < Cs and ||d;0n, + xiﬁu — gui — diay||2.n <
C\/slog(p V n)/n with probability at least 1 — A,, for u = 7,7+ h,7+2h. (i) K2s*log(pVn) < 6,nh?,
h*\/sTogp < 0n, h*~1\/sTogp(v/nlogp/A) < 0, K% \/n(v/nlogp/)) < b, 52log” p < dumh?, 5% log® p
5,2, Asy/Togp < 8,n (i) For spmy = s+ %&va) + ("—52)2, we have 0 < K < Gmin(bnSmr)
Gmax(UnSmr) < £ < 0o with probability 1 — A,,.

<
<

Comment 3.2. Condition D(i) imposes the approximately sparse assumption for the wu-conditional
quantile function for quantile indices w in a neighborhood of the quantile index 7. Condition D(ii)
is a high level condition on the estimates of 3, which are typically satisfied by ¢;-penalized quantile
regression estimators. As before sparsity can be achieved by truncating these vectors. Condition D(iii)
provide growth conditions relating s, p, n, h and A. Remark B.3]below discusses specific choices of penalty
level A and of bandwidth h together with the implied conditions on the triple (s, p,n). O

Next we establish the main inferential results for the case with estimated conditional density weights.
We begin with the optimal IV estimator which is based on Algorithm 1’ with parameters A, as in (210,
T, as in ZII) with f; replaced with i, and A, as in [212). The choices of A and h satisfy Condition D.

Theorem 3 (Optimal IV estimator, estimated conditional density ﬁ) Let {P,,} be a sequence of data-
generating processes. Assume conditions AS (P) and D (P) hold for P = P, for each n. Then, the
optimal IV estimator &, and the L, function based on Algorithm 3 with parameters (Z10)-(212) obeys
asm — 0o

o 'n(d, —ar) ~ N(0,1) and nLy(a;) ~ x*(1)
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where 02 = 7(1 — 7)E[v2] L. The result continues to apply if o2 is replaced by any of the estimators in
(Z18), namely Gkn/on =1+ 0p(1) for k=1,2,3.

The following is a corresponding result for the double selection estimator based on Algorithm 2’ with
parameters A, as in (2.10), and T'; as in Z11) with f; replaced with fi. As before the choices of A and
h satisfy Condition D and are discussed in detail below.

Theorem 4 (Double selection estimator, estimated conditional density ﬁ) Let {P,,} be a sequence of
data-generating processes. Assume conditions AS(P) and D(P) hold for P = P,, for each n. Then, the
double selection estimator &, and the L, function based on Algorithm 4 with parameters (210)-(211)
obeys as n — oo

o 'n(d, —az) ~ N(0,1) and nLy(a;) ~ x*(1)
where 02 = 7(1 — 7)E[v2] L. The result continues to apply if o2 is replaced by any of the estimators in
(Z18), namely okn/on =1+ 0p(1) for k=1,2,3.

Comment 3.3 (Choice of Bandwidth h and Penalty Level X in Step 2). The proofs of Theorems [3] and
M provide a detailed analysis for generic choice of bandwidth h and the penalty level A in Step 2 under
Condition D. Here we discuss two particular choices: for v = 0.05/{n Vv plogn}

() A=h"tymo-L(1—7),
(i) A =1.1y/n20"1(1—7~).
The choice (i) for A leads to the optimal prediction rate by adjusting to the slower rate of convergence of

fi, see (ZTH). The choice (ii) for A corresponds to the (standard) choice of penalty level in the literature

for Lasso. For these choices Condition D(iii) simplifies to

(1> E V 5717 h2E+1 \/ﬁ
(i) \/ 0gp < 0n, W/

6n, and K2s2log?(pV n) < 6,nh?,

<
<6, and s?log?p < 5,nh?.

For example, using the choice of ﬁ as in ([2I4) so that k = 4, we have that the following choice growth

conditions suffice for the conditions above:

(i) K3s%log*(pVn)<d,nand h=n"1/6
(i) (slog(pVn)+ K3)s?log*(pVn) < d,n, and h =n~1/8

4. EMPIRICAL PERFORMANCE
We present monte-carlo experiments, followed by a data-analytic example.

4.1. Monte-Carlo Experiments. In this section we provide a simulation study to assess the finite
sample performance of the proposed estimators and confidence regions. We shall focus on examining the
inferential properties of the confidence regions based upon Algorithms 1’ and 2/, and contrast them with

the confidence intervals based on naive (standard) selection.
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We considered the following regression model for 7 = 1/2:

y=do; +2'(cyp0) +6, e~ N(0,{2— p+pd*}/2), (4.24)
d=12'(cqvo) +9, o~ N(0,1), (4.25)
where o, = 1/2, 0p; =1/4%,7=1,...,p, x = (1,2') consists of an intercept and covariates z ~ N(0,X),

and the errors € and @ are independent. In this case, the optimal instrument is v = 9/{\/7(2 — p + ud?)}.
The dimension p of the covariates x is 300, and the sample size n is 250. The regressors are correlated
with ¥;; = pli=l and p = 0.5. The coefficient p € {0,1} which makes the conditional density function
of € homoscedastic if 4 = 0 and heteroscedastic if ;4 = 1. The coefficients ¢, and ¢4 are used to control
the R? in the equations: y — da, = 2/(cyvp) + € and d = 2/(cqvp) + 0 ; we denote the values of R? in
each equation by R and Rj. We consider values (R2, R7) in the set {0,.1,.2,...,.9} x {0,.1,.2,...,.9}.
Therefore we have 100 different designs and we perform 500 Monte-Carlo repetitions for each design. For

each repetition we draw new vectors x;’s and errors ¢;’s and v;’s.

The design above with g,(z) = 2’ (¢cy10) is an approximately sparse model; and the gradual decay of the
components of vy rules out typical “separation from zero” assumptions of the coefficients of “important”
covariates. Thus, we anticipate that inference procedures which rely on the model selection in the direct
equation ([@24)) only will not perform well in our simulation study. We refer to such selection procedures
as the “naive” /single selection and the call the resulting inference procedures the post “naive” /single
selection inference. To be specific, in our simulation study, the “naive” selection procedure applies £1-
penalized 7-quantile regression of y on d and z to select a subset of covariates that have predictive power
for y, and then runs 7—quantile regression of y on d and the selected covariates, omitting the covariates

that were not selected. This procedure is the standard procedure that is often employed in practice.

The model in [@24]) can be heteroscedastic, since when p # 0 the distribution of the error term might
depend on the main regressor of interest d. Under heteroscedasticity, our procedures require estimations
of the conditional probability density function f;, and we do so via (ZI3). We perform estimation of
fi’s even in the homoscedastic case (u = 0), since we do not want rely on whether the assumption of
homoscedasticity is valid or not. In other words, we use Algorithms 1’ and 2’ in both heteroscedastic
and homoscedastic cases. We use 03, as the standard error for the optimal IV estimator, and 7o, as
the standard error for the post double selection estimator. As a benchmark we consider the standard
post-model selection procedure based on #1-penalized quantile regression method (post single selection)

based upon equation ([@24]) alone, as define in the previous paragraph.

In Figure [Tl we report the results for the homoscedastic case (1 = 0). In our study, we focus on the
quality of inferential procedures — namely on the rejection frequency of the confidence intervals with the
nominal coverage probability of 95%, and so the figure reports these frequencies. Ideally we should see the
rejection rate of 5%, the nominal level, regardless of what the underlying generating process P € P, is.
The is the so called uniformity property or honesty property of the confidence regions (see, e.g., Romano
and Wolf [3I], Romano and Shaikh [30], and Leeb and Potscher [25]). The top left plot of Figure [II
reports the empirical rejection probabilities for the naive post single selection procedure. These empirical

rejection probabilities deviate strongly away from the nominal level of 5%, demonstrating the striking
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lack of robustness of this standard method. This is perhaps expected due to the Monte-Carlo design
having regression coefficients not well separated from zero (that is, “beta min” condition does not hold
here). In sharp contrast, we see from top right and bottom right and left plots of Figure [T, that both
of our proposed procedures perform substantially better, yielding empirical rejection probabilities close
to the desired nominal level of 5%. We also see from comparing the bottom left plot to other plots that
the confidence regions based on the post-double selection method somewhat outperform the optimal IV

estimator.

Figure 2l we report the results for the heteroscedastic case (u = 1). The figure displays the (empirical)
rejection probability of the confidence intervals with nominal coverage of 95%. As before, ideally we
should see the empirical rejection probability of 5%. Again the top left figure reports the results for the
confidence intervals based on the naive post model selection estimator. Here too we see the striking lack
of robustness of this standard method; this occurs due to the direct equation (£24) having coefficients vy
that are not well separated from zero. We see from top right and bottom right and left plots of Figure[I]
that both of our proposed procedures perform substantially better, however, the optimal IV procedure
does not do as well as in the homoscedastic case. We also see from comparing the bottom left plot to other
plots that the confidence regions based on the post-double selection method significantly outperform the

optimal IV estimator, yielding empirical rejection frequencies close to the nominal level of 5%.

Thus, based on these experiments, we recommend to use the post-double selection procedure over the

optimal IV procedure.

4.2. Inference on Risk Factors in Childhood Malnutrition. The purpose of this section is to
examine practical usefulness of the new methods and contrast them with the standard post-selection

inference (that assumes that selection had worked perfectly).

We will assess statistical significance of socio-economic and biological factors on children’s malnutrition,
providing a methodological follow up on the previous studies done by [15] and [19]. The measure of
malnutrition is represented by the child’s height, which will be our response variable y. The socio-
economic and biological factors will be our regressors x, which we shall describe in more detail below. We
shall estimate the conditional first decile function of the child’s height given the factors (that is, we set
7 =.1). We’d like to perform inference on the size of the impact of the various factors on the conditional
decile of the child’s height. The problem has material significance, so it is important to conduct statistical

inference for this problem responsibly.

The data comes originally from the Demographic and Health Surveys (DHS) conducted regularly in
more than 75 countries; we employ the same selected sample of 37,649 as in Koenker (2012). All children
in the sample are between the ages of 0 and 5. The response variable y is the child’s height in centimeters.
The regressors x include child’s age, breast feeding in months, mothers body-mass index (BMI), mother’s
age, mother’s education, father’s education, number of living children in the family, and a large number
of categorical variables, with each category coded as binary (zero or one): child’s gender (male or female),
twin status (single or twin), the birth order (first, second, third, fourth, or fifth), the mother’s employment

status (employed or unemployed), mother’s religion (Hindu, Muslim, Christian, Sikh, or other), mother’s
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Naive Post Selection (Co.05.,) rp(0.05) Optimal IV (Cy05.,) rp(0.05)

0.5

0.4

0 0

Double Selection (Cp.o5,,) rp(0.05) Optimal IV (Zy.05,,) rp(0.05)

05 : 05

0.4 0.4

FIGURE 1. For the homoscedastic design (u = 0), the figure displays the rejection probabilities of

the following confidence regions with nominal coverage of 95%: (a) the confidence region based upon
naive (single) selection procedure (top left panel), (b) the confidence region Co.05,n» based the optimal
IV estimator based on (top right), (c) the confidence region, as defined in Algorithm 1/, Zg.05,, based
on the optimal IV procedure (bottom right panel), as defined in Algorithm 1/, and (d) the confidence
region Co.05,n based on the post double selection estimator (bottom left panel), as defined in Algorithm
1’. Each point in each of the plots corresponds to a different data-generating process indexed by pairs
of R? values (RZ7 R%) varying over the set {0,.1,...,.9} x {0,.1,...,.9}. The results are based on 500
replications for each of the 100 combinations of R2’s in each equation. The ideal rejection probability

should be 5%, so ideally we should be seeing a flat surface with height 5%.

residence (urban or rural), family’s wealth (poorest, poorer, middle, richer, richest), electricity (yes or
no), radio (yes or no), television (yes or no), bicycle (yes or no), motorcycle (yes or no), and car (yes or

no).

Although the number of covariates — 30 — is substantial, the sample size — 37,649 is much larger
than the number of covariates. Therefore, the dataset is very interesting from a methodological point of
view, since it gives us an opportunity to compare various methods for performing inference to an “ideal”

benchmark:
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Naive Post Selection (Co.05.,) rp(0.05) Optimal IV (Cy05.,) rp(0.05)

0.5

0.4

0.3

0 0 0 0

R Li Rj
Double Selection (Cp.o5,,) rp(0.05) Optimal IV (Zy.05,,) rp(0.05)

R

FIGURE 2. For the heteroscedastic design (u = 1), the figure displays the rejection probabilities of
the following confidence regions with nominal coverage of 95%: (a) the confidence region based upon
naive (single) selection procedure (top left panel), (b) the confidence region Cp.05,n» based the optimal
IV estimator based on (top right), (c) the confidence region, as defined in Algorithm 1/, Zg.05,, based
on the optimal IV procedure (bottom right panel), as defined in Algorithm 1/, and (d) the confidence
region Co.05,n based on the post double selection estimator (bottom left panel), as defined in Algorithm
1’. Each point in each of the plots corresponds to a different data-generating process indexed by pairs
of R? values (Ri7 R%) varying over the set {0,.1,...,.9} x {0,.1,...,.9}. The results are based on 500
replications for each of the 100 combinations of R2’s in each equation. The ideal rejection probability

should be 5%, so ideally we should be seeing a flat surface with height 5%.

The “ideal” benchmark here is the standard inference based on the standard quantile regression
estimator without any model selection. Since the number of regressors p is much smaller than
the sample size n, this is a very good option. The latter was proven theoretically in [16] and in
[5] under the p — oo, p®/n — 0 regime. This is also the general option recommended by [20] and
[24] in the fixed p regime. Note that this “ideal” option does not apply in practice when p is

relatively large; however it certainly applies in the present example.
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(2) The standard post-selection inference method is the existing benchmark. This method performs
standard inference on the post-model selection estimator, “assuming” that the model selection
had worked perfectly. While this approach has some justification, we expect it to perform poorly,
based on our computational results and from theoretical results of [24]. In particular, it would

be very interesting to see if it gives misleading results as compared to the “ideal” option.

(3) We propose two methods, one based on the instrumental regression estimator (Algorithm 1) and
another based on double selection (Algorithm 2). The proposed methods do not assume perfect
selection, but rather builds a protection against (moderate) model selection mistakes. From the

theory we would expect the method to give results similar to the “ideal” option in (1).

We now will compare our proposal to the “ideal” benchmark and to the standard post-selection method.
We report the empirical results in Table The first column reports results for the option 1, reporting
the estimates and standard errors enclosed in brackets. The second column reports results for option 2,
specifically the point estimates resulting from the use of ¢;-penalized quantile regression and the post-
penalized quantile regression, reporting the standard errors as if there had been no model selection. The
third column and fourth column report the results for two versions — Algorithm 1 and Algorithm 2 — of
option 3. Each column reports point estimates, the standard errors, and the confidence region obtained
by inverting the robust L,-statistic. Note that the Algorithms 1 and 2 are applied sequentially to each of
the variables. Similarly, in order to provide estimates and confidence intervals for all variables using the
naive approach, if a covariate was not selected by the ¢;-penalized quantile regression, it was included in

the post-model selection quantile regression for that variable.

