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ANTI-CONCENTRATION AND HONEST, ADAPTIVE

CONFIDENCE BANDS

VICTOR CHERNOZHUKOV, DENIS CHETVERIKOV, AND KENGO KATO

Abstract. Modern construction of uniform confidence bands for non-
parametric densities (and other functions) often relies on the the classical
Smirnov-Bickel-Rosenblatt (SBR) condition; see, for example, Giné and
Nickl (2010). This condition requires the existence of a limit distribution
of an extreme value type for the supremum of a studentized empirical
process (equivalently, for the supremum of a Gaussian process with the
same covariance function as that of the studentized empirical process).
The principal contribution of this paper is to remove the need for this
classical condition. We show that a considerably weaker sufficient condi-
tion is derived from an anti-concentration property of the supremum of
the approximating Gaussian process, and we derive an inequality lead-
ing to such a property for separable Gaussian processes. We refer to the
new condition as a generalized SBR condition. Our new result shows
that the supremum does not concentrate too fast around any value.

We then apply this result to derive a Gaussian multiplier bootstrap
procedure for constructing honest confidence bands for nonparametric
density estimators (this result can be applied in other nonparametric
problems as well). An essential advantage of our approach is that it ap-
plies generically even in those cases where the limit distribution of the
supremum of the studentized empirical process does not exist (or is un-
known). This is of particular importance in problems where resolution
levels or other tuning parameters have been chosen in a data-driven fash-
ion, which is needed for adaptive constructions of the confidence bands.
Furthermore, our approach is asymptotically honest at a polynomial
rate – namely, the error in coverage level converges to zero at a fast,
polynomial speed (with respect to the sample size). In sharp contrast,
the approach based on extreme value theory is asymptotically honest
only at a logarithmic rate – the error converges to zero at a slow, loga-
rithmic speed. Finally, of independent interest is our introduction of a
new, practical version of Lepski’s method, which computes the optimal,
non-conservative resolution levels via a Gaussian multiplier bootstrap
method.
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2 CHERNOZHUKOV, CHETVERIKOV, AND KATO

1. Introduction

Let X1, . . . , Xn be i.i.d. random variables with common unknown density
f on Rd. We are interested in constructing confidence bands for f on a subset
X ⊂ Rd that are honest to a given class F of densities on Rd. Typically, X
is a compact set on which f is bounded away from zero, and F is a class
of smooth densities such as a subset of a Hölder ball. A confidence band
Cn = Cn(X1, . . . , Xn) is a family of random intervals

Cn := {Cn(x) = [cL(x), cU (x)] : x ∈ X}

that contains the graph of f on X with a guaranteed probability. Following
[27], a band Cn is said to be asymptotically honest with level α ∈ (0, 1) for
the class F if

lim inf
n→∞

inf
f∈F

Pf (f(x) ∈ Cn(x), ∀x ∈ X ) ≥ 1− α.

Let f̂n(·, l) be a generic estimator of f with a smoothing parameter l, say
bandwidth or resolution level, where l is chosen from a candidate set Ln;
see [23, 39, 42] for a textbook level introduction to the theory of density

estimation. Let l̂n = l̂n(X1, . . . , Xn) be a possibly data-dependent choice

of l in Ln. Denote by σn,f (x, l) the standard deviation of
√
nf̂n(x, l), i.e.,

σn,f (x, l) :=
√
nVarf (f̂n(x, l)). Then we consider a confidence band of the

form

Cn(x) =

[
f̂n(x, l̂n)−

c(α)σn,f (x, l̂n)√
n

, f̂n(x, l̂n) +
c(α)σn,f (x, l̂n)√

n

]
, (1.1)

where c(α) is a (possibly data-dependent) critical value determined to make
the confidence band to have level α. Generally, σn,f (x, l) is unknown and
has to be replaced by an estimator.

A crucial point in construction of confidence bands is the computation of
the critical value c(α). Assuming that σn,f (x, l) is positive on X ×Ln, define
the stochastic process

Zn,f (v) := Zn,f (x, l) :=

√
n(f̂n(x, l)− Ef [f̂n(x, l)])

σn,f (x, l)
, (1.2)

where v = (x, l) ∈ X × Ln =: Vn. We refer to Zn,f as a “studentized

process”. If, for the sake of simplicity, the bias |f(x) − Ef [f̂n(x, l)]l=l̂n | is

sufficiently small compared to σn,f (x, l̂n), then

Pf (f(x) ∈ Cn(x),∀x ∈ X ) ≈ Pf

(
sup
x∈X

∣∣∣Zn,f (x, l̂n)
∣∣∣ ≤ c(α)

)
≥ Pf

(
sup
v∈Vn

|Zn,f (v)| ≤ c(α)

)
,
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so that the band (1.1) will be of level α ∈ (0, 1) by taking

c(α) = (1− α)-quantile of ‖Zn,f‖Vn := sup
v∈Vn

|Zn,f (v)|. (1.3)

The critical value c(α), however, is infeasible since the finite sample distribu-
tion of the process Zn,f is unknown. Instead, we estimate the (1−α)-quantile
of ‖Zn,f‖Vn .

Suppose that one can find an appropriate centered Gaussian process Gn,f
indexed by Vn with known or estimable covariance structure such that
‖Zn,f‖Vn is close to ‖Gn,f‖Vn . Then we may approximate the (1 − α)-
quantile of ‖Zn,f‖Vn by

cn,f (α) := (1− α)-quantile of ‖Gn,f‖Vn .

Typically, one computes or approximates cn,f (α) by one of the following two
methods.

1. Analytical method: derive analytically an approximated value of
cn,f (α), by using an explicit limit distribution or large deviation
inequalities.

2. Simulation method: simulate the Gaussian process Gn,f to compute
cn,f (α) numerically, by using, for example, a multiplier method.

The main purpose of this paper is to introduce a general approach to es-
tablishing the validity of the so-constructed confidence band. Importantly,
our analysis does not rely on the existence of an explicit (continuous) limit
distribution of any kind, which is a major difference from the previous litera-
ture. If, for some normalizing constants An and Bn, An(‖Gn,f‖Vn−Bn) has
a continuous limit distribution, the validity of the confidence band would
follow via the continuity of the limit distribution. For the density estimation
problem, if Ln is a singleton, i.e., the smoothing parameter is chosen deter-
ministically, the existence of such a continuous limit distribution, which is
typically a Gumbel distribution, has been established for convolution kernel
density estimators and some wavelet projection kernel density estimators
[see 37, 1, 16, 19, 4, 5, 15]. We refer to the existence of the limit distri-
bution as the Smirnov-Bickel-Rosenblatt (SBR) condition. However, the
SBR condition has not been obtained for other density estimators such as
non-wavelet projection kernel estimators based, for example, on Legendre
polynomials or Fourier series. In addition, to guarantee the existence of a
continuous limit distribution often requires more stringent regularity condi-
tions than a Gaussian approximation itself. More importantly, if Ln is not a
singleton, which is typically the case when l̂n is data-dependent, and so the
randomness of l̂n has to be taken into account, it is often hard to determine
an exact limit behavior of ‖Gn,f‖Vn .

We thus take a different route and significantly generalize the SBR con-
dition. Our key ingredient is the anti-concentration property of suprema of
Gaussian processes that shows that suprema of Gaussian processes do not
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concentrate too fast. To some extent, this is a reverse of numerous concen-
tration inequalities for Gaussian processes. In studying the effect of approx-
imation and estimation errors on the coverage probability, it is required to
know how random variable ‖Gn,f‖Vn := supv∈Vn |Gn,f (v)| concentrates or
“anti-concentrates” around, say, its (1 − α)-quantile. It is not difficult to
see that ‖Gn,f‖Vn itself has a continuous distribution, so that with keeping n
fixed, the probability that ‖Gn,f‖Vn falls into the interval with center cn,f (α)
and radius ε goes to 0 as ε→ 0. However, what we need to know is the be-
havior of those probabilities when ε is n-dependent and ε = εn → 0. In other
words, bounding explicitly “anti-concentration” probabilities for suprema of
Gaussian processes is desirable. We will first establish bounds on the Lévy
concentration function (see Definition 2.1) for suprema of Gaussian pro-
cesses and then use these bounds to quantify the effect of approximation
and estimation errors on the finite sample coverage probability. We say that
a generalized SBR condition or simply an anti-concentration condition holds
if ‖Gn,f‖Vn concentrates sufficiently slowly, so that this effect is sufficiently
small to yield asymptotically honest confidence bands.

As a substantive application of our results, we consider the problem
of constructing honest adaptive confidence bands based on either convo-
lution or wavelet projection kernel density estimators in Hölder classes F ⊂
∪t∈[t,t̄]Σ(t, L) for some 0 < t < t̄ < ∞ where Σ(t, L) is the Hölder ball of
radius L and smoothness level t. Following [6], we say the confidence band
Cn is adaptive if for every t, ε > 0 there exists C > 0 such that for all n ≥ 1,

sup
f∈F∩Σ(t,L)

Pf

(
sup
x∈X

λ(Cn(x)) > Crn(t)

)
≤ ε,

where λ denotes the Lebesgue measure on R and rn(t) := (log n/n)t/(2t+d),
the minimax optimal rate of convergence for estimating a density f in the
function class Σ(t, L) in the sup-metric d∞(f̂ , f) = supx∈X |f̂(x) − f(x)|.
We use Lepski’s method [26, 2] to find an adaptive value of the smooth-
ing parameter. Here our contribution is to introduce a Gaussian multiplier
bootstrap implementation of Lepski’s method. This is a practical proposal
since previous implementations relied on conservative (one-sided) maximal
inequalities and are not necessarily recommended for practice; see, for ex-
ample, [18] for a discussion.

We should also emphasize that our techniques can also be used for con-
structing honest and/or adaptive confidence bands in many other nonpara-
metric problems, but in this paper we focus on the density problem for the
sake of clarity. Our result on the anti-concentration of separable Gaussian
processes is also of independent interest in many other problems. For exam-
ple, applications of our anti-concentration bounds can be found in [9] and
[10], which consider the problems of nonparametric inference on a minimum
of a function and nonparametric testing of qualitative hypotheses about
functions, respectively.
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1.1. Related references. Confidence bands in nonparametric estimation
have been extensively studied in the literature. A classical approach, which
goes back to [37] and [1], is to use explicit limit distributions of normalized
suprema of studentized processes. A “Smirnov-Bickel-Rosenblatt type limit
theorem” combines Gaussian approximation techniques and extreme value
theory for Gaussian processes. It was argued that the convergence to normal
extremes is considerably slow despite that the Gaussian approximation is
relatively fast [21]. To improve the finite sample coverage, bootstrap is
often used in construction of confidence bands [see 11, 3]. However, to
establish the validity of bootstrap confidence bands, researchers relied on the
existence of continuous limit distributions of normalized suprema of original
studentized processes. In the deconvolution density estimation problem,
[28] considered confidence bands without using Gaussian approximation.
In the current density estimation problem, their idea reads as bounding the
deviation probability of ‖f̂n−E[f̂n(·)]‖∞ by using Talagrand’s [38] inequality
and replacing the expected supremum by the Rademacher average. Such a
construction is indeed general and applicable to many other problems, but
is likely to be more conservative than our construction.

1.2. Organization of the paper. In the next section, we give a new anti-
concentration inequality for suprema of Gaussian processes. Section 3 con-
tains a theory of generic confidence band construction under high level con-
ditions. These conditions are easily satisfied both for convolution and pro-
jection kernel techniques under mild primitive assumptions, which are also
presented in Section 3. Section 4 is devoted to constructing honest adaptive
confidence bands in Hölder classes. Finally, most proofs are contained in the
Appendix, and some proofs and discussions are put into the Supplemental
Material.

1.3. Notation. In what follows, constants c, C, c1, C1, c2, C2, . . . are un-
derstood to be positive and independent of n. The values of c and C
may change at each appearance but constants c1, C1, c2, C2, . . . are fixed.
Throughout the paper, En[·] denotes the average over index 1 ≤ i ≤ n, i.e.,
it simply abbreviates the notation n−1

∑n
i=1[·]. For example, En[g(Xi)] =

n−1
∑n

i=1 g(Xi). For a set T , denote by `∞(T ) the set of all bounded func-
tions, that is, all functions z : T → R such that

‖z‖T := sup
t∈T
|z(t)| <∞.

Moreover, for a generic function g, we also use the notation ‖g‖∞ := supx |g(x)|
where the supremum is taken over the domain of g. For two random vari-

ables ξ and η, we write ξ
d
= η if they share the same distribution. The

standard Euclidean norm is denoted by | · |.
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2. Anti-concentration of suprema of Gaussian processes

The main purpose of this section is to derive an upper bound on the
Lévy concentration function for suprema of separable Gaussian processes,
where the terminology is adapted from [35]. Let (Ω,A,P) be the underlying
(complete) probability space.

Definition 2.1 (Lévy concentration function). Let Y = (Yt)t∈T be a sepa-
rable stochastic process indexed by a semimetric space T . For all x ∈ R and
ε ≥ 0, let

px,ε(Y ) := P

(∣∣∣∣sup
t∈T

Yt − x
∣∣∣∣ ≤ ε) . (2.1)

Then the Lévy concentration function of supt∈T Yt is defined for all ε ≥ 0 as

pε(Y ) := sup
x∈R

px,ε(Y ). (2.2)

Likewise, define px,ε(|Y |) by (2.1) with supt∈T Yt replaced by supt∈T |Yt| and
define pε(|Y |) by (2.2) with px,ε(Y ) replaced by px,ε(|Y |).

Let X = (Xt)t∈T be a separable Gaussian process indexed by a semimetric
space T such that E[Xt] = 0 and E[X2

t ] = 1 for all t ∈ T . Assume that
supt∈T Xt < ∞ a.s. Our aim here is to obtain a qualitative bound on the
concentration function pε(X). In a trivial example where T is a singleton,
i.e., X is a real standard normal random variable, it is immediate to see
that pε(X) � ε as ε → 0. A non-trivial case is that when T is not a
singleton and both T and X are indexed by n = 1, 2, . . . , i.e., T = Tn and
X = Xn = (Xn,t)t∈Tn , and the complexity of the set {Xn,t : t ∈ Tn} (in
L2(Ω,A,P)) is increasing in n. In such a case, it is typically not known
whether supt∈Tn Xn,t has a limiting distribution as n → ∞ and therefore
it is not trivial at all whether, for any sequence εn → 0, pεn(Xn) → 0 as
n→∞, which is in fact generally not true as Example 1 in [8] shows. The
following is the first main result of this paper.

Theorem 2.1 (Anti-concentration for suprema of separable Gauss-
ian processes). Let X = (Xt)t∈T be a separable Gaussian process indexed
by a semimetric space T such that E[Xt] = 0 and E[X2

t ] = 1 for all t ∈ T .
Assume that supt∈T Xt <∞ a.s. Then a(X) := E[supt∈T Xt] ∈ [0,∞) and

pε(X) ≤ 4ε (a(X) + 1) , (2.3)

for all ε ≥ 0.

The similar conclusion holds for the concentration function of supt∈T |Xt|.

Corollary 2.1. Let X = (Xt)t∈T be a separable Gaussian process indexed
by a semimetric space T such that E[Xt] = 0 and E[X2

t ] = 1 for all t ∈
T . Assume that supt∈T Xt < ∞ a.s. Then a(|X|) := E[supt∈T |Xt|] ∈
[
√

2/π,∞) and
pε(|X|) ≤ 4εa(|X|+ 1), (2.4)

for all ε ≥ 0.
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We refer to (2.3) and (2.4) as anti-concentration inequalities because they
show that suprema of separable Gaussian processes can not concentrate too
fast. The proof of Theorem 2.1 and Corollary 2.1 follows by extending the
results in [8] where we derived anti-concentration inequalities for maxima of
Gaussian random vectors. See the Appendix for a detailed exposition.

3. Generic construction of honest confidence bands

We go back to the analysis of confidence bands. Recall that we consider
the following setting. We observe i.i.d. random variables X1, . . . , Xn with
common unknown density f ∈ F on Rd, where F is a nonempty subset of
densities on Rd. We denote by Pf the probability distribution corresponding
to the density f . We first state the result on the construction of honest
confidence band under certain high level conditions and then show that
these conditions hold for most commonly used kernel density estimators.

3.1. Main Result. Let X ⊂ Rd be a set of interest. Let f̂n(·, l) be a
generic estimator of f with a smoothing parameter l ∈ Ln where Ln is the
candidate set. Denote by σn,f (x, l) the standard deviation of

√
nf̂n(x, l).

We assume that σn,f (x, l) is positive on Vn := X ×Ln for all f ∈ F . Define
the studentized process Zn,f = {Zn,f (v) : v = (x, l) ∈ Vn} by (1.2). Let

Wn,f := ‖Zn,f‖Vn
denote the supremum of the studentized process. We assume that Wn,f is
a well-defined random variable. Let c1, C1 be some positive constants. We
will make the following high level conditions.

Condition H1 (Gaussian approximation). For every f ∈ F , there exists (on
a possibly enriched probability space) a sequence of random variables W 0

n,f

such that (i) W 0
n,f

d
= ‖Gn,f‖Vn where Gn,f = {Gn,f (v) : v ∈ Vn} is a tight

Gaussian random element in `∞(Vn) with E[Gn,f (v)] = 0,E[Gn,f (v)2] = 1
for all v ∈ Vn, and E[‖Gn,f‖Vn ] ≤ C1

√
log n; and moreover (ii)

sup
f∈F

Pf (|Wn,f −W 0
n,f | > ε1n) ≤ δ1n, (3.1)

where ε1n and δ1n are some sequences of positive numbers bounded from
above by C1n

−c1.

Analysis of uniform confidence bands often relies on the classical Smirnov-
Bickel-Rosenblatt (SBR) condition that states that for some sequences An
and Bn,

An(‖Gn,f‖Vn −Bn)
d→ Z, as n→∞, (3.2)

where Z is a Gumbel random variable; see, for example, [19]. Here both
An and Bn are typically of order

√
log n. However, this condition is often

difficult to verify. Therefore, we propose to use a weaker condition (recall
the definition of the Lévy concentration function given in Definition 2.1):
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Condition H2 (Anti-concentration or Generalized SBR condition). For
any sequence εn of positive numbers, we have

(a) sup
f∈F

pεn(|Gn,f |)→ 0 if εn
√

log n→ 0; or

(b) sup
f∈F

pεn(|Gn,f |) ≤ C1εn
√

log n.

Note that Condition H2-(a) follows trivially from H2-(b). In turn, under
H1, Condition H2-(b) is a simple consequence of Corollary 2.1. Condition
H2-(a) (along with Conditions H1 and H3-H6 below) is sufficient to show
that the confidence bands are asymptotically honest but we will use Condi-
tion H2-(b) to prove polynomial (in n) rate of approximation. We refer to
H2 as a generalized SBR condition because H2-(a) holds if (3.2) holds with
An of order

√
log n. An advantage of Condition H2 in comparison with the

classical condition (3.2) is that H2 follows easily from Corollary 2.1.
Let α ∈ (0, 1) be a fixed constant (confidence level). Recall that cn,f (α) is

the (1−α)-quantile of the random variable ‖Gn,f‖Vn . If Gn,f is pivotal, i.e.,
independent of f , cn,f (α) = cn(α) can be directly computed, at least numer-
ically. Otherwise, we have to approximate or estimate cn,f (α). Let ĉn(α)
be an estimator or approximated value of cn,f (α), where we assume that
ĉn(α) is nonnegative (which is reasonable since cn,f (α) is nonnegative). The
following is concerned with a generic regularity condition on the accuracy
of the estimator ĉn(α).

Condition H3 (Estimation error of ĉn(α)). For some sequences τn, ε2n,
and δ2n of positive numbers bounded from above by C1n

−c1, we have

(a) sup
f∈F

Pf (ĉn(α) < cn,f (α+ τn)− ε2n) ≤ δ2n; and

(b) sup
f∈F

Pf (ĉn(α) > cn,f (α− τn) + ε2n) ≤ δ2n.

In the next subsection, we shall verify this condition for the estimator
ĉn(α) based upon the Gaussian multiplier bootstrap method. Importantly,
in this condition, we introduce the sequence τn and compare ĉn(α) with
cn,f (α + τn) and cn,f (α− τn) instead of directly comparing it with cn,f (α),
which considerably simplifies verification of this condition. With τn = 0 for
all n, we would need to have an upper bound on cn,f (α)− cn,f (α+ τn) and
cn,f (α− τn)− cn,f (α), which might be difficult to obtain in general.

The discussion in the introduction presumes that σn,f (x, l) were known,
but of course it has to be replaced by a suitable estimator in practice. Let
σ̂n(x, l) be a generic estimator of σn,f (x, l). Without loss of generality, we
may assume that σ̂n(x, l) is nonnegative. Condition H4 below states a high-
level assumption on the estimation error of σ̂n(x, l). Verifying Condition H4
is rather standard for specific examples.
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Condition H4 (Estimation error of σ̂n(·)). For some sequences ε3n and δ3n

of positive numbers bounded from above by C1n
−c1,

sup
f∈F

Pf

(
sup
v∈Vn

∣∣∣∣ σ̂n(v)

σn,f (v)
− 1

∣∣∣∣ > ε3n

)
≤ δ3n.