What we see is very interesting. First of all, let us compare “ideal” option (column 1) and the naive
post-selection (column 2). Lasso selection method removes 16 out of 30 variables, many of which are
highly significant, as judged by the “ideal” option. (To judge significance we use normal approximations
and critical value of 3, which allows us to maintain 5% significance level after testing up to 50 hypotheses).
In particular, we see that the following highly significant variables were dropped by Lasso: mother’s BMI,
mother’s age, twin status, birth orders one and two, and indicator of the other religion. The standard
post-model selection inference then makes the assumption that these are true zeros, which lead us to
misleading conclusions about these effects. The standard post-model selection inference then proceeds
to judge the significance of other variables, in some cases deviating sharply and significantly from the
“ideal” benchmark. For example, there is a sharp disagreement on magnitudes of the impact of the birth
order variables and the wealth variables (for “richer” and “richest” categories). Overall, for the naive
post-selection, 8 out of 30 coefficients were more than 3 standard errors away from the coefficients of the

“ideal” option.

We now proceed to compare our proposed options to the “ideal” option. We see approximate agreement
in terms of magnitude, signs of coefficients, and in standard errors. In few instances, for example, for the
car ownership regressor, the disagreements in magnitude may appear large, but they become insignificant
once we account for the standard errors. In particular, the pointwise 95% confidence regions constructed

by inverting the L, statistics all contain the estimates from the “ideal” option. Moreover, there is
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very little disagreement between Algorithms 1 (optimal IV) and Algorithm 2 (double selection). The
agreement here is good news from the point of view of our theory, since it confirms what we had expected
from our previous analysis. In particular, for the proposed methods, no coefficient estimate was more

than 1.5 standard errors away from the coefficient of the “ideal” option.

The main conclusion from our study is that the standard/naive post-selection inference can give mis-
leading results, confirming our expectations and confirming predictions of [24]. Moreover, the proposed
inference procedures are able to deliver inference of high quality, which is very much in agreement with
the “ideal” benchmark.

5. DISCUSSION

5.1. Variants of the Proposed Algorithms. There are several different ways to implement the se-
quence of steps underlying the two procedures outlined in Algorithms 1 and 2. The estimation of the
control function g, can be done through other regularization methods like ¢1-qr instead of the post-£;-
qr estimator. The estimation of the instrument v in Step 2 can be carried out with Dantzig selector,
square-root Lasso or the associated post-model selection could be used instead of Lasso or Post-Lasso.
The instrumental quantile regression can be substituted by a 1-Step estimator from the ¢;-qr estimator
a, of the form &, = a, + (E,[0?]) " 'E,[p- (i, a-d; + x;BT)@-].

Other variants can be constructed by using another valid instrument. An instrument ¢; = u(d;, 2;)
is valid if it satisfies E[f;e; | z;] = 0 and E[f;d;1;] # 0. For example, a valid choice of instrument is
ti = (d; — Eld; | z])/ fi- Typically this choice of instruments does not lead to a semi-parametric efficient
estimator as the choices proposed in Algorithms 1 and 2 do. Nonetheless, the estimation of E[d; | z;] and

fi can be carried out separably which can lead to weaker regularity conditions.

5.2. Connection to Neymanization. In this section we make some connections to Neyman’s C(«a)
test ([28] 29]). For the sake of exposition we assume that (y;,z;,d;), are i.i.d. and sparse models,

Tmri = Tgri = 0,1 =1,...,n. We consider the estimating equation for a:
Elpr (i, dior + x;ﬂ‘r)%] =0.

Our problem is to find useful instruments ¢; such that
9 /
_E[@T(ylu d;a; + sz)LlHﬂ:ﬂq— =0.

op
Under this property the estimator of o, will be “immunized” against “crude” or nonregular estimation
of 3;, for example, via a post-selection procedure or some regularization procedure. Such immunization
ideas are in fact behind Neyman’s classical construction of his C(a) test, so we shall use the term
“Neymanization” to describe such procedure. There will be many instruments ¢; that can achieve the

property stated above, and there will be one that is optimal.

The instruments can be constructed by taking ¢; := v;/f;, where v; is the residual in the regression
equation:
w;d; = wimT(zi) + vy, E[wivi|:vi] =0, (526)
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TABLE 1. Empirical Results

(1) ) ®)
Optimal IV Double Selection
Variable qr £1-qr Naive A Z0.05,n A
cage 0.6456 0.6360 0.6458 0.6458 [ 0.6400, 0.6514] 0.6449
(0.0030) (0.0027) (0.0025) (0.0032)
mbmi 0.0603 — 0.0663 0.0550 [ 0.0132, 0.0885] 0.0582
(0.0159) (0.0139) | (0.0316) (0.0173)
breastfeeding 0.0691 0.0538 0.0689 0.0689 [ 0.0577, 0.0762] 0.0700
(0.0036) (0.0038) (0.0036) (0.0044)
mage 0.0684 — 0.0454 0.0705 [ 0.0416, 0.0947] 0.0685
(0.0090) (0.0147) (0.0109) (0.0126)
medu 0.1590 0.2036 0.1870 0.1594 [ 0.1246, 0.1870] 0.1566
(0.0136) (0.0145) | (0.0153) (0.0154)
edupartner 0.0175 0.0147 0.0460 0.0388 [ 0.0053, 0.0641] 0.0348
(0.0125) (0.0148) (0.0143) (0.0143)
deadchildren -0.0680 — -0.2121 -0.0791 [ -0.3522, 0.0394] -0.1546
(0.1124) (0.0978) | (0.0653) (0.1121)
csexfemale -1.4625 -1.0786 -1.5084 -1.5146 [-1.7166, -1.3322] -1.5299
(0.0948) (0.0897) | (0.0923) (0.1019)
ctwintwin -1.7259 — -1.8683 -1.8683 [ -3.3481, -0.4652] -1.9248
(0.3741) (0.2295) (0.1880) (0.7375)
cbirthorder2 -0.7256 — -0.2230 -0.7408 [ -1.0375, -0.3951] -0.6818
(0.1073) (0.0983) | (0.1567) (0.1337)
cbirthorder3 -1.2367 — -0.5751 -1.0737 [ -1.4627, -0.7821] -1.1326
(0.1315) (0.1423) | (0.1556) (0.1719)
cbirthorder4 -1.7455 -0.1892 -0.7910 -1.7219 [ -2.2968, -1.2723] -1.5819
(0.2244) (0.1938) (0.2796) (0.2193)
cbirthorder5 -2.4014 -0.8459 -1.1747 -2.3700 [ -3.2407, -1.9384] -2.3041
(0.1639) (0.1686) | (0.2574) (0.2564)
munemployedemployed 0.0409 — 0.0077 0.0342 [ -0.2052, 0.2172] 0.0379
(0.1025) (0.1077) (0.1055) (0.1124)
mreligionhindu -0.4351 — -0.2423 -0.5129 [-0.9171, -0.1523] -0.5680
(0.2232) (0.1080) (0.2277) (0.1771)
mreligionmuslim -0.3736 — 0.0294 -0.6177 [-1.1523, -0.1457] -0.5119
(0.2417) (0.1438) | (0.2629) (0.2176)
mreligionother -1.1448 — -0.6977 -1.2437 [ -2.1037, -0.4828] -1.1539
(0.3296) (0.3219) (0.3390) (0.3577)
mreligionsikh -0.5575 — 0.3692 -0.5437 [ -1.5591, 0.4243] -0.3408
(0.2969) (0.1897) (0.3653) (0.3889)
mresidencerural 0.1545 — 0.1085 0.1519 [ -0.1295, 0.3875] 0.1678
(0.0994) (0.1363) | (0.1313) (0.1311)
wealthpoorer 0.2732 -0.0183 -0.1946 0.1187 [-0.1784, 0.5061] 0.2648
(0.1761) (0.1231) (0.1505) (0.1877)
wealthmiddle 0.8699 — 0.9197 0.9113 [ 0.4698, 1.3149] 0.9173
(0.1719) (0.2236) | (0.1784) (0.2158)
wealthricher 1.3254 0.3252 0.5754 1.2751 [ 0.7515, 1.5963] 1.4040
(0.2244) (0.1408) | ( 0.1964) (0.2505)
wealthrichest 2.0238 1.1167 1.2967 1.9149 [ 1.3086, 2.3893] 2.1133
(0.2596) (0.2263) (0.2427) (0.3318)
electricityyes 0.3866 0.3504 0.7555 0.4263 [ 0.1131, 0.7850] 0.4582
(0.1581) (0.1398) | (0.1572) (0.1577)
radioyes -0.0385 — 0.1363 0.0599 [ -0.2100, 0.2682] 0.0640
(0.1218) (0.1214) | (0.1294) (0.1207)
televisionyes -0.1633 0.0122 -0.0774 -0.1112 [ -0.3629, 0.0950] -0.0880
(0.1191) (0.1234) (0.0971) (0.1386)
refrigeratoryes 0.1544 0.0899 0.2451 0.1907 [ -0.1642, 0.5086] 0.2001
(0.1774) (0.2081) | (0.1716) (0.1891)
bicycleyes 0.1438 — 0.1314 0.1791 [ -0.0036, 0.3506] 0.1438
(0.1048) (0.1016) (0.0853) (0.1121)
motorcycleyes 0.6104 0.4823 0.5883 0.5214 [ 0.2471, 0.8125] 0.5154
(0.1783) (0.1334) (0.1702) (0.1625)
caryes 0.2741 — 0.5805 0.5544 [ -0.0336, 1.0132] 0.5470
(0.2058) (0.2378) | (0.2610) (0.2896)

19
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where w; is a nonnegative weight, a function of (d;, z;) only, for example w; = 1 or w; = f; — the latter

choice will in fact be optimal. Note that function m.(z;) solves the least squares problem

}féiﬁE {wid; — wih(z)}?] (5.27)

where H is the class of measurable functions h(z;) such that E[w?h?(2;)] < co. Our assumption is that
the m,(z;) is a sparse function ;0,, with ||6,]/o < s so that

wid; = w;xhfr + v, Elwv|z;] = 0. (5.28)

In finite samples, the sparsity assumption allows to employ post-Lasso and Lasso to solve the least squares
problem above approximately, and estimate ¢;. Of course, the use of other structured assumptions may

motivate the use of other regularization methods.

Arguments similar to those in the proofs show that, for \/n(a — a,) = O(1),
VI{En[pr (yi, dia + x;BT)UZ] = Eulor (yi, dia — 23 8:-)ui]} = op(1),

for 37 based on a sparse estimation procedure, despite the fact that 37 converges to 8, at a slower rate
than 1/4/n. That is, the empirical estimating equations behave as if 5, is known. Hence for estimation

we can use &, as a minimizer of the statistic:
L’ﬂ(a) = c’;ll\/ﬁ]E’ﬂ[sDT (yiu dia - x;ﬁT)Li]|27

where ¢, = Ep[02(yi, diov — 23, )i2]. Since Ly(ay) ~ x2(1), we can also use the statistic directly for

testing hypotheses and for construction of confidence sets.

This is in fact a version of Neyman’s C(«) test statistic, adapted to the present non-smooth set-
ting. The usual expression of C(«) statistic is different. To see a more familiar form, note that
0, = E[w?x;x}] " E[w?d;x}], where A~ denotes a generalized inverse of 4, and write

v = (wi) fi)di — (wi ) ;)2 Blw?za}] " Elwd;z}], and 3 := o (yi, dicv + 2/ B;),
so that,
Ln(a) = e |V{En[@i(wi/ fi)di) — En[@i(wi/ fi)zi) Elwiza]]”Elwidiaf]}[*.

This is indeed a familiar form of a C'(«a) statistic.

The estimator ¢, that minimizes L,, up to op(1), under suitable regularity conditions,
o, 'n(dr —az) ~ N(0,1), o2 =7(1 —7)E[fidv;] *E[v?].
It is easy to show that the smallest value of o2 is achieved by using ¢; = ¢f induced by setting w; = f;:

o2 =7(1 - 7)E[w? L. (5.29)

n

Thus, setting w; = f; gives an optimal instrument amongst all “immunizing” instruments generated by
the process described above. Obviously, this improvement translates into shorter confidence intervals and
better testing based on either &, or L,,. While w; = f; is optimal, f; will have to be estimated in practice,
resulting actually in more stringent condition than when using non-optimal, known weights, e.g., w; = 1.
The use of known weights may also give better behavior under misspecification of the model. Under

homoscedasticity, w; = 1 is an optimal weight.
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5.3. Minimax Efficiency. There is also a clean connection to the (local) minimax efficiency analysis
from the semiparametric efficiency analysis. [23] derives an efficient score function for the partially linear

median regression model:
Si = 2¢0- (yi, dicr + xB7) fildi — mi(2)],
where mZ(z;) is m,(z;) in (&28) induced by the weight w; = f;:

(1) = E[f}di|zi]

E[fi2|2i] '

Using the assumption m}(z;) = ;0% , where ||0%||o < s < n is sparse, we have that

A )
S; = 2‘%77'(%, dior + x;BT)vf,

which is the score that was constructed using Neymanization. It follows that the estimator based on the
instrument v} is actually efficient in the minimax sense (see Theorem 18.4 in [21]), and inference about
a; based on this estimator provides best minimax power against local alternatives (see Theorem 18.12
in [21]).

The claim above is formal as long as, given a law @Q,,, the least favorable submodels are permitted as
deviations that lie within the overall model. Specifically, given a law @Q,, we shall need to allow for a
certain neighborhood sz of ), such that Q,, € Qi C Q,, where the overall model Q,, is defined similarly
as before, except now permitting heteroscedasticity (or we can keep homoscedasticity f; = f. to maintain

formality). To allow for this we consider a collection of models indexed by a parameter t = (¢1,t3):

i di(ar +11) + 25(Br + t20%) + e, ||t <6, (5.30)
fidi = fixi07 + 0], E[fiv]|z:] =0, (5.31)

where ||B-]lo V [|0%]l0 < s/2 and conditions as in Section [2 hold. The case with ¢ = 0 generates the model
Qn; by varying ¢t within d-ball, we generate models wa containing the least favorable deviations. By
[23], the efficient score for the model given above is S;, so we cannot have a better regular estimator than
the estimator whose influence function is J~1S;, where J = E[S?]. Since our model Q,, contains Q°,
all the formal conclusions about (local minimax) optimality of our estimators hold from theorems cited
above (using subsequence arguments to handle models changing with n). Our estimators are regular,
since under Q! with t = (O(1/4/n),0(1)), their first order asymptotics do not change, as a consequence

of Theorems in Section[2 (Though our theorems actually prove more than this.)
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APPENDIX A. ANALYSIS UNDER HIGH-LEVEL CONDITIONS

This section contains the main tools used in establishing the main inferential results. The high-
level conditions here are intended to be applicable in a variety of settings and they are implied by the
regularities conditions provided in the previous sections. The results provided here are of independent
interest (e.g. properties of Lasso under estimated weights). We establish the inferential results (2.10) and
(2T19) in Section [A-3] under high level conditions. To verify these high-level conditions we need rates of
convergence for the estimated instruments 7 and the estimated confounding function g, (z) = 2’ 37 which
are established in sections and [A] respectively. The main design condition relies on the restricted
eigenvalue proposed in [I1], namely for z; = [d;, }]’

Re = inf ”‘%;6H2,n/”6T” (A32)

= i
ll6zelli<ellér(la

where ¢ = (¢+1)/(c¢—1) for the slack constant ¢ > 1, see [II]. It is well known that Condition SE implies

that k. is bounded away from zero if ¢ is bounded, see [I1].