We now consider strategies to deal with the bias term. We consider two
possibilities. The first possibility is to control the bias explicitly, so that
the confidence band contains the bias controlling term. This construction
is inspired by [4]. The advantage of this construction is that it yields the
confidence band the length of which shrinks at the minimax optimal rate
with no additional inflating terms; see Theorem 4.1 below. The disadvan-
tage, however, is that this construction yields a conservative confidence band
in terms of coverage probability. We consider this strategy in Conditions
H5 and H6 and Theorem 3.1. The other possibility is to undersmooth, so
that the bias is asymptotically negligible, and hence the resulting confidence
band contains no bias controlling terms. This is an often used strategy; see,
for example, [19]. The advantage of this construction is that it sometimes
yields an exact (non-conservative) confidence band, so that the confidence
band covers the true function with probability 1−α asymptotically exactly;
see Corollary 3.1 below. The disadvantages, however, are that this method
yields the confidence band that shrinks at the rate slightly slower than the
minimax optimal rate, and that is centered around a non-optimal estimator.
We consider the possibility of undersmoothing in Corollary 3.1 below. Note
that Conditions H5 and H6 below are not assumed in Corollary 3.1.

We now consider the first possibility, that is we assume that the smoothing
parameter l̂n := l̂n(X1, . . . , Xn), which is allowed to depend on the data, is
chosen so that the bias can be controlled sufficiently well. Specifically, for
all l ∈ Ln, define

∆n,f (l) := sup
x∈X

√
n|f(x)− Ef [f̂n(x, l)]|

σn(x, l)
.

We assume that there exists a sequence of random variables c′n, which are

known or can be calculated via simulations, that control ∆n,f (l̂n). In par-
ticular, the theory in the next subsection assumes that c′n is chosen as a
multiple of the estimated high quantile of ‖Gn,f‖Vn .

Condition H5 (Bound on ∆n,f (l̂n)). For some sequence δ4n of positive
numbers bounded from above by C1n

−c1,

sup
f∈F

Pf

(
∆n,f (l̂n) > c′n

)
≤ δ4n.

In turn, we assume that c′n can be controlled by un
√

log n where un is a
sequence of nonnegative positive numbers. Typically, un is either a bounded
or slowly growing sequence; see, for example, our construction under primi-
tive conditions in the next section.
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Condition H6 (Bound on c′n). For some sequences δ5n and un of positive
numbers where δ5n is bounded from above by C1n

−c1,

sup
f∈F

Pf

(
c′n > un

√
log n

)
≤ δ5n.

When Ln is a singleton, conditions like H5 and H6 have to be assumed.
When Ln contains more than one element, that is we seek for an adaptive
procedure, verification of Conditions H5 and H6 is non-trivial. In Section 4,
we provide an example of such analysis.

We consider the confidence band Cn = {Cn(x) : x ∈ X} defined by

Cn(x) :=
[
f̂n(x, l̂n)− sn(x, l̂n), f̂n(x, l̂n) + sn(x, l̂n)

]
, (3.3)

where
sn(x, l̂n) := (ĉn(α) + c′n)σ̂n(x, l̂n)/

√
n. (3.4)

Define

ε̄n,f := ε1n + ε2n + ε3n(cn,f (α) + un
√

log n),

δn := δ1n + δ2n + δ3n + δ4n + δ5n.

We are now in position to state the main result of this section. Recall the
definition of Lévy concentration function (Definition 2.1).

Theorem 3.1 (Honest generic confidence bands). Suppose that Con-
ditions H1 and H3-H6 are satisfied. Then

inf
f∈F

Pf (f ∈ Cn) ≥ (1− α)− δn − τn − pε̄n,f (|Gn,f |). (3.5)

If, in addition, Condition H2-(a) is satisfied and ε3nun
√

log n ≤ C1n
−c1,

then
lim inf
n→∞

inf
f∈F

Pf (f ∈ Cn) ≥ 1− α, (3.6)

and if, in addition, Condition H2-(b) is satisfied, then

inf
f∈F

Pf (f ∈ Cn) ≥ 1− α− Cn−c, (3.7)

where c and C are constants depending only on c1 and C1.

Comment 3.1 (Honest confidence bands). Theorem 3.1 shows that the
confidence band defined in (3.3) and (3.4) is asymptotically honest with level
α for the class F . Moreover, under condition H2-(b), since the constants c
and C in the statement (3.7) depend only on c1, C1, the coverage probability
can be smaller than 1−α only by a polynomially small term Cn−c uniformly
over the class F . That is, in this case the confidence band is asymptotically
honest at a polynomial rate. �

Comment 3.2 (Advantages of Theorem 3.1). An advantage of Theorem 3.1
is that it does not require the classical SBR condition that is often difficult to
obtain. Instead, it only requires a weaker generalized SBR condition (H2),
which allows us to control the effect of estimation and approximation errors
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on the coverage probabilities. In the next subsection, we will show that as
long the bias ∆n,f (l̂n) can be controlled, our theorem applies when f̂n(·) is
defined using either convolution or projection kernels under mild conditions,
and, as far as wavelet projection kernels are concerned, it covers estimators
based on compactly supported wavelets, Battle-Lemarié wavelets of any or-
der as well as other non-wavelet projection kernels such as those based on
Legendre polynomials and Fourier series. When Ln is a singleton, the SBR
condition for compactly supported wavelets was obtained in [5] under cer-
tain assumptions that can be verified numerically for any given wavelet, for
Battle-Lemarié wavelets of degree up-to 4 in [19], and for Battle-Lemarié
wavelets of degree higher than 4 in [15]. To the best of our knowledge, the
SBR condition for non-wavelet projection kernel functions (such as those
based on Legendre polynomials and Fourier series) has not been obtained
in the literature. In addition, and perhaps most importantly, there are no
results in the literature on the SBR condition when Ln is not a singleton.
Finally, the SBR condition, being based on extreme value theory, yields only
a logarithmic (in n) rate of approximation of coverage probability; that is,
this approach is asymptotically honest at a logarithmic rate. In contrast, our
approach can lead to confidence bands that are asymptotically honest at a
polynomial rate; see (3.7). �

Comment 3.3 (On the condition ε3nun
√

log n ≤ C1n
−c1). The second part

of Theorem 3.1 requires the condition that ε3nun
√

log n ≤ C1n
−c1 . This is a

very mild assumption. Indeed, under Condition H4, ε3n ≤ C1n
−c1 , so that

the assumption that ε3nun
√

log n ≤ C1n
−c1 is met as long as un is bounded

from above by a slowly growing sequence, for example, un ≤ C1 log n, which
is typically the case; see, for example, our construction in Section 4. �

The confidence band defined in (3.3) and (3.4) is constructed so that

the bias ∆n,f (l̂n) is controlled explicitly via the random variable c′n. Al-
ternatively, one can choose to undersmooth so that the bias is negligible
asymptotically. To cover this possibility, we note that it follows from the
proof of Theorem 3.1 that if un log n ≤ C1n

−c1 , then conclusions (3.6) and

(3.7) of Theorem 3.1 continue to hold with sn(x, l̂n) in (3.4) replaced by

ĉn(α)σ̂n(x, l̂n)/
√
n. Moreover, if Ln is a singleton, it is possible to show

that the confidence band is asymptotically exact. We collect these observa-
tions into the following corollary, the detailed proof of which can be found
in the Supplemental Material.

Corollary 3.1 (Honest generic confidence bands with undersmooth-

ing). Consider the confidence band C̃n = {C̃n(x) : x ∈ X} defined by

C̃n(x) :=
[
f̂n(x, l̂n)− s̃n(x, l̂n), f̂n(x, l̂n) + s̃n(x, l̂n)

]
,

where

s̃n(x, l̂n) := ĉn(α)σ̂n(x, l̂n)/
√
n.
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Suppose that Conditions H1, H3, and H4 are satisfied. In addition, assume
that for some sequences δ6n and un of positive numbers,

sup
f∈F

Pf

(
∆n,f (l̂n) > un

√
log n

)
≤ δ6n, (3.8)

where δ6n is bounded from above by C1n
−c1 and un satisfies un log n ≤

C1n
−c1. Then under Condition H2-(a),

lim inf
n→∞

inf
f∈F

Pf (f ∈ C̃n) ≥ 1− α, (3.9)

and under Condition H2-(b),

inf
f∈F

Pf (f ∈ C̃n) ≥ 1− α− Cn−c. (3.10)

Moreover, if Ln is a singleton, then under condition H2-(a),

lim
n→∞

sup
f∈F

∣∣∣Pf (f ∈ C̃n)− (1− α)
∣∣∣→ 0, (3.11)

and under Condition H2-(b),

sup
f∈F

∣∣∣Pf (f ∈ C̃n)− (1− α)
∣∣∣ ≤ Cn−c. (3.12)

Here c and C are constants depending only on c1 and C1.

Comment 3.4 (Other methods for controlling bias term). In practice, there
can be other methods for controlling the bias term. For example, an alter-
native approach is to estimate the bias function in a pointwise manner and
construct bias corrected confidence bands; see, for example, [43] in the non-
parametric regression case. A yet alternative approach to controlling the
bias based upon bootstrap in construction of confidence bands is proposed
and studied by the recent paper of [22]. �

3.2. Verifying Conditions H1-H4 for confidence bands constructed
using common density estimators via Gaussian multiplier boot-
strap. We now argue that when ĉn(α) is constructed via Gaussian multi-
plier bootstrap, Conditions H1-H4 hold for common density estimators –
specifically, both the convolution and projection kernel density estimators
under mild assumptions on the kernel function.

Let {Kl}l∈Ln be a family of kernel functions where Kl : Rd×Rd → R and
l is a smoothing parameter. We consider kernel density estimators of the
form

f̂n(x, l) := En[Kl(Xi, x)] =
1

n

n∑
i=1

Kl(Xi, x), (3.13)

where x ∈ X and l ∈ Ln. The variance of
√
nf̂n(x, l) is given by

σ2
n,f (x, l) := Ef [Kl(X1, x)2]− Ef [Kl(X1, x)]2.
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We estimate σ2
n,f (x, l) by

σ̂2
n(x, l) :=

1

n

n∑
i=1

Kl(Xi, x)2 − f̂n(x, l)2. (3.14)

This is a sample analogue estimator.

Examples. Our general theory covers a wide class of kernel functions,
such as convolution, wavelet projection, and non-wavelet projection kernels.

(i) Convolution kernel. Consider a function K : R→ R. Let Ln ⊂ (0,∞).
Then for x = (x1, . . . , xd)

′ ∈ Rd, y = (y1, . . . , yd)
′ ∈ Rd, and l ∈ Ln, the

convolution kernel function is defined by

Kl(y, x) := 2ld
∏

1≤m≤d
K
(

2l(ym − xm)
)
. (3.15)

Here 2−l is the bandwidth parameter.
(ii) Wavelet projection kernel. Consider a father wavelet φ, i.e., a function

φ such that (a) {φ(·−k) : k ∈ Z} is an orthonormal system in L2(R), (b) the
spaces Vj = {

∑
k ckφ(2jx − k) :

∑
k c

2
k < ∞}, j = 0, 1, 2, . . . , are nested in

the sense that Vj ⊂ Vj′ whenever j ≤ j′, and (c) ∪j≥0Vj is dense in L2(R).