A.1. ¢1-Penalized Quantile Regression. In this section for a quantile index u € (0,1), we consider
the equation

Ui = Tiny + Tui + €, u-quantile of (&; | Z;,7ui) =0 (A.33)
where we observe {(9;,%;) : ¢ = 1,...,n}, which are independent across i. To estimate 7, we consider

the /1-penalized u-quantile regression estimate

~ . _ A
T € argmin En [pu (i — Z:m)] + -0l
and the associated post-model selection estimate

T € argmgn { Enlpu(gi — im)] = m; =0 if 7,; = 0}. (A.34)

As established in [3] for sparse models and in [I7] for approximately sparse models, under the event
that

A - N -

n 2 o||Bn[(u — H{gi < &u + rui })Zi] | o (A.35)

the estimator above achieves good theoretical guarantees under mild design conditions. Although 7, is

unknown, we can set A so that the event in (A-35]) holds with high probability. In particular, the pivotal

rule proposed in [3] and generalized in [I7] proposes to set A := cnA(1 — v | Z) for ¢ > 1 where
Al —~1]2)=(1—7)— quantile of ||E,[(v — 1{U; < u})Zi]llco (A.36)

where U; ~ U(0, 1) are independent random variables conditional on Z;, ¢ = 1,...,n. This quantity can

be easily approximated via simulations. Below we summarize the high level conditions we require.

Condition PQR. Let T, = support(n,) and normalize En[i%] =1,7 =1,...,p. Assume that
for some s > 1, ||[nullo < 8, |[Tuill2,n < Cy/s/n. Further, the conditional distribution function of ¢;
is absolutely continuous with continuously differentiable density fc(- | d;,2;) such that 0 < f < f; <
SUP, feilds,2 (€ | diy 2i) < f, sup, fliai (el diyzi) < ' for fixed constants f, f and f'.
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Condition PQR is implied by Condition AS. The conditions on the approximation error and near
orthogonality conditions follows from choosing a model 7, that optimally balance the bias/variance
trade-off. The assumption on the conditional density is standard in the quantile regression literature

even with fixed p case developed in [20] or the case of p increasing slower than n studied in [5].

Next we present bounds on the prediction norm of the ¢;-penalized quantile regression estimator.

Lemma 1. Under Condition PQR, setting A > enA(1 — v | &), we have with probability 1 — 4~ for n

large enough

n

NKk2c R2c

12 (T — 17u)
provided that for Ay := Age U{v : ||Zjv]|2,n = N, |[v|l1 < 8Ccslog(p/v)/A}, we have

En ui ~/‘S n
Irul 2381, v o, EallEd
SeA, E,[|7}0]?] sea, En |} | 13/

Lemma [l establishes the rate of convergence in the prediction norm for the £1-qr estimator. Exact con-
stants are derived in the proof. The extra growth condition required for identification is mild. For instance

we typically have A ~ /log(n V p)/n and for many designs of interest we have infsea, ||Z;0]|3 ,,/En[|Z6]?]
bounded away from zero (see [3]). For more general designs we have

||Iz llflf Hj;(SHQ,n R2c A )\N
scA, B, [|Z56)3] ~ seA, ||0]1 max;<n || % oo ~ Vs(14c¢) max;<n [|Zilleo  8Ceslog(p/y) maxi<y ||Zilloo

Lemma 2 (Estimation Error of Post-¢1-qr). Assume Condition PQR holds, and that the Post-l1-qr is
based on an arbitrary vector 0y. Let 7y = ||Tuill2.n, Su = [support(7,)| and Q > Eulpu(fis — #0.)] —
E,[pu(G; — &imw))] hold with probability 1 —~. Then we have for n large enough, with probability 1 —~v —
e—o(l)

S |Guts)logp/e) | s | A2
G = m)lan S N = \/—Wmm@ﬁs) PR+ Q

provided that

En ut N/‘Sz 7
ap  Ballrl®P) 5o B 53}/2 L

I8ll0<5uts EnllTi0]?] 1510<5uts Enl|E6]?

Lemma[2l provides the rate of convergence in the prediction norm for the post model selection estimator
despite of possible imperfect model selection. In the current nonparametric setting it is unlikely for the
coefficients to exhibit a large separation from zero. The rates rely on the overall quality of the selected
model by ¢1-penalized quantile regression and the overall number of components s,,. Once again the extra

growth condition required for identification is mild. For more general designs we have

in H~/6||gn in ||57/5||2n > ¢min(§u+3)
I8llo<suts Enl|Z/613] 7 lI6llo<suts |0]l1 maxicn |Filloo ~ V3w + smax;<n [|Zil oo
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A.2. Lasso with Estimated Weights. In this section we consider the equation
fid; = flmf(zl) +v; = fzx;t% + firmri + vi, E[flvz | Zz] =0 (A37)

where we observe {(d;, z;,x; = P(2;)) : i = 1,...,n}, which are independent across i. We do not observe
{fi = f+(di,z)}~, directly, but we assume that estimates {ﬁ ™, are available. Also, we have that
T, = support(6;) is unknown but a sparsity condition holds, namely |T},,| < s. To estimate 6,,, and

v, we compute

2

S argngnEn[f?(di —20)% + 5|\f79|\1 and set 0; = fi(d; — 2/0,), i=1,...,n, (A.38)
n

where A\ and fT are the associated penalty level and loadings specified below. The new difficulty is to
account for the impact of estimated weights ﬁ Although this impact on the estimation of 6, is minor,

the estimated weights impact estimates of v; can be more substantial.

We will establish bounds on the penalty parameter A\ so that with high probability the following

regularization event occurs

by ~
~> 2¢||T Ry [fixivi] || oo (A.39)

As discussed in [Tl 4 ], the event above allows to exploit the restricted set condition Hé\TT,SWHl <
&||,1,,. — 0|1 for some & > 1. Thus rates of convergence for 6, and ?; defined on (A38) can be
established based on the restricted eigenvalue kg defined in (A32) with z; = z;.

However, the estimation error in the estimate ﬁ of f; could slow the rates of convergence. The following

are sufficient high-level conditions.

Condition WL. For the model (A.37), normalize En[xfj] =1,5=1,...,p, and suppose that:
(i) for s > 1 we have ||0;|lo < s, En[r2, ;] < Cs/n, @11 —~v/2p) < §,n'/3,
(i) 0< f< fi < [ uniformly inn, and 0 < ¢ < Ev? | 2;] < ¢ < 00, a.s., I?ngizzgﬁg < C,
(#3) with probability 1 — A,, we have max; <y ||i||coc < Ky,

— ~ F2_ r232
max|(E, — B)f203,07]] < 0, max Bal(Fi = fi)2030f) < 6n, Ealflrhn] < Eo [U02) <

(iv) KfTO < fT < ufTo, where fTojj ={E, [f?xz-vz]}lﬂ, 1—=9, <L < u<C with probability 1 — A,,.

ij Vi

Comment A.1l. Condition WL(i) is a standard condition on the approximation error that yields the
optimal bias variance trade-off (see [4]) and imposes a growth restriction on p relative to n, in particular
logp = o(n'/?). Condition WL(ii) imposes conditions on the conditional density function and mild
moment conditions which are standard in quantile regression models even with fixed dimensions, see [20].
Condition WL(iii) requires high-level rates of convergence for the estimate ﬁ Several primitive moment
conditions imply first requirement in Condition WL(iii). These conditions allow the use of self-normalized
moderate deviation theory to control heteroscedastic non-Gaussian errors similarly to [2] where there are
no estimated weights. Condition WL(iv) corresponds to the asymptotically valid penalty loading in [2]
which is satisfied by the proposed choice T, in I). O

Next we present results on the performance of the estimators generated by Lasso with estimated

weights.
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Lemma 3 (Rates of Convergence for Lasso). Under Condition WL and setting A > 2¢//n®~1(1 —~/2p)
for ¢ > ¢ > 1, we have for n large enough with probability 1 — v — o(1)

S A 1
i ; 97'_97' n§2 f T = -
I FaaiBr = 0l < 2es +er+ 222 (s 1) )
~ Vs{er +en} \s 1 1Y 2¢|T50 [l 2 )
0, —0,|1 <2 — — Z 14 — | =0 liee 7 .
I I Koe + NRkekoe ut c + + 2¢ be—1 )\{Cf +end

where & = | T 73 loo | Trolloo (ue + 1) /(e — 1)

Lemma [3] above establishes the rate of convergence for Lasso with estimated weights. This automati-
cally leads to bounds on the estimated instrument 7; obtained with Lasso through the identity
- = vi | 7 ~.
v —vi = (fi — fi)f_ + fixi(0r = 07) + firmri- (A.40)
3

The Post-Lasso estimator applies the least squares estimator to the model selected by the Lasso estimator

(A.39),

0 € arg min { E,[f2(d; — 2/0)%) : 6, =0, if 6,; =0 } set ¥; = fi(d — 210,).

K2

It aims to remove the bias towards zero induced by the ¢;-penalty function which is used to select
components. Sparsity properties of the Lasso estimator 57 under estimated weights follows similarly to
the standard Lasso analysis derived in [2]. By combining such sparsity properties and the rates in the
prediction norm we can establish rates for the post-model selection estimator under estimated weights.

The following result summarizes the properties of the Post-Lasso estimator.

Lemma 4 (Model Selection Properties of Lasso and Properties of Post-Lasso). Suppose that Condition
WL holds, and k' < ¢min({s + ?—2{6? + 23} /6n) < dmax({s + ’g\—i{c? +c2}}/6,) < K for some positive
and bounded constants k', k"”. Then the data-dependent model T,,, selected by the Lasso estimator with
A= 2¢/n® (1 —~/2p) for ¢ > c > 1, satisfies with probability 1 — v — o(1):
~ ~ n2
107]l0 = [Tomr| S s + p{ﬁ' +ei} (A.41)

Moreover, the corresponding Post-Lasso estimator obeys

[ Tonr log(p V) | M5

Hx;(@- = 0:)ll2n SPcpter + n ke

A.3. Instrumental Quantile Regression with Estimated Data. Next we turn to analyze the in-
strumental quantile regression discussed in Section 2l Condition IQR below suffices to make the impact
of the estimation of instruments negligible to the first order asymptotics of the estimator ¢.,. Primitive

conditions that imply Condition IQR are provided and discussed in the main text.

Let (d, z) € D x Z. In this section for h = (g, ), where § is a function of variable z, and the instrument

7 is a function that maps (d,x) — i(d, z) we write
Vo i (Yis diy zi) = Ya,5,:(Yir iy z) = (7 — Wy < §(zi) + dia})i(di, 2i) = (1 — Hyi < §i + dia})is.

We assume that the estimated functions g and 7 satisfy the following condition.
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Condition IQR. For some sequences §, — 0 and A,, — 0 with probability at least 1 — A,,:
() fyeldiz | diszi) < Fy flaio @ | divzi) < F5 Elfioi | 2] = 0, 0 < ¢ < |E[fiditoi]|, and
ma; o (B[]} /2 V(B[}V < C:
(ii) {a: Ja —ar| < n~12/6,} C A;, where A, is a (possibly random) compact interval;
(iii) the estimated quantities h= (9,7) satisfy

fgljf{l + [eoi| + [5 = woil /2 (|gri — Gillon < 8un™ Y4, |En[fitoi{gi — gri}]| < 6on=1/2

% = toillon < 6y Ngri = Gillon - [T — toillon < 6an=1/2, A2
S |5 = B) [ 0 i 20) = iy 2)|| < 8 02 (A.43)
lar —ar| <6, and  En[d, 7y, di 2)]] < 6n n~1/?2 (A.44)
(iv) [[5i = willzn < 0n and || H{]ei| < |di(or — &r) + gri = Gil}Hl2,n < 67

Lemma 5. Under Condition IQR (i,ii,iii) we have
{Elfiditoi] "E[T(1 = 1) |Elfidieoi] ™1} 2Vn(ar — ar) ~ N(0,1).
Moreover, if additionally IQR (iv) holds we have
nLn(0r) ~ x*(1)
and the variance estimator is consistent, namely

E, [ﬁdiz\i]_lEn[(T — Wy <G + dicir })* )R, [ﬁdi?i]_l —p Blfiditoi] 'E[r(1 — 7)&;|E[fidito:] !
APPENDIX B. RESULTS FOR SECTION [3]

Proof of Theorem [ We will verify Condition IQR and the result follows by Lemma[El Condition IQR(i)

is assumed.

Condition SE implies that x. is bounded away from zero for n sufficiently large. Step 1 relies on
Post-f1-qr. By the truncation we have 3, = |B;]o < Cs for any C > 2. Thus, by Condition SE
@min (8- + $) is bounded away from zero since s, + s < £,,s for large enough n with probability 1 — A,,.
Moreover, Condition PQR is implied by Condition AS. Lemma [Glensures that ||3£25) — Bl < 2|1B- =B+ 11
and (|77 = B7)lam < 175(Br = Br)llon + v/ Gmax(5)/5]|Br — Brll1 since @max(k)/k is decreasing in
k. Therefore, by Lemma 2] we have || (B, — B)llzn Sp /slog(n Vv p)/n provided the side conditions
required in Lemmas[Iland[2l To verify those side conditions for Lemmalllet Z; = (d;, «})" and § = (84, 97,)".
By Condition SE and E,[|d;|?] <p E[|d;|?] < C, we have

‘i 1253113, inf {bmin (s+C) PP 2512
lollo<s+0s =nlFOPT = gjjo<s s MEnllwidn I+ A0PEA[di]7]
{Pmin (s+C)}>/2||5||°
TK ;102 1 $max (5T C )[04 2 +A[[0]E,, [[di]°]

WV

inf
[16]lo<s+C's
{Pmin(s+Cs)}*/? > 1
4K /51 Comax (51 Cs)+4E, [|di )] ~ Ko /5

The relation above and the conditions K2s?log®(pV n) < 6,n and A < \/nlog(p V n) yields

A/ c A
n ¢m1n(s+ S) ]E|:|z ”?;g >p = lﬁ - - 0.
A/s+4/snlog(pvn) ||5||0<S+cs n[|2;0]°] «slog(pvn)

WV
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Moreover, noting that ||d;| V |dq] < ||d]], we have

En[lrgri| |#;5]%] Enllrgril 12182 2]+ En(|7grild; 0]

su g <2 su
lossrcs  POBn S gaglie, o CTCIIE
X X
I7grill2,n\/ ¢max(s+Cs)10c | Kalldzlls | lrgrillz,nlld; 2,
< 2 Su QTZ n n
h ||5||o<sp+Cs Gmin(s-+Cs)[l0: |2 * Gmin(s+Cs)
X
K;:\s5+Cs
< C\/_¢n11n(5+cs - 0-

The verification of the side condition for Lemma [ follows similarly.

Step 2 relies on Post-Lasso. Condition WL(i) and (ii) are implied by Conditions AS. Indeed, the
moment conditions in AS imply the first part, the second part ®~*(1 — v/2p) < 8,n/3 is implied by
log(1/7) < log(p vV n) and log®p < §,n. Next we establish Condition WL(iii) under known conditional
density. The first condition is implied by Lemma[§ under the moment conditions and the growth condition
KXlogp < d,n and f; < f. Since fz = f; the other requirements in WL(iii) follows.

Next we establish Condition WL(iv). Note that

max;<p [En[2}; (fidi)?] — Bl U(fz di)?]] < max;<p [(En — B)laf; (fidi)?]] < and
maXJ<P UE [f Iz] 7,] [f2 7,_] z]|<maXJ<ZD|(]E _E)[f2 z] 7,” <P5

by Lemma[§ because E[f2x U v?] is bounded away from zero and from above. Thus FTOJ ; is bounded away

from zero and from above with probability 1 — o(1). Next note that
(maxic, fHEW (fidi)?]) < T maxj<, Ea?d?] < C. and
(maicn F2)E2, (fids)?] = (maxicn f2)E[22, (07 + 2myi(2) frvs + f2m2,(20))
= (maxicn f)E[v7] + (maxicn f7)E[2d; fPm2,(2)] > Elf2a;7].
Therefore, the initial penalty loadings {(max;<, f7)En[27;(fidi)?]}j=1,... p satisfy Condition WL(iv) with
¢ — 1and u < C. By Lemmaldl and the growth conditions we have that the penalty loadings ijj using v;

2
]
2
iJ

fRE
fHE

also satisfy IA“TOjj —0p < ijj < uffojj. Thus, by Lemma [l we have Hx;(@ —0:)|l2.n Sp /slog(nVp)/n
and ||0-]o <p s.

Step 3 relies on instrumental quantile regression. Condition IQR(iii) relation (A.42)) follows by the
rates for 3, and 6, and the growth condition K2s2log?(p V n) < d,n.

To show Condition IQR(iii) relation (A43]) we will consider the class of functions

F={Yy: <zif+dia} — {y; <2iBr 4+ dia} : ||Bllo < Cs, [|B— B-]| < C/slog(pV n)/n}.

Since F is the union of (£ ) VC classes of dimension C's, it satisfies log N (|| F||2,, , F,Prn) < Cslog(p Vv
n) 4+ Cslog(1/e).

Note that
Sup }(En - E) [907 (i, 87 + di@)0; — @7 (Yiy Gri + dioa)vl}
acAr
< sup }(En —E) [@T(yi, :10257 + d;){v; — vl}} ‘ + (B.45)
acA,

(B.46)

+ sup |(B —B) [{or (i 7457 + dia) = or (i, 21 + dic) o] +
acAr
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+ Sup. |(En — E) [{0r (41, 2387 + dit) — @7 (yi, gri + dicx) Yvi] | - (B.47)
ac

To bound (B.4H), we write v; — v; = flx;{gf — 0, }+ firmri- Substitute the equation above into (B.45]).
Using triangle inequality and Lemma [9 together with the entropy bounds for F and

G ={0:||z}8]|2.n < Cy/slog(pVn)/n,|d|lo < Cs},

we have
(B9).(1) = sup | (En — E) [soT(y“ @}Br + dict) fixi {0, — 0~ }” <p \/0510g(1’v n) \/slog(SVn)
(m)(ll) = Seu}f (]E’!L - E) |:907'(y17 7,67’ + dzOé fz'r'rn-rz \/m[

To bound ([B-46), by LemmalT, ||#/{3- — - }Hlom Sp /slog(p V n)/n, E[(1{y; < a}—1{y; < b})%v2] <
E[fv?la — b}, and [[v}[|l2,n Sp {E[v}]}"/?, we have

sup | (B, — B) |- (v, 2457 + dio) — or i, 2367 + dia)oi
acAr

1/2
<5 \/C’s log(p V n)logn <{E[v?]}1/2f\/CslogT(Lp\/n) n \/slog(p\/n) {E[vf]}1/2> _ OP(n,l/Q)

n n

provided that s%log®(p V n)log?n < 8,n. Similarly, to bound (BAT), by Lemma [0 and ||7g4]l2.n Sp

\/s/n, we have

Sup ‘(En - E) [{(p‘l'(ylv x;ﬁr + leé) - (p‘r(yia gri + diOé)}’UiH

acA,
1/2
Sp /2 ({E[ A Fllrgelshy + (B 1}”%/%) =op(n™)

Next we verify the second part of Condition IQR(iii) relation (AZ44]). To show

|En[907' (yiu ‘T;ET + dzd‘r)ﬁl” SP 671 n_1/2

consider that

oy ElerliorBet d )b} (Bl B+ dia)oi])?
o Enl0?(yi, v4Br + dir)0?]  a€Ar By [02(yi, 7}Br + dic)0?]
1
72(1 = 7)2E, [02] ac mln {E [@r(yu%ﬁr + d; a)vz]}

Letting @;(a) = cpT(yl,szT +d;), vi(@) = o (yi, gri + d;) we have

[En[@i(@)0]] < [(En — B)[@i()8i — pi(@)vi]] + [E[Gi(a)0i] — Elpi()vi]] + [En[ei(a)vi]]
Sp On 072 4 Sula = ar| + [Enlpi(a)ui]]

where the bias term |E[@;(a)t;] — E[pi(a)vs]| Sp 0, n~ 2 4 6,|a — a,| follows from relations (EL74)),
(H.18), and (H.77)) in the Supplementary Appendix. Therefore,
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{E.[07]} " .
g - 7 -
72(1 —7)2 ac4,

{E, 07} .
P BT e LT 2 Gl o] [Enfi(a)ui] )
{E[07} !

1 =nit S —1/2 * S EN 2
~P 72(1—7)2 {0nn + 0nla” — ar| + [Enfps(a®)vi]| }
where @ € argmin,e(a:ja—a,|<n-1/2/s,} [Enlpi(a)vi]|. Tt follows that [a*—a, | Sp n~Y% and |E, [@i(a*)vi]| <p

n~! max;<, |v;|. Therefore, since max;<,, [v;| <p n'/4 by E[v}] < C, we have

5nn71/2

[En[i(ar)oi]] Sp A=

O

Proof of Theorem[2 The analysis of Step 1 and 2 are identical to the corresponding analysis in the proof
of Theorem [l Define (7;; %) = (fiyi; fidi, fix:), since fi = f(di, ;) and 0 < f < f; < f, by Lemma 2
we have ||}, — grilla.n <p /slog(pV n)/n and |d, — a,| < 6,. (Note that the verification of the side

conditions follows as the verification for Step 1 since 0 < f < f; < f )

Next we construct instruments from the first order conditions of Step 3. Let fT* denote the variables

selected in Steps 1 and 2: fj = support(AgS)) U support(@). By the first order conditions of the the

weighted quantile regression optimization problem, (&, BT) are such that there are s; € dp,(y; — dicr —
ziB;),i=1,...,n, such that

Bnlsi fi(ds, 2;5.)'] = 0.
Trivially En [s; fi(di, 2/ 7,)I(1, —6) = 0 since it is a linear combination of the equations above. Therefore,
defining v; = f;(d; — LEZT: 57), we have E,[s;0;] = 0. Moreover, since s; = - (y;, didtr + :C;BT) if y; #
diGer + ;B37,
< |En[si0i]] + En[1{y: = diir + 2}, }[0;]]
< En[l{yi = dicir + 2B }[0; — vil] + En[1{y: = dicir + 2} 5 }|vi]
<A/ AT /018 = vill 20 + maxicn [vsl (1 +|T7]) /7.

En o7 (yi, dicer + 2457 )03]|

When the right side is op(n~'/2), the double selection estimator ¢, approximately minimizes

Z (a) _ |]En[907(yi,dia + xé?r)@iHQ
n En[{<ﬂ~r(yz, diOZ + I;ﬂT)}2i}?] )

Since || <p s, /s|0i — Villo.n = 0p(1), 83 < §,n, and max;<, [vi| <p n'/% by Epf] < C we have
(14 T2 )/nlli = villzan + max fos| (1 + [ T71)/n Sp /5/0]0 = villa + '/ fn = o(n™'/2).

The result follows by Lemma [Bl a
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B.1. Proof of Theorems for Unknown Density.

Proof of Theorem[3. The proof is similar to the proof of Theorem [ as we will also verify Condition IQR
and the result follows by Lemma The requirement on the conditional density function in IQR(i) is
assumed in Condition AS. By setting tp; = v; the other moment conditions in IQR(i) are assumed in
Condition AS. The analysis of a,, -, BT and ET in Step 1 is the same as in Theorem [II Therefore A,
satisfies the requirement in IQR(ii). Moreover, |@, — a,| <p v/slog(n V p)/n satisfies the first part of

(&), and ||2}8; — grillo.n Sp /slog(n V p)/n. The second condition in IQR(iv) also follows since

1{lei] < |di(or — &) + gri — Gil 3, < Ea[l{lei] < |dilar — )| + |24(B- — B-)] + [7gril}]
En[1{[e;] < 3|di(ar — ar)[} + En[1{les] < 3|25 (8- — Br)[}]
+En[1{|61| < 3|TgTi|}] Se me s2log(n V p)/n.

Next we establish rates for ﬁ Under Condition D we have

slog(n V p) i

1fi = fillzn Sp + h +h* and I?gidﬁ — fil <p On (B.48)

n

where k depends on the estimator. Let ¢ denote the set of quantile indices used in the calculation of ﬁ

Step 2 relies on Post-Lasso with estimated weights. Condition WL(i) and (ii) are implied by Conditions
AS. Indeed, the moment conditions in AS imply the first part, and ®~(1 —~/2p) < 6,n'/3 is implied by
log(1/7) < log(pVn) and log® p < 8,n. The first part of Condition WL(iii) is 1mphed by Lemma [§ under
the moment conditions and the growth condition K2logp < §,n. Condition WL(iv) follows similarly as

in the proof of Theorem [ using the uniform consistency in (B.48]).

The second part of Condition WL(iii) follows from (B48) and Condition WL(iv) since

maxE, (f; — £)*a0?) < max|f; - f1|2{gn3;<aa ~B)ls W]+maxE[xwvl]}<p6

J<p J<p

The third part of Condition WL(iii) follows from (B.48) and Condition WL(i,ii) since

& = En[F2r2,) < max{|i = fil + 1A Enlri] S 5/m.

2

To show the fourth part of Condition WL(iii) we note that max;<, J/“?(fi—FC'hE)Q <p Cand 1/ min;¢, f? <
C. Letting ¢, = Bu — B, and Y, = &, — v, for u € U, we have

& =E(fi - f»? 2/ f?]

Sp WFE[02] + W2 B o2 (2}6,)% + v?d202 + vir2)] (B.49)
ueU
Conditional on {z;,i =1,...,n}, note the following relations for u € Y
E.[viry,]  SpE[iry] = Ea[ri,Elf | 2]] < Eplry,] maxicn E[v] | 2] S s/n
En[v}d;07] = Enlo}di]0; < {En[vf]E,[d]]}'/?97 Sp slog(p Vv n)/n

(B
En[v}(2764)?] = En[(2762)*E[v] | 2]] + (En — E)[v7 (2]64)?]
< En[(270u)?] maxicn B[] | zi] + [|6u]1? Supys)0 <160 0,161 =1 | (En — E)[{viz}d}2]]
To bound the last term we have ||2}6,[|3,, Sp slog(nVp)/n and ||6,]|o < 2C's with probability 1 — A, by
Condition D. Then we apply Lemma[[Twith X; = v;z;. Thus, we can take K = {E[max;<, | X;[%]}*/? <
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Kz{E[maXignvf]}l/z < nl/8K, (since E[vf] < O), and E[(6'X;)?] < E,[(2}6)?] max;<, E[v? | 2] <
Comax(]|6|0)]|6]|%. Therefore,

— 2. .1/4 1 3 1 2,1/4 1 3 1
SUD)||510<2C's, 5]|=1 ‘(En —E) [{sz;6}2]| SP {Kxn 5 ognn og(pVvn) + \/Kxn 5 ognn Og(PVn)¢maX(2cs)}

K, log® n K;slog(pvn) K, log3n Kzslog(pvn)
S { ni/4 ni/2 + ni/4 ni/2 ¢mdx(2cs)

under the conditions K < 6,n%9, ¢ > 4, and K2s*log*(p V n) < 0,n, and ¢max(s/d,) being bounded
from above with probability 1 — A,, by Condition SE. Therefore,

C2 < SlOg(n\/p)

1 K2k
fP h2n

Under Condition WL, by Lemma (] we have

-\ 2
~ n?{c% + 2} nslo hk
TG ~ g(n V p) n
10-l0 <P VI +8S Smr =5+ 2 DY and
~ 1 /slog(nVp) PAS
L0 =0 lom Sp ) ———F + AP 22
120 60l Sy SEE)  g 2

where we used that ¢max(3imr/6,) < C, and that A > /n® (1 — v/2p) ~ \/nlog(p/v) so that

\/Sm‘r 10gp < = \/S lng hk
n ~h n

For convenience we write &; = (d;, z})" and we will consider the following classes of functions

K ={2if:[IBllo < Cs, I8 = B-|| < C\/Slogp\/n/n}

F ={r—Hyi<zf+dia}:|Bllo<Cs, ||8—5- < slog(p Vn)/n,|la—a;| < d,}
G = {ald: [ldllon < O{Ly/aTogp]n + HE + 2}, o) (B.50)

J

1 [7ullo < Cs, [|Z)7, — Qu | di, z:) |20 < Cy/slog(p V n)/n,
N E e — Qu | diy 2i)|lse < Onhyu €U

We have that K and F are the union of ( ) VC classes of dimension C's and G is the union of ( ) VvC
classes of dimension C's,,,. Thus, log N(¢||F||2,p,, F.Prn) S Cslogp+Cslog(1l/e) and log N (e |\G||27]pn,g, P,) <
C3Smrlogp + Cspyr log(1/e) where ||F|l2p, <1 and G(y,d, z) = maxseg |2;0]. Under the choice of band-
width h in Condition D, we have CK,+/s%log(nV p)/n < d,h, and the functions in J are uniformly
bounded above and below. Moreover, J is the union of (C{’S)k VC classes of dimension C’s so that

log N(e[|/[|2,p,.. T, Pn) < Cslogp + Cslog(1/c) where J(y,d, z) = sups. ; |f(y,d, 2)].