Let Ln ⊂ N. Then for x = (x1, . . . , xd)
′ ∈ Rd, y = (y1, . . . , yd)

′ ∈ Rd, and
l ∈ Ln, the wavelet projection kernel function is defined by

Kl(y, x) := 2ld
∑

k1,...,kd∈Z

∏
1≤m≤d

φ(2lym − km)
∏

1≤m≤d
φ(2lxm − km). (3.16)

Here l is the resolution level. We refer to [12] and [23] as basic references on
wavelet theory.

(iii) Non-wavelet projection kernel. Let {ϕj : j = 1, . . . ,∞} be an or-
thonormal basis of L2(X ), the space of square integrable (with respect
to Lebesgue measure) functions on X . Let Ln ⊂ (0,∞). Then for x =
(x1, . . . , xd)

′ ∈ Rd, y = (y1, . . . , yd)
′ ∈ Rd, and l ∈ Ln, the non-wavelet

projection kernel function is defined by

Kl(y, x) :=

[2ld]∑
j=1

ϕj(y)ϕj(x), (3.17)

where [a] is the largest integer that is smaller than or equal to a. Here [2ld]
is the number of series (basis) terms used in the estimation. When d = 1
and X = [−1, 1], examples of orthonormal bases are Fourier basis

{1, cos(πx), cos(2πx), . . . } (3.18)

and Legendre polynomial basis

{1, (3/2)1/2x, (5/8)1/2(3x2 − 1), . . . }. (3.19)

When d > 1 and X = [−1, 1]d, one can take tensor products of bases for
d = 1. �
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We assume that the critical value ĉn(α) is obtained via the multiplier
bootstrap method:

Algorithm 1 (Gaussian Multiplier bootstrap). Let ξ1, . . . , ξn be inde-
pendent N(0, 1) random variables that are independent of Xn

1 := {X1, . . . , Xn}.
Let ξn1 := {ξ1, . . . , ξn}. For all x ∈ X and l ∈ Ln, define a Gaussian multi-
plier process:

Ĝn(x, l) := Ĝn(Xn
1 , ξ

n
1 )(x, l) :=

1√
n

n∑
i=1

ξi
Kl(Xi, x)− f̂n(x, l)

σ̂n(x, l)
. (3.20)

Then the estimated critical value ĉn(α) is defined as

ĉn(α) = conditional (1− α)-quantile of ‖Ĝn‖Vn given Xn
1 .

Let

Kn,f :=

{
Kl(·, x)

σn,f (x, l)
: (x, l) ∈ X × Ln

}
denote the class of studentized kernel functions and define

σn = sup
f∈F

sup
g∈Kn,f

(
Ef [g(X1)2]

)1/2
.

Note that σn ≥ 1.
For a given class G of measurable functions on a probability space (S,S, Q)

and ε > 0, the ε-covering number of G with respect to the L2(Q)-semimetric
is denoted by N(G, L2(Q), ε) (see Chapter 2 of [41] on details of covering
numbers). We will use the following definition of VC type classes:

Definition 3.1 (VC type class). Let G be a class of measurable functions
on a measurable space (S,S), and let b > 0, a ≥ e, and v ≥ 1 be some
constants. Then the class G is called VC(b, a, v) type class if it is uniformly
bounded in absolute value by b (i.e., supg∈G ‖g‖∞ ≤ b) and the covering
numbers of G satisfy

sup
Q
N(G, L2(Q), bτ) ≤ (a/τ)v, 0 < τ < 1,

where the supremum is taken over all finitely discrete probability measures
Q on (S,S).

Then we will make the following condition.

Condition VC. There exist sequences bn > 0, an ≥ e, and vn ≥ 1 such
that for every f ∈ F , the class Kn,f is VC(bn, an, vn) type and pointwise

measurable.1

Here we note this is a mild assumption, which we verify for common
constructions in Appendix 4 (as a part of proving results for the next section;
see Comment 3.5 below); see also Appendix J.

1We refer to Chapter 2.3 of [41] for the definition of pointwise measurable classes of
functions.
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For some sufficiently large absolute constant A, take

Kn := Avn (log n ∨ log(anbn/σn)) .

We will assume that Kn ≥ 1 for all n. The following theorem verifies
Conditions H1-H4 with so defined σ̂2

n(x, l) and ĉn(α) under Condition VC,
using the critical values constructed via Algorithm 1.

Theorem 3.2 (Conditions H1-H4 Hold for Our Construction). Sup-
pose that Condition VC is satisfied and there exist constants c2, C2 > 0
such that b2nσ

4
nK

4
n/n ≤ C2n

−c2. Then Conditions H1-H4 hold with some
constants c1, C1 > 0 that depend only on c2, C2.

Comment 3.5 (Convolution and wavelet projection kernels). The assump-
tion of Theorem 3.2 holds for convolution and wavelet projection kernels
under mild conditions on the resolution level l. It follows from Lemma
E.2 in Appendix E that, under mild regularity conditions, for convolu-
tion and wavelet projection kernel functions, σn ≤ C and Condition VC
holds with bn ≤ C2lmax,nd/2, an ≤ C, and vn ≤ C for some C > 0 where
lmax,n = sup{Ln}. Hence, for these kernel functions, the assumption that

b2nσ
4
nK

4
n/n ≤ C2n

−c2 reduces to 2lmax,nd(log4 n)/n ≤ C2n
−c2 (with possibly

different constants c2, C2) as long as lmax,n ≤ C log n for some C > 0. This
is a very mild assumption on the possible resolution levels. Similar com-
ments apply to non-wavelet projection kernels with Fourier and Legendre
polynomial bases. See Appendix J in the Supplemental Material. �

4. Honest and Adaptive Confidence Bands in Hölder Classes

In this section, we study the problem of constructing honest adaptive
confidence bands in Hölder smoothness classes. Recall that for t, L > 0, the
Hölder ball of radius L and smoothness level t is defined by

Σ(t, L) :=
{
f : Rd → R : f is btc-times continuously differentiable,

‖Dαf‖∞ ≤ L,∀|α| ≤ btc, sup
x 6=y

|Dαf(x)−Dαf(y)|
|x− y|t−btc

≤ L,∀|α| = btc
}
,

where btc denotes the largest integer smaller than t, and for a multi-index

α = (α1, . . . , αd) with |α| = α1 + · · ·+αd, D
αf(x) := ∂|α|f(x)/∂xα1

1 · · · ∂x
αd
d

[see, for example 39]. We assume that for some 0 < t ≤ t̄ <∞ and L ≥ 1,

F ⊂ ∪t∈[t,t̄]Σ(t, L), (4.1)

and consider the confidence band Cn = {Cn(x) : x ∈ X} of the form (3.3)
and (3.4), where X is a (suitable) compact set in Rd.

We begin with stating our assumptions. First, we restrict attention to ker-
nel density estimators f̂n based on either convolution or wavelet projection
kernel functions. Let r be an integer such that r ≥ 2 and r > t̄.
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Condition L1 (Density estimator). The density estimator f̂n is either a
convolution or wavelet projection kernel density estimator defined in (3.13),
(3.15), and (3.16). For convolution kernels, the function K : R → R has
compact support and is of bounded variation, and moreover is such that∫
K(s)ds = 1 and

∫
sjK(s)dx = 0 for j = 1, . . . , r − 1. For wavelet pro-

jection kernels, the function φ : R → R is either a compactly supported
father wavelet of regularity r − 1 (that is, φ is (r − 1)-times continuously
differentiable), or a Battle-Lemarié wavelet of regularity r − 1.

The assumptions stated in Condition L1 are commonly used in the liter-
ature. See [14] for a more general class of convolution kernel functions that
would suffice for our results. Details on compactly supported and Battle-
Lemarié wavelets can be found in Chapters 6 and 5.4 of [12], respectively.

It is known that if the function class F is sufficiently large (for example,
if F = Σ(t, L) ∪ Σ(t′, L) for t′ > t), the construction of honest adaptive
confidence bands is not possible; see [29]. Therefore, following [19], we will
restrict the function class F ⊂ ∪t∈[t,t̄]Σ(t, L) in a suitable way, as follows:

Condition L2 (Bias bounds). There exist constants l0, c3, C3 > 0 such that
for every f ∈ F ⊂ ∪t∈[t,t̄]Σ(t, L), there exists t ∈ [t, t̄] with

c32−lt ≤ sup
x∈X
|Ef [f̂n(x, l)]− f(x)| ≤ C32−lt, (4.2)

for all l ≥ l0.

This condition is inspired by the path-breaking work of [19] (see also [33]).
It can be interpreted as the requirement that the functions f in the class F
are “self-similar” in the sense that their regularity remains the same at large
and small scales; see also [4]. To put it differently, “self-similarity” could be
understood as the requirement that the bias of the kernel approximation to
f with bandwidth 2−l remains approximately proportional to (2−l)t – i.e.
not much smaller or not much bigger – for all small values of the bandwidth
2−l.

It is useful to note that the upper bound in (4.2) holds for all f ∈ Σ(t, L)
(for sufficiently large C3) under Condition L1; see, for example, Theorem
9.3 in [23]. In addition, [19] showed that under Condition L1, the restriction
due to the lower bound in (4.2) is weak in the sense that the set of elements
of Σ(t, L) for which the lower bound in (4.2) does not hold is “topologically
small”. Moreover, they showed that the minimax optimal rate of conver-
gence in the sup-norm over Σ(t, L) coincide with that over the set of elements
of Σ(t, L) for which Condition L2 holds. We refer to [19] for a detailed and
deep discussion of these conditions and results.

We also note that, depending on the problem, construction of honest
adaptive confidence bands is often possible under somewhat weaker condi-
tions than that in L2. For example, if we are interested in the function
class Σ(t, L) ∪ Σ(t′, L) for some t′ > t, [24] showed that it is necessary and
sufficient to exclude functions Σ(t, L)\Σ(t, L, ρn) where Σ(t, L, ρn) = {f ∈
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Σ(t, L) : infg∈Σ(t′,L) ‖g − f‖∞ ≥ ρn} and where ρn > 0 is allowed to con-
verge to zero as n increases but sufficiently slowly. If we are interested in
the function class ∪t∈[t,t̄]Σ(t, L), [4] showed that (essentially) necessary and
sufficient condition can be written in the form of the bound from below
on the rate with which wavelet coefficients of the density f are allowed to
decrease. Here we prefer to work with Condition L2 directly because it is
directly related to the properties of the estimator f̂n and does not require
any further specifications of the function class F .