Next we provide bounds required by IQR(iii). We have

{Eal(@ — 02132 <{Ea[{(fi — fi)(di — 2}0-)}2)}/2 + {En[{fizi (6 - 572}2]}1/2 +A{E[{ firmri 32
Sp{Ex [{( — fivi/ FYY2 4+ {Ba[{(fi — fi)x (0, — 0:)}71}1/2
+{E» [{( fl)Tmﬂ} ]}1/2 + maxicn fi{llzj(0r — 0-)ll2,n + [Tmrill2n}
SPCf +maxicy |f1 = fil |3 (07 — 97’)”2,71

+h4/w+hk \/—
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Therefore, since max;<,, [0; — v;| <p 6, and max;<, [v;| <p n'/6 since E[vf] < C, we have

nl/3

{Eal@ —v)?I}'/? Sp (1/B){slog(p Vv n)/n}'/? + hF + 2\/5 < 6,

{Bal(Bi = 00} llgri — 21Brllon Sr {%\/ s h’“} Y

< p-1/2 {%M + Rk slog(p\/n)}

nl/2

~ ~ ) N T — s 1/2
max;<n {1 + [vi| + [0; — vi|}2)|gri — 2}Br )2 Sp A {maxlg"{ltlﬁélﬂm vil} Slog(pvn)}

The last condition in (AZ42)) follows from Lemma [7] and the entropy bounds on K

> max; <, v2 v2]}slo n
Enlfivi{@iBr — g}l Sp supyex [Balfitoi{w: — gri}]] Sp o/ 2hosnve) /lmmsicy i Elufl}s log(pvn)

< —1/2 [ maxi<n v;+E[v}] s log?(nVp) 1/2
~Pn ni/3 n2/3

Next we verify (A43). Let 3;(r) = or (yi, 2Br + dsev), i(ct) = @1 (ys, 3> + dict). To show Condition
IQR(ii) note that

sup [(E, — E) [£i()0; — ¢r (yi, gri + dicv)vi]|

ac A,
< sup [(E, — E) [§i(@) (i — vi)]| + (B.51)

+ sup [(E, — E) [{@i(@) — wi(a)}vi]] + (B.52)

+ sup |(En, — E) {pi(a) = ¢r (yi, gri + di) }ui] | - (B.53)

To bound (m, we write U; — v; = U; — %i)\z + %i)\z — v = %\l(ﬁ - fz)/']/[; + fz{E;{gT — 6‘7—} + firmri-
Substitute the equation above into (B.51) and using the triangle inequality we have

(BAI) < sup

acAr

(En — B) [2i(a)(d: — 218) (fi = £3)] [+ sup
acAr

(En —B) [1(0) fiz'{0: - 0.1] \+as€u£ [(En — B) [3i(0) firmeri]|

Recall that feq.(0 | d,2) = f(d,2) and 7y,r = rmr(d,2) = m(z) — 2'0,. We consider the following
combinations of F, G and J:

HL {(y,d,z) = wi(y,d, z) - {d — 2’0, —wa(y,d,2)} - {ws(y,d,z) — f(d,2)} : w1 € F,wy € G,wz € T}
H2 {(yada Z) — wl(yvdvz) : f(da Z) ' wQ(yada Z) Twy € ]:a wa € g}
Hg = {(yada Z) — wl(yvdvz) : f(da Z)qu-(d, Z) s wy S ‘F}

Consider the event Q := { ﬁ eJ, xﬁT €G,and 7 — 1{y; < dia—l—xﬁ;} € F for any a € A; }. Under Q
we have

(BED) < sup |[(En —E) [w(ys,di, z:)]| + sup |(Bn — E) [w(ys, di, z0)]| + sup |(En — E) [w(yi, ds, z:)]|
weH weH?2 weH3
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By Lemma [ together with entropy bounds based on the entropy bounds for F, G, and J, we have

SP [ Smr 105(1)\/”) Supweﬂl{(En V. E)[w2]}1/2

< Smr log(p\/n) E,VE 20F o rN211/2
S/ TR sup e {( W2 (fi = £)% + rori(fi = )7 + (@30)*(Fi — £)°1}
<n —1/2 { L VSmzslog(nvp) S’"Tsx}‘lg("\/p) +RF \/smT log(nVp)+ = \/smfslog(n vV p)}

SUP,, 1 |(En —E) [w(yi, ds, zz)]|

n

/smrlog(pvn)fsupéeg{E x 5) ]}1/2

<p
< 71/2{}1 VSm\T/f_Llogp—Fhk Smr log(n V p) —|—% 'svaslog(n\/p)}

n s lo; n) g — s2 1o n 1/2
SupwE’H3 ’(E" - E) [w(yl7 di7 ZZ)” SP ! gEva )f{]En[r?nTi]}l/z S n 1/2 {C ! 5(1’\/ ) }

sup,, ez |(Bn — E) [w(ys, di, z:)]|

where we used that |w;| < 1, f; and f; are uniformly bounded and (B:49). Plugging in the definition of

Sm+ we require the following conditions to hold:

h* V/slog(nVp) < 1 /slog(n V p) anog(n\/p < 6, h2l’c\/ﬁ\/n10§(nvp) <o,
s loih(zn\/in) < 57“ 510547)(\;1\/;0 < 67“ %S log(n\/p) < 571

The bounds of (B:52) and (B.53) follows as in the proof of Theorem [ (since these are not impacted
by the estimation of density function). The verification of Condition IQR(iii),

B, (07 (yi, @ Br + didir)03]| < 6 n~ Y2,
also follows as in the proof of Theorem [II

The consistency of 71, follows from ||0; — v;||2,n —p 0 and the moment conditions. The consistency of
3. follow from LemmalBl Next we show the consistency of 53, = {E,[f?(d;, z) (dis ale)]}u Because
fi = [, sparse eigenvalues of size £,,s are bounded away from zero and from above with probability 1—A,,

and max; <y, |fi — fil = op(1) by Condition D, we have

{Enl 7 (diy ) (diy @l )31t = {Balf7 (i, @) (dis )]} + 0 (1)

So that g, — 69,, —p 0 for
o = {BulfP(dis o) (di, @) Y17 = {Bulf2d]) — B[ £ i i { B [fR 5 )} T B[ R ypdi] }

Next define 6,.[T] = {E,, [f2x 72 p ]} B[ f22,d;] which is the least squares estimator of regressing f;d;

1 1
on f;x,5. Let 6, denote the associated p-dimensional vector. By definition fiz;0, = fid; — firms — vi, S0

that

~—2
Oan

W22 — B 2dif]
2d7) — Byl fid; fix}07] — En[fidi fix (0, — 0-)]
fidivi] — Ep[fid; firmri] — Ep [fidifiw;(é.,- —0.)]
H

+ En [vi fimr(2:)] — En[fids firmzi] — Bn[fidi fiz} (6 — 60)]

We have that |E, [f;viz}0,]| = op(d,) since E[f;v;z.0,] = 0 and E[(vZmeT(zZ)F] < E[?fd?) < fAEYE[H}Y? <
C. Moreover, B, [fidi firmri] < [2lldill2nllrmrillon = 0p(8n), |[Enlfidifixi (0 — 0:)]] < ||dill2nl fix} (67 —

0:)||2.n = op(0,) since |T| <p 8 + s and support(6,) C T.

mn

Enlf
E.[
E.[
Enlv

mn
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Proof of Theorem[]] The analysis of Step 1 and 2 are identical to the corresponding analysis for Algorithm
1. Let fT* denote the variables selected in Step 1 and 2: T* = support(Sr B2 )) U support(@‘;). Using the

same arguments as in the proof of Theorem Bl we have

N 2
~ nslo nhk
ITe Sp 8t =s+ gp+(—>

h2\2 A

Next we establish preliminary rates for 3, and &, . Note that since ﬁ is a positive function of (d;, z;),
all the results in Section [Ad] apply for (g;,%;) = (ﬁyz, ﬁ-(di,x;)’ ) since these results are conditional on
(di, ). For ny = (ar, BLY, Br = (@r, B2 ') and i, = (ér,3.)" be the solution of

i € argminEn|fipr (yi — (dir 7}, )]
where f; = f;(d;, ;) > 0. By definition support(3,) C T so that
En[fi{pr(yi — (disa)ite) — pr (i — (dis 2)0e) Y] < Enlfilpr (9 — (diy 2})07) — pr(yi — (diy 2})nr) Y]

Therefore we have

Efilpr(yi — (di, 2)itr) — pr(yi — (div2i)ne)}] < (B — B) il pr (i — (di2)ite) — pr(yi — (di 2)ne) Y|

FE[fil pr (yi — (di,2})ir) — pr(yi — (diy 2)nr) Y]
(B.54)

To bound the first term in (B:54) consider the class of functions
H = {pr(yi = (di,zi)n) — prys — (di,x)n-) < [Inllo < '8, [[(di, 27) (0 = 1) 2.0 < C/ 83 logp/n}
Note that f; is constructed based on the class of functions 7 defined in (B:50) which is the union of (C{”s)z

uniformly bounded VC classes of dimension C’s. Therefore,

s | = B) oo (01 — (b a0)0) = pr o — (et ) Sy BV, [ o

neH
To bound the last term in (B54)) let 6 = 7, —7,, and note that, conditional on (d;, z}), since ||(d;, })'0]|2.n Sp
Vslog(pVn)/n, ||rgrille,n Spy/$/n and max;<, Fi A ﬁ_l <p 1, by Lemma [TH we have

B (0 (o (d,5000) — ol — (s} S ZOELET),

Similarly, Lemma [[3 with (§;; &) == (fiys; fidi, fix;), implies that for § = 7, — 1,

Zv‘rz 5”2 n

i . ] (d
1 2310 A ATAN e 2080} Bl (0 — (i) — pr — (di)}] ) 21 il

Combining these relations with 1/¢min(5%) Sp 1 by Condition D, we have

slo
(i, ) 31120 A{@all (i, )0 ]lm} S \/ | (diy 7)o + STBP

which leads to ||(d;, z}) (7 — nr)ll2.n SP 4/ S:I#.

Next we construct instruments from the first order conditions of Step 3. By the first order conditions

for (&, ;) in the weighted quantile regression we have for s; € dp,(y; — dice, — 23, ) that

n[ Zfl( 2 1T*)]:O-
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Since s; = o, (i, dicr + BT) if y; # diar + ﬂT, by taking linear combination of the equation above
(1,—6,) and defining 0; = f;(d; — T, 6‘ ) we have

< En[l{yz =d;0r + x;B‘r}l@l - Uil] + En[l{yz =d;0r + ‘/L.;,BT}|UZ|]
<A U+ [Tz /B = vill,n + maxicn [vi|(1+ [T7]) /n.

|EHDPTQﬁ7dﬂiT_%JéBTﬁ2”

When the right side is op (n_l/ 2), the double selection estimator ¢, approximately minimizes

T En \Yi d’L /'VT Ai 2
(o) = [Enlpr (yi, diov + @30 )v]Alw
Enl[{or(yi, diov + x75-) }207]
and we have Ly,(d,) = op(n~Y/2) since |T¥| <p 5, provided that /3%|[T; — villa.n = op(1), and
max;<n |vi| Sp nt/4 by E[v}] < C.

The remaining growth conditions required to apply Lemma [ follow from the same requirements used

in the proof of Theorem [l

h*\/slog(n V p) < —1y/slog(n V p) ¥—r—" nlog(n\/p hzk\/ﬁiﬂlloi(nvp) < 0y

1 1
: Oih(:vp_) < On, %};vp) < On, 25y/log(n V p) < b,

(Note that the additional condition required by the analysis

s log(n V p) <5 slog(n V p) L8 log®2(n V p) /nlog(n V p) h%\/_nlog(n \/p) <.
vn vn h2\ A
is implied by the previous requirements.)
The consistent estimation of ¢, follows as in the proof of Theorem [Bl O

APPENDIX C. AUXILIARY INEQUALITIES

Lemma 6. Consider B and By where ||Bollo < s, and denote B(m) as the vector B truncated to have only

its m = s largest components. We have that

R 1B — Boll < 2018 - Bolla R
”552(6(27”) = Bo)ll2 < ||‘rz(ﬁ - BO ||2,n + v ¢ma><(m)/m”6 - BOHI'

Lemma 7 (Maximal inequality via symmetrization). Let Z1,...,Z, be arbitrary independent stochastic

processes and F a finite set of measurable functions. For any 7 € (0,1/2), and 6 € (0,1) we have that
with probability at least 1 — 41 — 40

w6,/ (20)] < {av/ZT0a@IFI8) @ (o VETZT) 1 - 7) | v 2 (1672001 5).

fer 2

Lemma 8. Fiz arbitrary vectors x1,...,Tn, € RP with max;<n || %illoc < Ky Let ¢ (i = 1,...,n) be
independent random variables such that E[|(;|7] < oo for some q¢ > 4. Then we have with pmbabzlzty
1-87

max |(E, — E)[23;¢7)l <4 KZ(E[|G|]/7)"

log(2p/7)
1<5<p n
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Let us call a threshold function = : R® — R k-sub-exchangeable if, for any v, w € R™ and any vectors
U,w created by the pairwise exchange of the components in v with components in w, we have that
x2(0) V x(w) = [z(v) V z(w)]/k. Several functions satisfy this property, in particular z(v) = ||v|| with
k=2, 2(v) = ||v]|oc With k& = 1, and constant functions with k = 1.

Lemma 9 (Exponential inequality for separable empirical process). Consider a separable empirical pro-
cess G (f) =n~ V23" {f(Z:) —E[f(Z:)]} and the empirical measure P,, for Z1, ..., Zy,, an underlying
independent data sequence. Let K > 1 and T € (0,1) be constants, and e, (F,Py) = en(F, Z1,...,2Zy) be

a k-sub-exchangeable random variable, such that

supsc = |1 fll2,p, /4 .
/ V1og N(e, F,Py)de < e, (F,Py) and sup varpf < 5(4chen(]:, P,))?
0

feFr

for some universal constant ¢ > 1, then

]P’{sup |G (f)| = 4dkeKe,(F, ]P’n)} < éE]p (
feF T

supsec = [ fll2,p, /2
/ € IN(e, F, Pn)_{K2_1}d6] A 1) + 7.
0

Proof. See [3], Lemma 18 and note that the proof does not use that Z;’s are i.i.d., only independent
which was the requirement of Lemma 17 of [3]. The statement then follows by a change of variables of
e =&l |2, -

Lemma 10. Suppose that for all 0 < € < gg
N(e, F,P,) < (w/e)™ and N(e, F%,P,) < (w/e)™, (C.55)

for some w which can grow with n. Then, as n grows we have

172\ 1/2
sup |Gn (f)| Sp v/mlog(@ V) <supE[f2]+ M(sup&[f“]v@[f“]) ) .
feF feF n feF

Proof. The result is derived in [5]. O
Lemma 11. Let X;, i = 1,...,n, be independent random vectors in RP be such that \/E[maxi<i<n || Xi]|2] <
K. Let

Op =2 (C’K\/Elog(l + k)+y/log(p Vv nh/logn) /V/n,

where C is the universal constant. Then,

E

llallo<k, llefl=1 llallo<k, lell=1

sup [|E, [<a'Xz->2—E[<a'Xz->2m]<63+6n sup  4/B(a/X,)2).

Proof. Tt follows from Theorem 3.6 of [33], see [10] for details. O
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SUPPLEMENTARY APPENDIX FOR
“ROBUST INFERENCE IN HIGH-DIMENSIONAL APPROXIMATELY SPARSE
QUANTILE REGRESSION MODELS”

APPENDIX D. AUXILIARY INEQUALITIES

Proof of Lemmal@l. The first inequality follows from the triangle inequality

15 = Bollx < 118 = B lx + 11 ~ ol
and the observation that |3 — (™), = ming g, <m 1B = Bll1 < |IB = Bolly since m = s = ||Bollo-

By the triangle inequality we have

125 (3™ = Bo)llzn < 125(B®™ = B)ll2,n + 125(B = Bo)ll2,n-

Note that for integer k > ||[3(km — ﬁ (km—m ||0 < m and B ﬁ (2m) Ek>3{ﬂ(km — km m)}
Moreover, given the monotonicity of the components, ||[3(km+m) - km)|| < ||[3(km ﬂ(km m)|| //m.

Then, we have

|l25(8 — Bm)]

20 = ||z} Ek>3{ﬁ (krm)

P hss i {BE™) — ’”” ’”)}Hz

V ¢max Zk>3 Hﬂ( kn:) ~ km) m)H
km km—m

V ¢max Ek>2 W

= \/mnf—gi_:)lh

\/mllﬁ;%ulll )

N IN N

N

where the last inequality follows from the arguments used to show the first result. O

Lemma 12 (Moderate Deviation Inequality for Maximum of a Vector). Suppose that
21 Uij
\ 2oim Ul

where Uy; are independent variables across i with mean zero. We have that

Sj=

P (max IS;| > @11 —7/2p)) <1+ 2)

1<j<p

where A is an absolute constant, provided that for £, >0

/6 Ay EUZ?)W
— min M[U;] =1, M[Uj}:= 2= ! ; 75
no OSSP (E Zi:l E|Uij|)

0< @ M (1—7/(2p) <
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APPENDIX E. RESULTS FOR SECTION [A ]l

Proof of Lemmall Let § =7, —n, and define

R(W) = En[/’u(ﬂl - 53;77)] - En[/’u@l - i’ém - TM)] - En[(u - 1{gz < j;nu + Tuz})(iin - i’ém - TM)]

By Lemma[d, R(n) > 0, E[R(n.)] < fllruill3../2 and with probability at least 1 — v, R(1,) < R, :=
4max{f||rui||§7n, lruill2,ny/log(8/v)/n} < 4Cslog(p/v)/n. By definition of 7, we have

R(fu) — R(nu) + Enl(u = 1 < #nu + 1 })E6 = Enlpu(i — 20u)] — Enlou (@i — &)

(E.56)
< 2nulls = 27l

Let N = /8CR,,/£+ % {f||7"m'||2,n 3eAVs 8(1+2c)\/slog(16p/’y i 8cy/nRy log(lﬁp/v)} denote the

nkae Vikae Mslog(p/v)/n}1/?
upper bound in the rate of convergence. Note that N > {slog(p/v)/n}'/2. Suppose that the result is
violated, so that ||Z;d]|2,, > N. Then by convexity of the objective function in (AZ34), there is also a
vector & such that [|#6]/2.,, = N, and

En[pu(§i = (8 +0u))] = Enlou(@i — Fnu)] < 3lnull = 318+l (E.57)
Next we will show that with high probability such & cannot exist implying that [|Z;d]|2., < N.

By the choice of A > cA(1 — v | ) the event Q := {2 > ¢||Ep[(u — 1{§i < &nu + rui})¥i][|o } occurs
with probability at least 1 —~. The event 2y := {]?21 (nu) < R} also holds with probability at least 1 — 7
Under Q1 N9, and since ﬁ(n) > 0, we have

~

—R(u) = 2181l < R+ ) = R0pu) + Eal(u = 1{Gs < Fnu + rai})#]0
= En[pu(§i — (0 + )] — Enlpu(Fi — Zi10)] (E.58)
< 2lnully = 216+ nulls

so that forc = (¢ +1)/(c—1)

nc

mﬁ(ﬁu)-

16711 < elldr Il +

To establish that § € A, := Age U {v : [|#]2n = N,|Jvlli < 2cnR,/A} we consider two cases. If
||5T3||1 > 2C||6Tu||1 we have

1, =~ ne

—Nopelli < ————R
510711 < Ne = 1)3(%)

and consequentially

181 < {1+ 1/@)} drglh < 20 Rim).

Otherwise ||5Tc||1 2¢||67, ||1, and we have

18]l < (1 +2¢)1dz, [l < (1 +2¢)V5l|Zi8 |12,/ Kz

Thus with probability 1 — 27, 6 € A,.
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Therefore, under Q; N Qy, from (E57), applying Lemma [I6 (part (1) and (3) to cover § € A,), for
Z:8||2., = N with probability at least 1 — 4~ we have

= ~ ~ T = ~ ~ Z6|l2.n c 8cnR
Blou(Gi — & + )] — Blpu (@i — #na)) - < 28]y + 125k {805200v8 4 Seiia b flog(T6p/7)
20R + ||x 5H2 N |:3c)\f + {8(1+2c)f + 8can} \/log(lﬁp/'y)]

nk2e K2e N

where we used the bound for ||d]]; < (1 + 20)\/§H{E;S||27n/li2c + 2R,
— 0, we have

S35,
4

Using Lemma [I3] since by assumption supgc 4,

Elpu (i — & (1u +0)) = pu(Gi — Ti0u)] 2 = F7uillzin | 20|20 + N G4, £1|70]|2n

Note that N < 4G4, for n sufficiently large by the assumed side condition, so that the minimum on
the right hand side is achieved for the quadratic part. Therefore we have

)2 _ - _ 8(1 + 2¢)+/slog(16 8cy/nR-/log(16
4 NkKoe N AN

which implies that

% = 8] 3cAy/s  8(1+2c)y/slog(16p/7v) 8c\/_R \/log 16p/v)
/(S n < 8cR i ui||2,n
82 < fScR /1 + i{flr o+ 20 SRRV

which violates the assumed condition that ||#6||2,, = N since N > {slog(p/~)/n}'/2. O

Proof of Lemmal@. Let &, = 7, — n,. By optimality of 7, in (A.34) we have with probability 1 — v

Enlpu (i = #71)] = Bnlpu(@i = #mu)] - < Enlou(@s — #)] = Enlpou(§i — #n.)] < Q. (E.59)

Let N = 2fF, + Acp + 2@1/2 denote the upper bound in the rate of convergence where A, ,, is defined
below. Suppose that the result is violated, so that ||Z(7, — 7u)|l2,n > N. Then by convexity of the
objective function in (A34), there is also a vector &, such that ||#d,]l2.. = N, [|0ullo = [|7u—7ullo < Su+s
and

Enlou(Fi — (1 + gu))] — Enlpu (i — Tinu)] < @ (E.60)
Next we will show that with high probability such , cannot exist implying that 1Z: (T — nu)ll2n < N
with high probability.

By Lemma [T6, with probability at least 1 — &, we have
EH_E u~i_~/' u gu _u~i_~/'u Au 1 16
( P = 230+ 0u)) = pulfs = Timull g | (But s)1og(16p/e) _ - (B.61)
Hi’;éu”gm n(bmin(su + 3)
Thus combining relations (E.59) and (E.61)), we have
E[pu(?jl — (1 + gu))] - E[pu(?jl — &))< ||57;gu|‘2nAsn + @

with probability at least 1 — e. Invoking the sparse identifiability relation of Lemma [[3] with the same

- . Eon[|7wsi| |256]? .
probability, since sup|s|,<s,+s W — 0 by assumption,

U138ul13.0/0 A (@ L1Bull2n) < 1&Bullom {FIruillzn + Acn} + Q.
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82 izl
. — 3 - i ll2,n
where gz, 1= 5 inf ) 5)0<5u+s E. 707

Under the assumed growth condition, we have N < 4¢z, for n sufficiently large and the minimum is

achieved in the quadratic part. Therefore, for n sufficiently large, we have

18wl < Fllruillom + Acn + 202 < N

Thus with probability at least 1 —e —~ — o(1) we have ||5c;gu||2n < N which contradicts its definition.
Therefore, || Z;(u — M) |l2,n < N with probability at least 1 — v — & — o(1). O
E.1. Technical Lemmas for High-Dimensional Quantile Regression.

Lemma 13. For a subset A C RP let
= (1/2)- (f*2/ ") - int By [1302]" /B, [|01°]
= seA ¢ ¢
and assume that for all 6 € A
E [|ru| - |2101] < (f/[4FDE[Z;0]%).

Then, we have

o o fH” [ . N
E[pu(yz - xé(ﬁu + 5))] - E[pu(yl - l‘i??u)] =z = A {QAfH 5H2,n} - f”Tuz”Qn”I;a”Zn

Proof of Lemmal[I3. Let T = support(n,), Qu(n) = E[pu(7i — #'n)], Ju = (1/2)E, [fiZ:7}] and define
16 = ||Ji/25||. The proof proceeds in steps.

Step 1. (Minoration). Define the maximal radius over which the criterion function can be minorated

by a quadratic function

= sup {1 5 Quln +6) = Quln) + sl 5812 > S0, for atl o € 4, 3] <1 .
Step 2 below shows that r4 > ga. By construction of r4 and the convexity of Q,(:) and || - ||,

Qu(nu +06) — Qu(nu) + JZ”rui”ZnH:E;é”Zn 2

5 Sllu - z 7 JOP
> W {8 ings s Qul +8) = Quina) + o1 0l12.n |
2 5[ 73 5112 _
S 1t 0 {1 )5 B G

Step 2. (ra > ga) Let Fj; denote the conditional distribution of § given Z. From [I8], for any two

scalars w and v we have that

pu(w —v) — py(w) = —v(u— 1{w < 0}) + /Ov(l{w z} — H{w < 0})dz. (E.62)
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We will use (EX62) with w = g; — &in, and v = /6. Using the law of iterated expectations and mean

value expansion, we obtain for #z, ; € [0, 1]

Qu(nu + 5) Qu(nu) + f”ruiHZn”i;éHZn 2

Qul +6) = Qulna) + B l(u — 1z < &m0 =
=B | Jy** Fyuja (@ma +1) = Fy,pa, (#m)t]
w | @0 2 t2 ¢ = f (E.63)
=B Sy e ) + 5 F, 5, Fna + T.0)dt)
> 012 — 3 FElIE01] [fol guta #m0) = Fy.12.(9u)t]
> 612 + LI - A PEI#01) - (F//2)B [|#m. — guil - 130]2]

where the first inequality follows noting that Fy, z, (Ziny +7wi) = w and |Fy, 5, (Zi0u +7ui) — Fy, 2, (Zi14)] <
f|ruz|

Moreover, by assumption we have

Bl —aul 18001] =Bllrul 12007) (.64)
(/)(Q/f) [1Z361]
Note that for any & such that [|d]|, < ga we have [|8[|, < ga < (1/2)-(f¥/2/F)-E [|#012]*? /E [|#,6]%],
it follows that (1/6)f'E[|Z;6|*] < (1/8)f [| 51%). Comblnlng this with (E.64]) we have
1
—fEH 0F°) = S F'EIF01] = (F/2)E [|¥in — guil - [#:9%] > 0. (E.65)
Combining (E.63)) and (E.65) we have rq > Ga. O

Lemma 14. Under Condition PQR we have E[ﬁ(nu)] < JFHTmH%,n/?; ﬁ(nu) >0 and

P(R(nu) > 4max{ fllruill3 n, [7uill2.nv/10g(8/7)/n}) <
Proof of Lemma[Ij] We have that }A%(nu) > 0 by convexity of p,. Let €y; = §; — Ziny — rui- By Knight'’s
identity, R(ny) = —En[rui fol Hew < —tryit — 1H{ew <0} dt 20

o~ 1 _ ~
E[R(.)] =Enp[rui fol {‘yilii (x;nu j‘ (1 —t)rus) — Fyila’ci (ﬁinu + 7yi) di]
S Enlrui [y ftruidt] < fllruill,./2.

Therefore P(R(1,) < 2f|I7uill3,,) = 1/2 by Markov’s inequality.

7Deﬁne Zui = — fol Hew < —trm]:— 1{ew; < 0} dt, so that ﬁ(nu) = Ep[ruizui]- We have P(E,[ry;zui] <
2flruill3.,) = 1/2 so that for t > 4f||rul|3,, we have by Lemma 2.3.7 in [37]

—P(|Ep[ruizu]| = t) < 2P(|Ep[ruizui€i]| > t/4)

Since the 7,;2y4:€; is a symmetric random variable and |z,;| < 1, by Theorem 2.15 in [14] we have

P(\/mEn [Tus 2ui€s] | > {\/ En[ﬁzu]) (\/_|E [Tui zui€i] | > t\/ E, [ Tui uz]) 2 exp(—t /2) <7/8
for t > y/21og(8/7). Setting t = 4max{f||rui||§ﬁn, [l7uill2,n\/10g(8/7)/n} we have
P(En [ruizui] 2 t) < 4P(En[7'uizui6i] > t/4) < Y
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O

Lemma 15. Under Condition PQR, for |[fullo < k, N < ||Z(Tu — )|
L—=n

on < N, we have with probability

Ealpuis)] - Balpu(Gin)] < 1200 el {4 " 4\/ (et o) ogl10p{1+ 31 o8N/ 0} }

AT T = 1) 130 + Fllraill2nll 20 = 10) 2,0

Proof of Lemmal[I3. Tt follows from

Ey [pu (i — j;ﬁu) — pu(Pi — 57;7771)] < (E,, — E)[Pu(yz - j;ﬁu)pu (9 — f;nu)” + E[pu (9 — j;ﬁu) — pu(Ti — 57;7771)]

where the first term is bounded by Lemma [I6] and the second term is bounded by (E.63) noting that

o B o )
En l/ Fy 1z, (Tnu + 1) — Fgm(féﬁu)dt] < fE, [/ tdt] < fllE30113 .-
0 0
|
Lemma 16. Conditional on {Z1,...,%T,} we have with probability 1 — -y, for vectors in the restricted set
u~i_~;u 5 _u~i_~'lb'u 4(1 N
sup ‘Gn (p (5: — 2i(n — 5)|)\ pulfe = T ))] <a+ 202 fog(16p(1 1 3vilos(V/N)} /)

§ € Ac,
N < [128llzn < N

Similarly, for sparse vectors

‘Gn (pu(ﬂi — & (1 +~,5)) — pu(Pi — i’énu)) ’ <4+ 4\/klog(lﬁp{l +3y/nlog(N/N)}/v)
<k ”xiéHZn (bmin(k)

sup
< [1dllo < &,

1
N < |#8llzn < N

Similarly, for £1-bounded vectors

I o, _

sup ‘Gn (pu(yz Z; (N +~/55))‘ pu(Ji xmu)) ‘ <44 4% \/log(16p{1 + 3v/nlog(N/N)}/7)
”6”1 < Rl, ”x@ | 2,n N

N < ||Z6]l2,n <N

Proof of Lemmalld. Let w;(b) = pu(§; — Zinu +b) — pu (i — Zimy) < |b|. Note that w;(b) —w;(a) < [b—al.
For any ¢ € R?, since p,, is 1-Lipschitz, we have

var (Gn (M)) < E, [{w; (&,8)}?] < E,[|#6]%]

127 1l2, [ E S

N

1.