In order to introduce the next condition, we need to observe that under
Condition L2, for every f ∈ F , there exists the unique t ∈ [t, t̄] satisfying
(4.2); indeed, if t1 < t2, then for any c, C > 0, there exists l̄ such that
C2−lt2 < c2−lt1 for all l ≥ l̄, so that for each f ∈ F condition (4.2) can hold
for all l ≥ l0 for at most one value of t. This defines the map

t : F → [t, t̄], f 7→ t(f). (4.3)

The next condition states our assumptions on the candidate set Ln of the
values of the smoothing parameter:

Condition L3 (Candidate set). There exist constants c4, C4 > 0 such that
for every f ∈ F , there exists l ∈ Ln with(

c4 log n

n

)1/(2t(f)+d)

≤ 2−l ≤
(
C4 log n

n

)1/(2t(f)+d)

, (4.4)

for the map t : f 7→ t(f) defined in (4.3). In addition, the candidate set is
either Ln = [lmin,n, lmax,n] (for convolution kernels) or Ln = [lmin,n, lmax,n]∩
N (for convolution or wavelet projection kernels).

This condition thus ensures via (4.4) that the candidate set Ln contains
an appropriate value of the smoothing parameter that leads to the optimal
rate of convergence for every density f ∈ F .

Finally, we will make the following mild condition:

Condition L4 (Density bounds). There exist constants δ, f , f̄ > 0 such
that for all f ∈ F ,

f(x) ≥ f for all x ∈ X δ and f(x) ≤ f̄ for all x ∈ Rd, (4.5)

where X δ is the δ-enlargement of X , i.e., X δ = {x ∈ Rd : infy∈X |x−y| ≤ δ}.

We now discuss how we choose various parameters in the confidence band
Cn. In the previous section, we have shown how to obtain honest confidence
bands as long as we can control the bias ∆n,f (l̂n) appropriately. So to
construct honest adaptive confidence bands, we seek a method to choose the
smoothing parameter l̂n ∈ Ln so that the bias ∆n,f (l̂n) can be controlled
and, at the same time, the confidence band Cn is adaptive. There exist
several techniques in the literature to achieve these goals; see, for example,
[31] for a thorough introduction. One of the most important such techniques
is the Lepski method (see [26] for a detailed explanation of the method). In
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this paper, we introduce a new implementation of the Lepski method, which
we refer to as a multiplier bootstrap implementation of the Lepski method.

Algorithm 2 (Multiplier bootstrap implementation of the Lepski
method). Let γn be a sequence of positive numbers converging to zero. Let
cn,f (γn) be the (1 − γn)-quantile of the random variable ‖Gn,f‖Vn appear-
ing in Condition H1, and let ĉn(γn) be an estimator of cn,f (γn) defined by
Algorithm 1 with α replaced by γn, that is ĉn(γn) is the conditional (1−γn)-

quantile of the supremum of the Gaussian multiplier process ‖Ĝn‖Vn defined
in (3.20) given the data Xn

1 . For all l ∈ Ln, let

Ln,l := {l′ ∈ Ln : l′ > l}.
For some constant q > 1, which is independent of n, define a Lepski-type
estimator

l̂n := inf

{
l ∈ Ln : sup

l′∈Ln,l
sup
x∈X

√
n|f̂n(x, l)− f̂n(x, l′)|
σ̂n(x, l) + σ̂n(x, l′)

≤ qĉn(γn)

}
. (4.6)

Comment 4.1 (On our implementation of Lepski’s method). We refer to
(4.6) as a (Gaussian) multiplier bootstrap implementation of the Lepski
method because ĉn(γn) is obtained as the conditional (1 − γn)-quantile of

‖Ĝ‖Vn given Xn
1 . Previous literature on the Lepski method used Talagrand’s

inequality combined with some bounds on expectations of suprema of certain
empirical processes (obtained via entropy methods and Rademacher aver-
ages) to choose the threshold level for the estimator (the right hand side of
the inequality in (4.6)); see [18] and [20]. Because of the one-sided nature of
the aforementioned inequalities, however, it was argued that the resulting
threshold turned out to be too high leading to limited applicability of the
estimator in small and moderate samples. In contrast, an advantage of our
construction is that we use qĉn(γn) as a threshold level, which is essentially
the minimal possible value of the threshold that suffices for good properties
of the estimator. �

Once we have l̂n, to define the confidence band Cn, we need to specify
σ̂n(x, l), ĉn(α), and c′n. We assume that σ̂n(x, l) is obtained via (3.14) and
ĉn(α) via Algorithm 1. To specify c′n, let u′n be a sequence of positive
numbers such that u′n is sufficiently large for large n. Specifically, for large
n, u′n is assumed to be larger than some constant C(F) depending only on
the function class F . In principle, the value C(F) can be traced out from the
proof of the theorem below. However, since the function class F is typically
unknown in practice, u′n can be set as a slowly growing sequence of positive
numbers. The problem of selecting u′n in practice is like that of selecting
the level of undersmoothing, and solving this problem is beyond the scope
of this paper. Set

c′n := u′nĉn(γn).

The following theorem shows that the confidence band Cn defined in this
way is honest and adaptive for F :
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Theorem 4.1 (Honest and Adaptive Confidence Bands via Our
Method). Suppose that Conditions L1-L4 are satisfied. In addition, sup-
pose that there exist constants c5, C5 > 0 such that (i) 2lmax,nd(log4 n)/n ≤
C5n

−c5, (ii) lmin,n ≥ c5 log n, (iii) γn ≤ C5n
−c5, (iv) | log γn| ≤ C5 log n, (v)

u′n ≥ C(F), and (vi) u′n ≤ C5 log n. Then Conditions H1-H6 in Section 3
and (3.7) in Theorem 3.1 hold and

sup
f∈F

Pf

(
sup
x∈X

λ(Cn(x)) > C(1 + u′n)rn(t(f))

)
≤ Cn−c, (4.7)

where λ(·) denotes the Lebesgue measure on R and rn(t) := (log n/n)t/(2t+d).
Here the constants c, C > 0 depend only on c5, C5, the constants that appear
in Conditions L1-L4, and on the function K (when convolution kernels are
used) or the father wavelet φ (when wavelet projection kernels are used).
Moreover,

sup
f∈F∩Σ(t,L)

Pf

(
sup
x∈X

λ(Cn(x)) > C(1 + u′n)rn(t)

)
≤ Cn−c, (4.8)

with the same constants c, C as those in (4.7).

Comment 4.2 (Honest and adaptive confidence bands). Equation (3.7)
implies that the confidence band Cn constructed above is asymptotically
honest at a polynomial rate for the class F . In addition, recall that rn(t)
is the minimax optimal rate of convergence in the sup-metric for the class
F ∩Σ(t, L); see [19]. Therefore, (4.8) implies that the confidence band Cn is
adaptive whenever u′n is bounded or almost adaptive if u′n is slowly growing;
see discussion in front of Theorem 4.1 on selecting u′n. �

Comment 4.3 (On inflating terms). When u′n is bounded, the rate of
convergence of the length of the confidence band to zero (1 + u′n)rn(t) co-
incides with the minimax optimal rate of estimation of over Σ(t, L) with
no additional inflating terms. This shows an advantage of the method of
constructing confidence bands based on the explicit control of the bias term
in comparison with the method based on undersmoothing where inflating
terms seem to be necessary. This type of construction is inspired by the
interesting ideas in [4]. �

Comment 4.4 (Extensions). Finally, we note that the proof of (3.7) and
(4.7) in Theorem 4.1 did not use (4.1) directly. The proof only relies on
Conditions L1-L4 whereas (4.1) served to motivate these conditions. There-
fore, results (3.7) and (4.7) of Theorem 4.1 apply more generally as long as
Conditions L1-L4 hold, not just for Hölder smoothness classes. �

Appendix A. Coupling Inequalities for Suprema of Empirical
and Related Processes

The purpose of this section is to provide two new coupling inequalities
based on Slepian-Stein methods that are useful for the analysis of uniform
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confidence bands. The first inequality is concerned with suprema of empir-
ical processes and is a direct corollary of Theorem 2.1 in [7]. The second
inequality is concerned with suprema of Gaussian multiplier processes and
will be obtained from a Gaussian comparison theorem derived in [8].

Let X1, . . . , Xn be i.i.d. random variables taking values in a measurable
space (S,S). Let G be a pointwise-measurable VC(b, a, v) type function class
for some b > 0, a ≥ e, and v ≥ 1 (the definition of VC type classes is given
in Section 3). Let σ2 > 0 be any constant such that supg∈G E[g(X1)2] ≤
σ2 ≤ b2. Define the empirical process

Gn(g) :=
1√
n

n∑
i=1

(g(Xi)− E[g(X1)]) , g ∈ G,

and let
Wn := ‖Gn‖G := sup

g∈G
|Gn(g)|

denote the supremum of the empirical process. Note that Wn is a well-
defined random variable since G is assumed to be pointwise-measurable.
Let B = {B(g) : g ∈ G} be a tight Gaussian random element in `∞(F) with
mean zero and covariance function

E[B(g1)B(g2)] = E[g1(X1)g2(X1)]− E[g1(X1)]E[g2(X1)],

for all g1, g2 ∈ G. It is well known that such a process exists under the
VC type assumption [see 41, p.100-101]. Finally, for some sufficiently large
absolute constant A, let

Kn := Av(log n ∨ log(ab/σ)).

In particular, we will assume that Kn ≥ 1. The following theorem shows
that Wn can be well approximated by the supremum of the corresponding
Gaussian process B under mild conditions on b, σ, and Kn.

Theorem A.1 (Slepian-Stein type coupling for suprema of empirical pro-
cesses). Consider the setting specified above. Then for every γ ∈ (0, 1) one
can construct on an enriched probability space a random variable W 0 such

that (i) W 0 d
= ‖B‖G and (ii)

P

(
|Wn −W 0| > bKn

(γn)1/2
+

(bσ)1/2K
3/4
n

γ1/2n1/4
+
b1/3σ2/3K

2/3
n

γ1/3n1/6

)

≤ A′
(
γ +

log n

n

)
,

where A′ is an absolute constant.

Comment A.1 (Comparison with the Hungarian couplings). The main
advantage of the coupling provided in this theorem in comparison with,
say, Hungarian coupling [25], which can be used to derive a similar result,
is that our coupling does not depend on total variation norm of functions
g ∈ G leading to sharper inequalities than those obtained via Hungarian
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coupling when the function class G consists, for example, of Fourier series
or Legendre polynomials; see [7]. In addition, our coupling does not impose
any side restrictions. In particular, it does not require bounded support of
X and allows for point masses on the support. In addition, if the density of
X exists, our coupling does not assume that this density is bounded away
from zero on the support. See, for example, [34] for the construction of the
Hungarian coupling and the use of aforementioned conditions. �

Let ξ1, . . . , ξn be independent N(0, 1) random variables independent of
Xn

1 := {X1, . . . , Xn}, and let ξn1 := {ξ1, . . . , ξn}. We assume that random
variables X1, . . . , Xn, ξ1, . . . , ξn are defined as coordinate projections from
the product probability space. Define the Gaussian multiplier process

G̃n(g) := G̃n(Xn
1 , ξ

n
1 )(g) :=

1√
n

n∑
i=1

ξi(g(Xi)− En[g(Xi)]), g ∈ G,

and for xn1 ∈ Sn, let W̃n(xn1 ) := ‖G̃n(xn1 , ξ
n
1 )‖G denote the supremum of this

process calculated for fixed Xn
1 = xn1 . Note that W̃n(xn1 ) is a well-defined

random variable. In addition, let

ψn :=

√
σ2Kn

n
+

(
b2σ2K3

n

n

)1/4

and γn(δ) :=
1

δ

(
b2σ2K3

n

n

)1/4

+
1

n
.