Then, by Lemma 2.3.7 in [36] (Symmetrization for Probabilities) we have for any M > 1

Plsup |Gyt ) > M) < ———P( sup G2 [ =22 )| > My4
(Jei (|x;5||2,n YRl W AN 7 /

where G? is the symmetrized process.
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Consider F; = {§ € Ac : ||#i0]|2.n = t}. We will consider the families of 7, for t € [N, N]. For any
§ € Fp, t <t we have

’G% (wi(fﬁ) _ wi(iég(f/t)))‘ < ‘Go (wi(CE i9) _ wi(&; t(f/t)))’ ‘Go ( ft/t)) wi(ﬂ“ﬂé?@#)))’
:1}@7"(%55 8) = (M”/t )H|<G (wi(@o(E/1)| - [§ — 1l
76| —1] t" 1 1
) )i l5 -5l
_2\/_E ( aitl ) 2\F tt

Let T be a e-net {N =: t1,t2,...,tx := N} of [N, N] such that |t — tx11|/tx < 1/[24/n]. Note that we
can achieve that with | 7| < 3y/nlog(N/N).

Therefore we have

(7
Gy (MN < 1+sup sup

sup —
127612, tET 6€ A, ||#.0]|2,n=t

€A

G2 (%)‘::Mr#’.

P(A° > K) < mingsoexp(—9K)E[exp(y.A°)]
8p|T| miny>o exp(—Y K ) exp (8@028(1,1%)2)

<

<
52 s(1+c)?

< 8p[ T exp(—K=/[16=7])

where we set ¢ = K/[IGS(IK—ECF] and bounded

Elexp (A)] <q 2/T|supE |exp (v sup G (M)ﬂ
teT

S€AC, [|]8]l2,n =t

L s
<(2) 2|T|supE |exp [ 2¢ sup G, (x; ))}
teT

SE€AC, (12]8]l2,n =t

1)
<w ATIswpE |exp (20| sup ol J'l}mgml@n(fvu)lﬂ
§€AC, ”xl‘SHZ,n_t ISP
14c .-
VoL e 65, )|
ISP
1+¢) ,-
MGn(%j)

Ke

s(1+c)?

C

\(4) 2|T|E [exp (41/}

<(s5) 4p|T|max B {GXP (41,0
Jj<p

where (1) follows by exp(max;ey |2;]) < 2|I| max;er exp(z;), (2) by contraction principle (Theorem 4.12
22)), (3) 1G7(&0) < 161111G7 (i) lloos (4) v/5(1 + )|Z;0ll2n/l18]l1 > Fe, (6) Enlafj] = 1 and exp(z) +
exp(—z) < 2exp(22/2).

The second result follows similarly by noting that

I8l VEI@Sllm  VE
sup su

1< 16010 <k, [|70ll2n=t T 1<|\6no<kn5c/6||2n—t t\/bmin(k) v/ bmin(k)

The third result follows similarly by noting that for ant t € [V, N]
1ol o R

sup — < —.
I8l <R 1E;8l2n=t T N
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APPENDIX F. RESULTS FOR SECTION

Lemma 17 (Choice of \). Suppose Condition WL holds, let ¢ > ¢ > 1, v = 1/(nV p), and A =
2¢'\/n®~Y(1 — ~/2p). Then for n = no(8,,c,c) large enough

P(\/n 2 20||T 4 Enlfizivi]lloc) 2 1 —1{1+0(1)} +4A,.

Proof of Lemma[T7. Since T'roj; = 1/En [ﬁ%fjvf] and Lroj; = /B, [f223;07], with probability at least

1— A, we have

max [Froj; — Trogsl < max \/Ea[(F; — fi)2a202) < 62
i<p i<p J
by Condition WL(iii). Further, Condition WL implies that I';¢;; is bounded away from zero and from

above uniformly in j = 1,...,p and n. Thus we have ||f7f011“f()||Oo —p 1, so that ||f7f011“f()||Oo < \/d /e
with probability 1 — A,, for n > ng(d,,c’, ¢, 7). By the triangle inequality

P70 Enlfizivillloo < 79 TrollooIT70 Enlfiivillloo (F.66)
Using Lemma [I2] based on self-normalized moderate deviation theory, we have

VE, [ fizijvi] > oY

P { max 1= /2p) | < 20011 = 7/2p)) (1 + o(1)) < 7{1 + (1)}
ISP En[fzzxfjvf]
by Condition WL. O

Proof of Lemmal3. Let 5= 57 — 6,. By definition of 57 we have
Ep[f2(2}0)%) — 2Bn[f2(di — 2i0,)2.)'8 = B[ f2(di — 210,)%) — En[f2(di — 2}6,)?]
2T70: 01 = 21T70- [l < 2|T-0m,,, 1 — 21 T-07e 11

n Uil SRR mT
2ul|T7007,,.. 1 — 20Tr007e |1

NN

(F.67)
Therefore, using that ¢} = En[(f2 — f2)202/f2] and ¢2 = E,[f?r2,_.], we have
Enlf?(210)?) < 2Ba[(f2 — f2)viws/ £:)'0 + 2B [f2rmriz)'§ + 2T Enl fivizs])' (Tr00) + 2ul|Tr00m,,., [l — 2€|Tr0dre,, [l
< 2{cs + e HEA[F2(@i0)?1}/2 + 2|05 'Enlf2 (di — 07)]l|oo | Trod 11 + 2ullTr00m,,, [l — 2€][Tr0dre,, [l
< 2{cs + o HE[ 2 (@i0)°1}2 + 2 ||Tr0d]ls + 2ullTr00m,, [l — 2[Tr0d7,, [lr
< 2{cs + c7n}»~{1i3n[J/”?(:tc;é)?]}l/2 +2 (u+2) ITr00r,, ln — 2 (€= 1) |ITrodre, |11

(F.68)
Let € = ST o]0 [T floor 168 & Ag we have (u+ 1) |[Tro0z,, |1 < (€= 1) [Trodre_|I1 so that

cl—1
{En[f2(20)?]}? < 2{cs + e}

Otherwise assume 0 € Ag. In this case (F68) yields
En[f?(210)%] < 2{es + e HERF? (@10)2]}/? + 2 (u+ 1) |Trodm,, 1 — 2 (€ — £) [Trodr,, [
< 2{es + e HER 2 (@i0)*T}2 + 2 (u + 1) VS{E[f2 (210)]}/? /Re
which implies

{EA[f2(0)]}/? < 2{cs + ¢} + AV (u+ l)

nk\é c
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To establish the £1-bound, first assume that 5 € Agz. In that case

~ R ~ A +cr A
18 < (14 28)[Br,.. s < VE{EFABN) 2 Rne < 2V 0} A8 @+J'
KRog NKkgRa2e C
Otherwise note that 6 & Ay implies that (u+1) IT 007, |1 < $-(0-1) HIA“TOZS\T&T l1 so that (F.6])
gives
1A 1 ~ -~ -~ N N ~ ~ ~
52 (0 2) I I < (B GEPI? (260 +) - (BPEDPN) < (o + 20}
Therefore

~ 2
o1 yerted

20[|T g lloe 7
2%

~ 1\ = 1Y\ o = 2 1
1511 < (14 g ) 18rs < (14 55 ) IE el ool < (14

O

Proof of Lemmal[jl Note that £l and Hfa !l are uniformly bounded with probability going to one.
Under the assumption on the design, for M defined in Lemma [2I] we have that min,,ec s dmax(m A n) is
uniformly bounded. Thus by Lemma [21]

~ ~ 2
o [MEEE)

The bound then follows from Lemma [I8 O

F.1. Technical Results for Post-Lasso with Estimated Weights.

Lemma 18 (Performance of the Post-Lasso). Under Conditions WL, let Tinr denote the support selected

by 57, and 57 be the Post-Lasso estimator based on fmr. Then we have for Sy, = |fm7|

—~ ~ ax (5, c VSmrv10 . =
ilMri — Z307)||2,n JP mdx(,\mT) - TV 08P = min || fi(me; — 270) |20
I1fi( T )llen S 1|2 , —
¢min(5m7) min; <y, fz n (bmin(sm‘r) min; gy, fz support(0)CThm -

Moreover, if in addition X\ satisfies (A.39), and éﬁ.o < fT < ufTO with uw > 1> £ > 1/c in the first stage
for Lasso, then we have with high probability

N 1 A _
min | filmri — 0) |20 < 3{cy + ¢} + <u—|— —) # +3fC+/s/n.

support(é)gﬁm- CJ) nke minign fi
Proof of Lemma[I8. Let F = diag(f), F = diag(f), X = [z1;...;52,]) and for a set of indices S C
{1,...,p} we define Ps = FX[S|(FX[S)FX[S])"*FX[S]' and Ps = FX[S|(X[S)F'FX[S]))"*FX[S]

denote the projection matrix on the columns associated with the indices in S. Since f;d; = fim-; + v;
we have that ﬁ»di = ﬁmﬂ + viﬁ-/fi and we have

VEm, — P~ FF~ '

Fm, — FX6, = (I - P; .

Tonr

where [ is the identity operator. Therefore

|Fm, — FX0,|| < (I - Pz )Fm.| +||P; FF~'u|. (F.69)



10 ROBUST INFERENCE IN HIGH-DIMENSIONAL SPARSE QUANTILE REGRESSION MODELS

Since || F X [Tynr)//A(X [Tonr] F'F X [Tynr]/7) " | < 1 F 0o n/1/Pmin(3mr), the last term in (F-69) satis-
fies
1Pz, FF Wl <[F oo /T/Gmin(Gmr) | X [Tonr] F2F 10/ v/m]
<N oo /1 buminGonr) {I1X [T {F2 = F2LF 0/ /m]| + ||X[Tmf]'FU/\/ﬁ||}
<N oo v/ T/ GminGonr ) I X [Tonr/ {F? = F2F~ o/ /]| + mHX'FU/\/ﬁHoo} :

Condition WL(iii) implies that

||X[Tm7]/{ﬁ2 - FQ}Filv/\/ﬁ” < sup |O/X[fm7']/{ﬁ2 - F2}F71U/\/ﬁ| < \/ﬁ\/ Pmax (8mr)Cr-

llello<Bmr. llal<1

Under Condition WL(iv), by Lemma [[2] we have
[ X'Fv/v/nlleo Sp v/logp max \/E,[f2a3v7)].
1<isp

22 2]|<

Moreover, Condition WL(iv) also implies maxi <j<p /En[f727;07] Sp 1 since maxi¢j<p [(En —E)[f72}0;

8, with probability 1 — A,, and max, <<, E[f227,07] < f22?E[z};] S

The last statement follows from noting that the Lasso solution provides an upper bound to the ap-
proximation of the best model based on ﬁm., and the application of Lemma g

Lemma 19 (Empirical pre-sparsity for Lasso). Let fmT denote the support selected by the Lasso esti-
mator, Smr = |TmT| assume A/n > c||E, [T ;Olfixivi]Hoo, and EfTO < fT < ufTo withu >124>1/c.
Then, for co = (uc+1)/(lc—1) and € = (uc+1)/(bc — l)HfTOHme;OlHOO we have

_ _ ~ ~_ n{c +Er} \/_”FTO”OO
Ve < 2/ GG ) (14 31 Fo0) 75 oo | =5

fic mlnz<n fz

Proof of Lemmalld. Let F= diag(f), Rir = (Fmrly -y Pmrn)y and X = [z1;...;2,). We have from
the optimality conditions that the Lasso estimator 9\7 satisfies

2E,, [f;lﬁxz(dl - x;@.)] = sign(@-j))\/n for each j € Ty

Therefore, noting that ||[TT°||s < 1/¢, we have
VomeA = 2|07 X F*(D - X0.))7, ||
<X FV)g, |+ 2E X = PP Vg [+ 2 X P R, |+ 21 (B X F2X(0, - 0);
< Vo [P Polloe [P0 X F'V o + 21/ o Gon )T oo s + [ Flloccr} +
20/ Gmax B )| Flloo [T oo 1 i (B — 07) 2,05

—1
Vo () nlF X PV + 207G G I W Nee ey 4 ) Plocer + 1Pl |1Fil B2 — 002,

where we used that

ICCF20, — 6, || ) o )

< SUD|5110 <gonr 18] <1 [0 X F2X (07 — 07)| < SUD||51]0 <mr 13]1<1 ||5/X'F/||||FX(9 Il
sup|\6|\0<sm7 ||5||<1{5 X'F2XOY 2| FX(0r — 0:)|| < ny/Pmma Bonr) | Fill oo || Fi (B — 02) |25

[(X'(F? — F?)F~ ) || Supnanogsm,llénq |6’ X" (F2 F2)F~1V|

< SUD 510 <Bpnr [16]1< 1 ||X5|| [(F2 = F2)F V|| < ny/$max (3mr)Cr

N

Tmr ||
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Since A/¢ > |T7¢ X FV||os, and by LemmaB, || fiz}(0r — 0-) |20 < 2{C5 + &} + (u+ 1) 2500l o

nkg Ming<p fi
have

Ty w | nE o ner n - sz o
2/ B G == [I520 (14 2] Foc) + 2223 Fllo + | Flloo (u+ 1) 22zl ]

Ke ming <y, fi
(1-2)

\/é\mr <

The result follows by noting that (v + [1/¢])/(1 — 1/[lc]) = cof by definition of ¢q. O

Lemma 20 (Sub-linearity of maximal sparse eigenvalues). Let M be a semi-definite positive matriz. For
any integer k = 0 and constant £ > 1 we have ¢max([Ck])(M) < [£]¢pmax(k)(M).