The following theorem shows that W̃n(Xn
1 ) can be well approximated with

high probability by the supremum of the Gaussian process B under mild
conditions on b, σ, and Kn.

Theorem A.2 (Slepian-Stein type coupling for suprema of multiplier pro-
cesses). Consider the setting specified above. Suppose that b2Kn ≤ nσ2.
Then for every δ > 0, there exists a set Sn,0 ∈ Sn such that P(Xn

1 ∈ Sn,0) ≥
1−3/n and for every xn1 ∈ Sn,0 one can construct on an enriched probability

space a random variable W 0 such that (i) W 0 d
= ‖B‖G and (ii)

P(|W̃n(xn1 )−W 0| > (ψn + δ)) ≤ A′′γn(δ),

where A′′ is an absolute constant.

Comment A.2 (On the use of Slepian-Stein couplings). Theorems A.1
and A.2 combined with anti-concentration inequalities (Theorem 2.1 and
Corollary 2.1) can be used to prove validity of Gaussian multiplier bootstrap
for approximating distributions of suprema of empirical processes of VC
type function classes without weak convergence arguments. This allows us
to cover cases where complexity of the function class G is increasing with
n, which is typically the case in nonparametric problems in general and in
confidence band construction in particular. Moreover, approximation error
can be shown to be polynomially (in n) small under mild conditions. �
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Appendix B. Some technical Tools

Theorem B.1. Let ξ1, . . . , ξn be i.i.d. random variables taking values in
a measurable space (S,S). Suppose that G is a nonempty, pointwise mea-
surable class of functions on S uniformly bounded by a constant b such that
there exist constants a ≥ e and v > 1 with supQN(G, L2(Q), bε) ≤ (a/ε)v

for all 0 < ε ≤ 1. Let σ2 be a constant such that supg∈G Var(g) ≤ σ2 ≤ b2.

If b2v log(ab/σ) ≤ nσ2, then for all t ≤ nσ2/b2,

P

[
sup
g∈G

∣∣∣∣∣
n∑
i=1

{g(ξi)− E[g(ξ1)]}

∣∣∣∣∣ > A

√
nσ2

{
t ∨
(
v log

ab

σ

)}]
≤ e−t,

where A > 0 is an absolute constant.

Proof. This version of Talagrand’s inequality follows from Theorem 3 in [30]
combined with a bound on expected values of suprema of empirical processes
derived in [14]. �

Proofs of the following two lemmas can be found in the Supplemental
Material.

Lemma B.1. Let Y := {Y (t) : t ∈ T} be a separable, centered Gauss-
ian process such that E[Y (t)2] = 1 for all t ∈ T . Let c(α) denote the
(1 − α)-quantile of ‖Y ‖T . Assume that E[‖Y ‖T ] < ∞. Then c(α) ≤
E[‖Y ‖T ] +

√
2| logα| and c(α) ≤ M(‖Y ‖T ) +

√
2| logα| for all α ∈ (0, 1)

where M(‖Y ‖T ) is the median of ‖Y ‖T .

Lemma B.2. Let G1 and G2 be VC(b1, a1, v1) and VC(b2, a2, v2) type classes,

respectively, on a measurable space (S,S). Then with a = (av11 a
v2
2 )1/(v1+v2),

(i) G1 ·G2 = {g1 ·g2 : g1 ∈ G1, g2 ∈ G2} is VC(b1b2, 2a, v1 +v2) type class, (ii)
G1 − G2 = {g1 − g2 : g1 ∈ G1, g2 ∈ G2} is VC(b1 + b2, a, v1 + v2) type class,
and (iii) G2

1 = {g2
1 : g1 ∈ G1} is VC(b21, 2a1, v1) type class.

Appendix C. Proofs for Section 2

Proof of Theorem 2.1. The fact that a(X) <∞ follows from Landau-Shepp-
Fernique theorem (see, for example, Lemma 2.2.5 in [13]). Since supt∈T Xt ≥
Xt0 for any fixed t0 ∈ T , a(X) ≥ E[Xt0 ] = 0. We now prove (2.3).

Since the Gaussian process X = (Xt)t∈T is separable, there exists a se-
quence of finite subsets Tn ⊂ T such that Zn := maxt∈Tn Xt → supt∈T Xt =:
Z a.s. as n → ∞. Fix any x ∈ R. Since |Zn − x| → |Z − x| a.s. and a.s.
convergence implies weak convergence, there exists an at most countable
subset Nx of R such that for all ε ∈ R\Nx,

lim
n→∞

P(|Zn − x| ≤ ε) = P(|Z − x| ≤ ε).

But by Theorem 3 in [8],

P(|Zn − x| ≤ ε) ≤ 4ε(E[max
t∈Tn

Xt] + 1) ≤ 4ε(a(X) + 1),
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for all ε ≥ 0. Therefore,

P(|Z − x| ≤ ε) ≤ 4ε(a(X) + 1), (C.1)

for all ε ∈ R\Nx. By right continuity of P(|Z − x| ≤ ·), it follows that (C.1)
holds for all ε ≥ 0. Since x ∈ R is arbitrary, we obtain (2.3). �

Proof of Corollary 2.1. The proof is analogous to that of Theorem 2.1 and
therefore is omitted. �

Appendix D. Proofs for Section 3

Proof of Theorem 3.1. Pick any f ∈ F . By the triangle inequality, we have
for any x ∈ X ,

√
n|f̂n(x, l̂n)− f(x)|

σ̂n(x, l̂n)
≤
(
|Zn,f (x, l̂n)|+ ∆n,f (l̂n)

) σn,f (x, l̂n)

σ̂n(x, l̂n)
,

by which we have

Pf (f(x) ∈ Cn(x), ∀x ∈ X )

≥ Pf (|Zn,f (x, l̂n)|+ ∆n,f (l̂n) ≤ (ĉn(α) + c′n)σ̂n(x, l̂n)/σn,f (x, l̂n), ∀x ∈ X )

≥ Pf (sup
x∈X
|Zn,f (x, l̂n)|+ ∆n,f (l̂n) ≤ (ĉn(α) + c′n)(1− ε3n))− δ3n (D.1)

≥ Pf (sup
x∈X
|Zn,f (x, l̂n)| ≤ ĉn(α)(1− ε3n)− c′nε3n)− δ3n − δ4n (D.2)

≥ Pf (‖Zn,f‖Vn ≤ ĉn(α)(1− ε3n)− c′nε3n)− δ3n − δ4n (D.3)

≥ Pf (‖Zn,f‖Vn ≤ ĉn(α)(1− ε3n)− unε3n
√

log n)− δ3n − δ4n − δ5n, (D.4)

where (D.1) follows from Condition H4, (D.2) from Condition H5, (D.3) from

the inequality supx∈X |Zn,f (x, l̂n)| ≤ ‖Zn,f‖Vn , and (D.4) from Condition
H6. Further, the probability in (D.4) equals (recall that Wn,f = ‖Zn,f‖Vn)

Pf (Wn,f ≤ ĉn(α)(1− ε3n)− unε3n
√

log n)

≥ Pf (Wn,f ≤ cn,f (α+ τn)(1− ε3n)− ε2n − unε3n
√

log n)− δ2n, (D.5)

where (D.5) follows from Condition H3. Now, the probability in (D.5) is
bounded from below by Condition H1 by

Pf (W 0
n,f ≤ cn,f (α+ τn)(1− ε3n)− ε1n − ε2n − unε3n

√
log n)− δ1n

≥ Pf (W 0
n,f ≤ cn,f (α+ τn))− pε̄n(|Gn,f |)− δ1n (D.6)

≥ 1− α− τn − pε̄n(|Gn,f |)− δ1n, (D.7)

where (D.6) follows from the definition of the Lévy concentration function
pε̄n(|Gn,f |) given that ε̄n = ε1n + ε2n + ε3n(cn,f (α) + un

√
log n) and (D.7)

follows since cn,f (·) is the quantile function of W 0
n,f . Combining these in-

equalities leads to (3.5).
To prove (3.6) and (3.7), note that δn ≤ Cn−c and τn ≤ Cn−c by

Conditions H1 and H3-H6. Further, by Markov’s inequality, cn,f (α) ≤
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E[‖Gn,f‖Vn ]/α ≤ C
√

log n, so that ε̄n,f ≤ Cn−c because ε3nun
√

log n ≤
C1n

−c1 . Therefore, (3.6) and (3.7) follow from (3.5) and Condition H2. �

Proof of Corollary 3.1. The proof is similar to that of Theorem 3.1. The
details are provided in the Supplemental Material. �

Proof of Theorem 3.2. In this proof, c, C > 0 are constants that depend
only on c2, C2 but their values can change at each appearance.

Fix any f ∈ F . Let Gn,f = {Gn,f (v) : v ∈ Vn} be a tight Gaussian
random element in `∞(Vn) with mean zero and the same covariance function
as that of Zn,f . Since b2nσ

4
nK

4
n/n ≤ C2n

−c2 , it follows from Theorem A.1

that we can construct a random variable W 0
n,f such that W 0

n,f
d
= ‖Gn,f‖Vn

and (3.1) holds with some ε1n and δ1n bounded from above by Cn−c. In
addition, inequality E[‖Gn,f‖Vn ] ≤ C

√
log n follows from Corollary 2.2.8 in

[41]. Condition H1 follows. Given Condition H1, Condition H2-(b) follows
from Corollary 2.1, and Condition H2-(a) follows from H2-(b).

Consider Condition H4. There exists n0 such that C2n
−c2
0 ≤ 1. It suffices

to verify the condition only for n ≥ n0. Note that∣∣∣∣ σ̂n(x, l)

σn,f (x, l)
− 1

∣∣∣∣ ≤
∣∣∣∣∣ σ̂2

n(x, l)

σ2
n,f (x, l)

− 1

∣∣∣∣∣ . (D.8)

Define K2
n,f := {g2 : g ∈ Kn,f}. Given the definition of σ̂n(x, l), the right

hand side of (D.8) is bounded by

sup
g∈K2

n,f

|En[g(Xi)]− E[g(X1)]|+ sup
g∈Kn,f

∣∣En[g(Xi)]
2 − E[g(X1)]2

∣∣ . (D.9)

It follows from Lemma B.2 that K2
n,f is VC(b2n, 2an, vn) type class. Moreover,

for all g ∈ K2
n,f ,

E[g(Xi)
2] ≤ b2nE[g(Xi)] ≤ b2nσ2

n.