Lemma 21 (Sparsity bound for Estimated Lasso under data-driven penalty). Consider the Lasso esti-

mator 0., let Sy, = |Tyr|, and assume that A\/n > ¢|E, [T ;Olfzxzvz]ﬂoo Consider the set

—~ 2
nfe+ e} VAol 1

A Iié min;<, fi

M= {meN:m>8(1+3|f])’ITy |§03[

Then,

~ 2
TR SV Lo ]

A Kemin;<p fi

Smr S 4 <m% ¢max<mm>) (14 3] Flloo)? 185 e [

me

Proof Of Lemmal[2]]. Let L, = 2(1+3|‘ﬂ‘m)|‘fal||m00 |:n{0f)\+cT} + \/EHfTOHOOA:| . Rewriting the conclusion

Ke mingg<p fi
in Lemma [T9] we have

/S\mT < Qbmax(/s\mf)Li- (F7O)

Note that S, < n by optimality conditions. Consider any M € M, and suppose S, > M. Therefore

by the sublinearity of the maximum sparse eigenvalue (see Lemma 20])

-~ SmT
SmT S ’7 —‘ (bmax( ) 2
Thus, since [k] < 2k for any k& > 1 we have
M < 2¢max(M)L7,

which violates the condition that M € M. Therefore, we have s,,, < M.

In turn, applying (E.70) once more with §,,,, < (M A n) we obtain

Smr < Gmax(M An)L2.

The result follows by minimizing the bound over M € M. O
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APPENDIX G. RELEVANT APPROXIMATIONS RATES FOR f

Let @(u | ) = &'y, for w = 7—h, 7+ h. Using a Taylor expansion for the conditional quantile function

Q(- | ¥), assuming that supjz_, <), |Q"(7 | )| < C we have

|Q\/(T | j) _ QI(T | i,)l < |Q(T+ h | ‘%) - :Z'/ﬁ‘l'-i-h' —;L— |Q(T —h | ‘%) - :Z'/ﬁ‘r—h| + Ch2

In turn, to estimate f;, the conditional density at Q(r | ), we set f; = 1/Q'( | #;) which leads to

~ QU 3:) — Q'(r | 7))
Q| #:)Q (7 | &:)
Lemma 22 (Bound Rates for Density Estimator). Let = (d, z), suppose that ¢ < f; < C, sup, fﬁ/ilii (|
Z;) < f'<C,i=1,...,n, uniformly in n. Assume further that with probability 1 — A,, we have for
u=71—h, 7+ h that

R C Jslog(pVn N C [|s?log(pVn N C J[slog(pVn
18 Fua—)raillon < < SBEYD il < S f BV | < 21080V R
Re n K¢ n Ke n

Then if sup |Q" (7] 2)|] < C, r11<ax||:171-|\oo\/s2 log(p V n) + max;<p |di|\/slog(p vV n) < 6,hx2\y/n and

|F—r<h

max  ||ruilleo < hé, we have
u=7+h,7—h

= (fif) - 1Q'(7 | &) — Q' (7| &) (G.71)

1 /slog(nVp)

2.n SP + h2, and
hk

If: = Fil -

n

~ Iruilloo  maxicn ||Zilloe [s%2log(nVp) maxicn |dileo [slog(nVp) 9

< S = he.
b Ase e T T e Ve T e Vo

Proof. Letting (04;0§) = nu — Nu and I; = (d;, z})" we have that

~

L f. < P E(Nrn =N n)Frgrahi —Ei(Mr—n—Tr—h)—Tgr—h.i
|fz fz| S |fzfz oh

+ Ch?
= h”(fiéﬂﬂ?é‘s/?h i g — l0F" = didL " —rgr_pi}| + OB
S (fif) {Kelnranll + Kellne—nlls + sl - 165" 4 |dil - 165" + [rgrini — Tgr—nil} + Ch2.

The result follows because for sequences d,, — 0,¢, — 0 we have |]?Z — fil < |ﬁ filen + dy, implies that
ﬁ(l — ficn) < fi +d,. Since f; is bounded, f;c, — 0 which implies that fz is bounded. Therefore,
\fi — fil < cn + dy. We take d,, = Ch? — 0 and

cn =B {Kollnrsnlly + Kallne—nlls + 1dil - 057"+ 1d] - 1677"] + [rgrini = rgr—nal} =P 0
by the growth condition.

Moreover, we have

H(ﬁ _ f@)/fz”Q,n 5 Hfixi(nﬂ"Hl — 777'+h) + firg7'+h,iH2»7l '}’; ”fimi(nﬂ'*h — nT*h) + fiTgTJrh,iHZ" + Ch2.

By the previous result ﬁ is uniformly bounded from above with high probability. Thus, the result follows
by the assumed prediction norm rate ||Z}(7u — 7u) + Tuill2,n Sp (1/ke)y/slog(p V n)/n.
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APPENDIX H. RESULTS FOR SECTION [A.3]

Let (d,z) € D x Z. In this section for h = (§,7), where § is a function of variable z, and the instrument

7 is a function on (d, z) — i(d, z) we write
Vs i Wisdis 2i) = Yagi(ys, diy z0) = (1 — Yy < g(2i) + dia})i(di, ) = (7 — Hyi < §i + dia})is.
Forafixeda@aeR, §g: Z—=R,and 7:D x Z — R we define
(&, h) = E[tg j, (vir di, )]

We use the following notation. Let ; = i(d;, z;) and §; = §(2:), ho = (g, 20) and h = (g, %). The partial
derivative of T’ with respect to o at (d, h) is denoted by T'(&,h) and the directional derivative with
respect to [ — ho| at (&, h) is denote as
T(@&, b+ t[h — ho]) — T(&, h)

; .

Th(@ h)[h — ho] = lim

Proof of Lemmald Steps 1-4 we use IQR(i-iii). In Steps 5 and 6 we will also use IQR(iv).

Step 1. (Normality result) We have
(0)

En [wdﬂﬁ(yiu diu Zz)] = En [waq-,ho (yi7 di7 27,)] + En [wdﬂ/}{(yiu diu Zi) - waq-,ho (yi7 di7 27,)]
= En[Ya, ho (Y, di, zi)] + T'(Gr, h) + nfl/QGn(%T 7= Ya, he) + 1 V2G, (Yar he — Yarho)
——— >

(I (I1) (I11) (Iv)

Condition IQR(iii), relation (A.Z4), yields that with probability at least 1 — A,, we have |(0)] < §,n~ /2.
Step 2 below establishes that |(IT) + B[fidito:](dr — ar)| Sp 6nn™ Y2 + 6, — ay|.
Condition IQR(iii), relation ([(AZ43)), shows that with probability at least 1—A,, we have |(I1T)| < §,n~ /2.

We now proceed to bound term (V). By Condition IQR(iii) we have with probability at least 1 — A,
that |, — a;| < d,. Observe that

(Ya,he = Yar ho) Wi dis 2i) = (H{ys < gri + dior } — Hyi < g7, + dia})eoi
= (H{e& <0} = e < di(a — ar)})eoi,

so that |(Ya,he — Yar ho)Wis dis zi)| < 1{]&i| < dnldi]}|eoi| whenever |a — | < d,. Since the class of
functions {(y,d, z) — (Ya,he — Yar.ho) (¥, d, 2) = |a — ar| < §,} is a VC subgraph class with VC index

bounded by some constant independent of n, using (a version of) Theorem 2.14.1 in [36], we have

sup G (Yahy — Yar o)l SP(E[L{lei] < Saldil}igi])? Sp 63/%.

‘0‘70‘7|<6n
This implies that [IV] <p 65/ *n=1/2,
Combining the bounds for (0), (II)-(IV) above we have

Elfiditoi)(Gr — o) = B [Yar o (i, diy 2:)] + Op (6?0~ Y2) 4 0p(5,)]dr — arl.
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Since E[Ya, no(Yi, di, z)] = 0 and E[13;] < C, by the Lyapunov CLT we have

(I) = Bn[tha, ho (yir di, 2:)] ~> N(0,E[r(1 = 7):8,])
and the first assertion follows by noting that E[f;d;i0;] > ¢ > 0.

Step 2. (Bounding I'(a, h) for | — ar| < 0y, which covers (I1)) We have

T(a,h) =T(o, o)+ r(a,ﬁ) (e, ho) ) R (H.72)
F( ) + {1—‘( ) (Oé ho) I‘h(a, ho)[h - ho]} + Fh(Oé, ho)[h — ho]

Because I'(a;, hg) = 0, by Taylor expansion there is some & € [, ] such that
P(, ho) = D(arr, ho) + Tal@ ho)(@ — r) = {Talars o) + 70} (0 — 17)
where |[n,] < 6,E,[|d?10i|] Sp 6,C by relation (ELT9) in Step 4 and moment conditions in IQR(i).
Combining the argument above with relations ((L74)), (H.75) and (HL77) in Step 3 below we have

T(o,h) = Th(er, ho)[h — ho) + D(ar, ho) + {Talor, ho) + Op (8 E[|d%00i]]) o — ar) + Op(8,n~1/2)
=To(ar, ho)(a — ar) + Op(6n|a — o |E[|d?20i]] 4+ 6,0~ 1/?)
(H.73)

Step 3. (Relations for ') The directional derivative T'j, with respect the direction h— ho at a point
h = (g, %) is given by
Tn(a, B)[h = ho] = ~En[feijds .z (dila — ar) + Gi — g7i)i0i{Gi — gri}] + El(7 — Wys < gi + dia}) {7 — toi}]

Note that when T’ is evaluated at (o, hg) we have with probability 1 — A,
T (ovr, ho) [l = holl = | = Enlfitoi{G: — gri}]| < 6un 1/ (H.74)

by Condition IQR(iii) (A42) and by P(y; < gri + diar | d;, z;) = 7. The expression for T'j, also leads to
the following bound

T (v, ho)[h — ho)] — Thlar, ho)[h — hol| =

- E"[{féi\di,zi (q) - fEi|d-;,Zi (dl(a - aT))%LOi{/g\i - grl}] + En[{Fl(O) - Fl(dl(a - O“F))}{/L\l - LOi}]
< EnHa — Q7 fl|diLOi |/g\z - g‘ril] + En[f'(a - aT)di| |/L\1 - LOiH

<la = arl - 119i = grillan{ FELG:dF1}/? + lov = ar] - {E[(@ — 00i)*]}/*{En[df]}1/2
Splo—arld,

(H.75)

The second directional derivative 'y, at h= (g,7) with respect to the direction h— ho can be bounded
by

Pun(ou W) = ho.h = hol| = |=Eulf g, (di (0 = @) + Gi = 97)0: {5 = 97 }]
F2E [fe,(di 2 (il — ar) + i — gri){9i — gri i — LOi}H (H.76)

Gi — grill3.0 + 2719: — grill2.nl@ — toill2n-

< f'max|Z;
i<n
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In turn, since h € [ho, h], |i(ds, 2;)| < |eo(ds, z:)| + [((ds, i) — to(ds, 2i)|, we have that
I(a, h) = T(a,ho)  — D, ho) [h - ho} ‘ < SUDjg o ‘th(f% h) [h —ho,h — ho} ‘

7 . = 1|12
<f (maX{|Loz|+|Lz voil} ) 119 — grill3,nt (H.77)

+2f119: — grill2.nllei — toill2m

SP 6nn_1/2

where the last relation is assumed in Condition IQR(iii).

Step 4. (Relations for T',,) By definition of T', its derivative with respect to a at (o, h) is
To(a,h) = —Enlfe;diz (dila — ar) + §i — gri)dili].
Therefore, when the function above is evaluated at o = a; and h = hg, since for feildi,= (0) = fi we have
La(ar, ho) = —En[fiditos] = —Elfiditos] = (En — E)[fiditos] = —El[fiditos] + Op(n~'/?). (H.78)

Moreover, I',, also satisfies

|1—‘o¢(a7 hO) - 1—‘ aTu hO | fel\d zl (O( - ar))LOz z] [fel\d zl( )LOidiH (H79)
< o= ar | f'Ea[ldF os ]
Step 5. (Estimation of Variance) First note that
|E [ zAl] [fzd Loi]| -
=|E [fA ] = Enlfiditoi]| + [En [fiditos] — E[fidioi]] )
< [En [(fA f)divi]| + [En[fidi (6 = w0i)]| + [En[fiditos] — E[fiditoi]|
< [Bal(Fi — F) G = ol + [En[(F: ~ F)diad] 50

+H fidi = toill2n + | Enlfiditoi] - E[fid;toi|
Sel(fi — fi)d; T = toill2n + | fi = fi
+ fidill2,nllTi = toill2.n + [Enlfiditoi]) — E[fiditoi|
N X

because f;, f; < C, E[d}] < C, E[13;] < C by Condition IQR(ii) and Conditions IQR(iii) and (iv).

Next we proceed to control the other term of the variance. We have

| ”d’aT (Yi, di, 2i)|2 ||1/’amho(yudu21)”2 nl < ”d’dmﬁ(yiadiazi) _wamho(yiadiazi) 2
< deﬁh(yl,dl,zz) - (T — Hyi < didr + Gi})oillzn + [[(7 = Hyi < dicer + Gi})toi — Var ho (Vir dis 2i) 2,0
+ |(H{y: < diar + gri} — Hyi < dicer +gz})501
< e - LOsz n + 1B N1 ] < ldi(ar — Gr) + gri — gi|}H2,n
<P On

< |55 — vod

(H.81)
by IQR(ii) and IQR(iv). Also, |E,[¢2 , (i, di, 2:)] — E[WZ . (yi,di, zi)]| Sp 0n by independence and
bounded moment conditions in Condition IQR(ii).
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Step 6. (Main Step for x?) Note that the denominator of L, (c,) was analyzed in relation (EL3T]) of
Step 5. Next consider the numerator of L, (a. ). Since T'(ar, ho) = E[ta. no (vi, dis z:)] = 0 we have
Enly 7isdiszi)] = (Bn —E)Wb, 7(Yir dis 2i) = Vay ho (Yis dis 2)] + T(ar, h) + B[, ho (¥is dis 2)).
By Condition IQR(iii) and (H.73) with o = a, it follows that
(B — B)o,. 5(Wirdis ) = Yo no (Wi diy 2)]| < an ™% and [T(ar, h)| Sp dun /2.

The identity nA2 = nB2 + n(A, — B,)? + 2nB,(A, — B,) for 4, = En[waT 7 (i, ds, ;)] and B,, =
En[Yar o (Wi, diy 21)] Sp {E[wizd]}/*n=1/? yields

By, 5 i di, 20)]?

nl,(o;) =
n|En[¢aT,h0 (yiv di7 ZZ)] |2 + Op(én) _ n|En[wamh0 (yi7 di7 Zi)]|2
= 3 = = p) + OP(6n)
E[r(1 — 1), + Op(d,) E[r(1—7),]
since 7(1—7)E[12,;] is bounded away from zero because C < |E[fid;t0i]| = |E[vitoi]| < {E[vZ]E[Z;]}'/? and

E[v?] is bounded above uniformly. The result then follows since /nEy,[ta. ho (i, di, 2i)] ~ N(0,7(1 —
TELG]).
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