Therefore, Talagrand’s inequality (Theorem B.1) with t = log n, which
can be applied because b2nKn/(nσ

2
n) ≤ b2nσ

4
nK

4
n/n ≤ C2n

−c2 ≤ 1 and
b2n log n/(nσ2

n) ≤ b2nKn/(nσ
2
n) ≤ 1 (recall that σn ≥ 1 and Kn ≥ 1), gives

P

 sup
g∈K2

n,f

|En[g(Xi)]− E[g(X1)]| > 1

2

√
b2nσ

2
nKn

n

 ≤ 1

n
. (D.10)

In addition,

sup
g∈Kn,f

∣∣En[g(Xi)]
2 − E[g(X1)]2

∣∣ ≤ 2bn sup
g∈Kn,f

|En[g(Xi)]− E[g(X1)]| ,

so that another application of Talagrand’s inequality yields

P

(
sup

g∈Kn,f

∣∣En[g(Xi)]
2 − E[g(X1)]2

∣∣ > 1

2

√
b2nσ

2
nKn

n

)
≤ 1

n
. (D.11)
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Given that b2nσ
2
nKn/n ≤ b2nσ4

nK
4
n/n ≤ C2n

−c2 , combining (D.8)-(D.11) gives

Condition H4 with ε3n := (b2nσ
2
nKn/n)1/2 and δ3n := 2/n.

Finally, we verify Condition H3. There exists n1 such that ε3n1 ≤ 1/2. It
suffices to verify the condition only for n ≥ n1, so that ε3n ≤ 1/2. Define

G̃n(x, l) = G̃n(Xn
1 , ξ

n
1 )(x, l) :=

1√
n

n∑
i=1

ξi
Kl(Xi, x)− f̂n(x, l)

σn(x, l)
,

and

∆Gn(x, l) = Ĝn(x, l)− G̃n(x, l).

In addition, define

Ŵn(xn1 ) := sup
(x,l)∈X×Ln

Ĝn(xn1 , ξ
n
1 )(x, l),

W̃n(xn1 ) := sup
(x,l)∈X×Ln

G̃n(xn1 , ξ
n
1 )(x, l).

Consider the set Sn,1 of values Xn
1 such that |σ̂n(x, l)/σn,f (x, l) − 1| ≤ ε3n

for all (x, l) ∈ X ×Ln whenever Xn
1 ∈ Sn,1. The previous calculations show

that Pf (Xn
1 ∈ Sn,1) ≥ 1− δ3n = 1− 2/n. Pick and fix any xn1 ∈ Sn,1. Then

∆Gn(xn1 , ξ
n
1 )(x, l) =

1√
n

n∑
i=1

ξi
Kl(xi, x)− f̂n(x, l)

σn(x, l)

(
σn(x, l)

σ̂n(x, l)
− 1

)
is a Gaussian process with mean zero and

Var (∆Gn(xn1 , ξ
n
1 )(x, l)) =

σ̂2
n(x, l)

σ2
n(x, l)

(
σn(x, l)

σ̂n(x, l)
− 1

)2

≤ ε23n.

Further, the function class

K̃n,f :=

{
Kl(·, x)

σn(x, l)

(
σn(x, l)

σ̂n(x, l)
− 1

)
: (x, l) ∈ X × Ln

}
is contained in the function class{

aKl(·, x)

σn(x, l)
: (x, l, a) ∈ X × Ln × [−1, 1]

}
,

and hence is VC(bn, 4an, 1 + vn) type class by Lemma B.2. In addition,

E
[(

∆Gn(xn1 , ξ
n
1 )(x′, l′)−∆Gn(xn1 , ξ

n
1 )(x′′, l′′)

)2]
≤ En

[(
Kl(xi, x

′)

σn(x′, l′)

(
σn(x′, l′)

σ̂n(x′, l′)
− 1

)
− Kl(xi, x

′′)

σn(x′′, l′′)

(
σn(x′′, l′′)

σ̂n(x′′, l′′)
− 1

))2
]
,

for all x′, x′′ ∈ X and l′, l′′ ∈ Ln, so that covering numbers for the index
set X × Ln with respect to the intrinsic (standard deviation) semimetric
induced from the Gaussian process ∆Gn(xn1 , ξ

n
1 ) are bounded by uniform
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covering numbers for the function class K̃n,f . Therefore, an application of
Corollary 2.2.8 in [41] gives

E

[
sup

(x,l)∈X×Ln
|∆Gn(xn1 , ξ

n
1 )(x, l)|

]
≤ Cε3n

√
log

(
4anbn
ε3n

)1+vn

≤ Cε3n
√
Kn

(
1 +

√
log(1/ε3n)

)
≤ Cn−c,

where the last inequality follows from the definition of ε3n above. Combin-
ing this bound with the Borell-Sudakov-Tsirel’son inequality, and using the
inequality

|Ŵn(xn1 )− W̃n(xn1 )| ≤ sup
(x,l)∈X×Ln

|∆Gn(xn1 , ξ
n
1 )(x, l)|,

we see that there exists λ1n ≤ Cn−c such that

P(|Ŵn(xn1 )− W̃n(xn1 )| ≥ λ1n) ≤ Cn−c, (D.12)

whenever xn1 ∈ Sn,1. Further, since b2nσ
4
nK

4
n/n ≤ C2n

−c2 , Theorem A.2
shows that there exist λ2n ≤ Cn−c and a measurable set Sn,2 of values Xn

1

such that Pf (Xn
1 ∈ Sn,2) ≥ 1−3/n and for every xn1 ∈ Sn,2 one can construct

a random variable W 0 such that W 0 d
= ‖Gn,f‖Vn and

P(|W̃n(xn1 )−W 0| ≥ λ2n) ≤ Cn−c. (D.13)

Here W 0 may depend on xn1 but c, C can be chosen in such a way that they
depend only on c2, C2 (as noted in the beginning).

Pick and fix any xn1 ∈ Sn,0 := Sn,1 ∩ Sn,2 and construct a suitable W 0 d
=

‖Gn,f‖Vn for which (D.13) holds. Then by (D.12), we have

P(|Ŵn(xn1 )−W 0| ≥ λn) ≤ Cn−c, (D.14)

where λn := λ1n +λ2n. Denote by ĉn(α, xn1 ) the (1−α)-quantile of Ŵn(xn1 ).
Then we have

P(‖Gn,f‖Vn ≤ ĉn(α, xn1 ) + λn) = P(W 0 ≤ ĉn(α, xn1 ) + λn)

≥ P(Ŵn(xn1 ) ≤ ĉn(α, xn1 ))− Cn−c

≥ 1− α− Cn−c,

by which we have ĉn(α, xn1 ) ≥ cn,f (α + Cn−c) − λn. Since xn1 ∈ Sn,0 is
arbitrary and ĉn(α) = ĉn(α,Xn

1 ), we see that whenever Xn
1 ∈ Sn,0, ĉn(α) ≥

cn,f (α + Cn−c) − λn. Part (a) of Condition H3 follows from the fact that
Pf (Xn

1 ∈ Sn,0) ≥ 1− 5/n and λn ≤ Cn−c. Part (b) follows similarly. �

Appendix E. Proofs for Section 4

In this section, we prove Theorem 4.1. Here constants c, C > 0 depend
only on the constants appearing in the statement of Theorem 4.1 and in Con-
ditions L1-L4 but their values may change at each appearance. When Ln =
[lmin,n, lmax,n], let s ∈ (0, 1] be some number. When Ln = [lmin,n, lmax,n]∩N,
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let s = 1. The role of s in the proof is to make sure that for any l ∈ Ln,
either there is some l′ ∈ Ln such that l′ ∈ [l−s, l) or there is no l′ ∈ Ln such
that l′ < l. The proof is long, so we start with several preliminary lemmas.

Lemma E.1. Let φ be a father wavelet satisfying the latter part of Condition
L1. Then there exists a constant cφ > 0 depending only on φ such that for

all x = (x1, . . . , xd)
′ ∈ Rd,∑
k1,...,kd∈Z

∏
1≤m≤d

φ(xm − km)2 ≥ cφ. (E.1)

Lemma E.2. Under the assumptions of Theorem 4.1, there exists n0 such
that for all n ≥ n0, Condition VC holds with bn ≤ C2lmax,nd/2, an ≤ C,
vn ≤ C. In addition, σn ≤ C and for all f ∈ F and l ∈ Ln,

σ2ld/2 ≤ inf
x∈X

σn,f (x, l) ≤ sup
x∈X

σn,f (x, l) ≤ σ̄2ld/2. (E.2)

Here n0, σ, and σ̄ depend only on the constants appearing in the statement
of Theorem 4.1 and in Conditions L1-L4.

Proofs of Lemmas E.1 and E.2 can be found in the Supplemental Material.

Lemma E.3. Under the assumptions of Theorem 4.1, Conditions H1-H4
are satisfied. Moreover, Condition H3 holds uniformly over all α ∈ (0, 1).

Proof of Lemma E.3. The result follows from combining Lemma E.2 and
Theorem 3.2. �

Lemma E.4. Under the assumptions of Theorem 4.1, there exist c > 0 and
C > 0 such that

λ0n := 1− Pf (c
√

log n ≤ ĉn(γn) ≤ C
√

log n) ≤ Cn−c.

Proof of Lemma E.4. Lemma E.3 implies that the result of Theorem 3.2
applies under our assumptions. Therefore, we can and will assume that
Conditions H1-H4 hold with Condition H3 being satisfied uniformly over all
α ∈ (0, 1). Inequality

Pf (ĉn(γn) < c
√

log n) ≤ Cn−c

follows from Condition H3 and the fact that cn,f (γn + τn) is bounded from
below by (1−γn−τn) quantile of N(0, 1) distribution where γn+τn ≤ Cn−c.

Now let us verify inequality

Pf (ĉn(γn) > C
√

log n) ≤ Cn−c. (E.3)

Let M(xn1 ) denote the median of Ŵn(xn1 ) = ‖Ĝn(xn1 , ξ
n
1 )‖Vn . Applying

Lemma B.1 conditional on the data gives

ĉn(γn) ≤M(Xn
1 ) +

√
2| log γn|. (E.4)

Further, in the proof of Theorem 3.2, it was shown that there exists a mea-
surable set Sn,0 of values of Xn

1 such that Pf (Xn
1 /∈ Sn,0) ≤ Cn−c and

for each xn1 ∈ Sn,0 one can construct a random variable W 0 such that
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P(|Ŵn(xn1 ) − W 0| ≥ ζ1n) ≤ ζ2n for some ζ1n and ζ2n both bounded by

Cn−c and W 0 d
= ‖Gn,f‖Vn ; see (D.14). Therefore,

Pf (M(Xn
1 ) > cn,f (1/2− ζ2n) + ζ1n) ≤ Cn−c. (E.5)

Since E[‖Gn,f‖Vn ] ≤ C1
√

log n (assumed in Condition H1), Markov’s in-
equality implies that cn,f (1/2− ζ2n) ≤ C

√
log n. Combining this inequality

with (E.4) and (E.5) and using | log γn| ≤ C5 log n give (E.3). This completes
the proof of the lemma. �

Proof of Theorem 4.1. First, we note that for any t′ > t(f), f /∈ Σ(t′, L);

otherwise, we would have that supx∈X |Ef [f̂n(x, l)]− f(x)| ≤ C2−lt
′

contra-
dicting the lower bound in (4.2). Therefore, (4.7) implies (4.8), and so it
suffices to verify Conditions H1-H6 and to prove (3.7) and (4.7).

By Lemma E.3, we can and will assume that Conditions H1-H4 hold with
Condition H3 being satisfied uniformly over all α ∈ (0, 1). In addition,
Condition H6 with some un satisfying cu′n ≤ un ≤ Cu′n follows from Lemma
E.4.

We now show that under our assumptions, Conditions H5 is also satisfied.
By Condition H4, ε3n is bounded by C1n

−c1 . So, there exists n1 such that
ε3n ≤ 1/2 for all n ≥ n1. Let δ4n = 1 for n < max(n0, n1), where n0 is
chosen so that for all n ≥ n0 and l ∈ Ln, l ≥ l0 for l0 appearing in Condition
L2, so that Condition H5 holds for these n’s with C1 sufficiently large and
c1 sufficiently small. Therefore, it suffices to consider n ≥ max(n0, n1).

Let t := t(f). Let m > s be such that c32(m−s)t > C3, M1 > 0 be such

that M1(1 − C32−(m−s)t/c3) > 2(q + 1)C3/c3, and M2 > 0 be such that
4M2 < (q − 1)σ/σ̄ where s is introduced in the beginning of Appendix E, q
in (4.6), and σ and σ̄ in Lemma E.2. For M > 0, define

l?(M) := inf

{
l ∈ Ln : C32−lt

√
n ≤Mĉn(γn) sup

x∈X
σ̂n(x, l)

}
,

and let l?1 := l?(M1) and l?2 := l?(M2). We will invoke the following lemmas.

Lemma E.5. There exist c, C > 0 such that

λ1n := Pf (l̂n < l?1 −m) ≤ Cn−c.

Proof of Lemma E.5. Define L1
n := {l ∈ Ln : l < l?1 − m}. If there is no

l′ ∈ Ln such that l′ < l?1, we are done. Otherwise, since l?1 ∈ Ln by Ln being
closed, there exists some l′ ∈ Ln such that l′ ∈ [l?1 − s, l?1) (Condition L3).
Fix this l′. Then

Pf (l̂n < l?1 −m) ≤ Pf

(
inf
l∈L1n

sup
x∈X

√
n|f̂n(x, l)− f̂n(x, l′)|
σ̂n(x, l) + σ̂n(x, l′)

≤ qĉn(γn)

)
(E.6)
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By Condition L2 and the triangle inequality,

c32−lt ≤ sup
x∈X
|Ef [f̂n(x, l)]− f(x)|

≤ sup
x∈X
|Ef [f̂n(x, l)]− f̂n(x, l)|+ sup

x∈X
|f̂n(x, l)− f̂n(x, l′)|

+ sup
x∈X
|f̂n(x, l′)− Ef [f̂n(x, l′)]|+ sup

x∈X
|Ef [f̂n(x, l′)]− f(x)|.

Hence applying Condition L2 one more time and letting

Bn(l) := sup
x∈X
|f̂n(x, l)− Ef [f̂n(x, l)]|,

we have

sup
x∈X
|f̂n(x, l)− f̂n(x, l′)| ≥ c32−lt − C32−l

′t −Bn(l)−Bn(l′).

Further, for l ∈ L1
n, by the definition of l?1, construction of M1, and since

t ≥ t,

c32−lt − C32−l
′t

2
≥ c3

2lt+1

(
1− C32−(m−s)t/c3

)
≥ c3

2C3
√
n
M1ĉn(γn) sup

x∈X
σ̂n(x, l)

(
1− C32−(m−s)t/c3

)
≥ (q + 1)ĉn(γn) sup

x∈X
σ̂n(x, l)/

√
n,

and

c32−lt − C32−l
′t

2
≥ C3

2l′t+1

(
c32(m−s)t/C3 − 1

)
≥ 1

2
√
n
M1ĉn(γn) sup

x∈X
σ̂n(x, l′)

(
c32(m−s)t/C3 − 1

)
≥ (q + 1)ĉn(γn) sup

x∈X
σ̂n(x, l′)/

√
n.

Combining these inequalities yields for l ∈ L1
n,

sup
x∈X

√
n|f̂n(x, l)− f̂n(x, l′)|
σ̂n(x, l) + σ̂n(x, l′)

≥ supx∈X
√
n|f̂n(x, l)− f̂n(x, l′)|

supx∈X σ̂n(x, l) + supx∈X σ̂n(x, l′)

≥ (q + 1)ĉn(γn)− Bn(l) +Bn(l′)

supx∈X σ̂n(x, l) + supx∈X σ̂n(x, l′)
.

Therefore, (E.6) gives

Pf (l̂n < l?1 −m) ≤ Pf

(
sup
v∈Vn

√
n|f̂n(v)− E[f̂n(v)]|

σ̂n(v)
≥ ĉn(γn)

)
≤ γn + Cn−c ≤ Cn−c,

where the inequalities in the second line follow from an argument similar to
that used in the proof of Theorem 3.1. This gives the asserted claim. �
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Lemma E.6. There exist c, C > 0 such that

λ2n := Pf (l̂n > l?2) ≤ Cn−c.

Proof of Lemma E.6. Define L2
n := {l ∈ Ln : l > l?2}. Consider the event

An that supv∈Vn |σ̂n(v)/σn(v)− 1| ≤ ε3n. By Condition H4, the probability
of this event is at least 1− δ3n. On the event An, for all l ∈ Ln,

sup
x∈X

σ̂n(x, l) ≤ (1 + ε3n) sup
x∈X

σn,f (x, l) ≤ (1 + ε3n)σ̄2ld/2,

by Lemma E.2. Therefore, on the event An, for all l ∈ L2
n,

C32−lt
√
n ≤M2ĉn(γn)(1 + ε3n)σ̄2ld/2. (E.7)

Indeed, if (E.7) does not hold for l = l?2, then L2
n is empty by the definition

of l?2; otherwise, (E.7) holds for all l > l?2, and, in particular, for all l ∈ L2
n.

Hence, on the event An, for all l ∈ L2
n,

C32−lt
√
n ≤M2ĉn(γn)(1 + ε3n)σ̄2ld/2

≤M2ĉn(γn)(1 + ε3n)(σ̄/σ) inf
x∈X

σn,f (x, l) (E.8)

≤M2ĉn(γn)(1 + 2ε3n)2(σ̄/σ) inf
x∈X

σ̂n(x, l) (E.9)

≤ (q − 1)ĉn(γn) inf
x∈X

σ̂n(x, l), (E.10)

where (E.8) follows from Lemma E.2, (E.9) from the definition of the event
An and ε3n ≤ 1/2, so that 1/(1+2ε3n) ≤ 1−ε3n, and (E.10) from the choice
of M2 and (1 + 2ε3n)2 ≤ 4, which holds for all n ≥ n1. Hence

∆̂n,f (l) := sup
x∈X

√
n|f(x)− Ef [f̂n(x, l)]|

σ̂n(x, l)

satisfies

Pf

(
sup
l∈L2n

∆̂n,f (l) > (q − 1)ĉn(γn)

)
≤ δ3n (E.11)

by Condition L2. Further, by the definition of l̂n and the triangle inequality,

Pf (l̂n > l?2) ≤ Pf

(
sup
l,l′∈L2n

sup
x∈X

√
n|f̂n(x, l)− f̂n(x, l′)|
σ̂n(x, l) + σ̂n(x, l′)

> qĉn(γn)

)

≤ Pf

(
sup
l∈L2n

sup
x∈X

√
n|f̂n(x, l)− f(x)|

σ̂n(x, l)
> qĉn(γn)

)

Using the definition of ∆̂n,f (l) and applying the triangle inequality once
again, the probability in the last expression can be further bounded from
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above by

Pf

(
sup
l∈L2n

sup
x∈X

√
n|f̂n(x, l)− Ef [f̂n(x, l)]|

σ̂n(x, l)
+ ∆̂n,f (l) > qĉn(γn)

)

≤ Pf

(
sup
v∈Vn

√
n|f̂n(v)− Ef [f̂n(v)]|

σ̂n(v)
> ĉn(γn)

)
+ δ3n (E.12)

≤ γn + δ3n + Cn−c ≤ Cn−c. (E.13)

where (E.12) follows from (E.11), and (E.13) from an argument similar to
that used in the proof of Theorem 3.1 and because γn and δ3n are both
bounded by Cn−c. This gives the asserted claim. �

Let l?0 := l?0(f) be l ∈ Ln satisfying (4.4), which exists by Condition L3.
Now we can verify Condition H5:

Lemma E.7. Under our assumptions, Condition H5 is satisfied.

Proof of Lemma E.7. We claim that with probability at least 1− δ3n− λ0n,
√
n2−l

?
1(t+d/2) ≤ Cĉn(γn). (E.14)

Indeed, consider the event that for all l ∈ Ln,

ĉn(γn) ≥ c
√

log n and sup
x∈X

σ̂n(x, l) ≤ (1 + ε3n)σ̄2ld/2.

By Lemmas E.2 and E.4 and Condition H4, the probability of this event is
greater than or equal to 1− δ3n − λ0n. On this event, if l?1 ≥ l?0, then

√
n2−l

?
1(t+d/2) ≤

√
n2−l

?
0(t+d/2) ≤

√
C4 log n ≤ Cĉn(γn),

and if l?1 < l?0, then the set

{l ∈ Ln : C32−lt
√
n ≤M1ĉn(γn) sup

x∈X
σ̂n(x, l)}

is nonempty, so that l?1 belongs to the set

{l ∈ Ln : C32−lt
√
n ≤M1ĉn(γn)(1 + ε3n)σ̄2ld/2},

and so (E.14) holds in both cases on this event because 1 + ε3n ≤ 3/2.
Hence, with probability at least 1− δ3n − λ0n − λ1n,

∆n,f (l̂n) ≤
√
nC32−l̂nt

infx∈X σn,f (x, l̂n)
≤
√
nC32−l̂nt/(σ2l̂nd/2) (E.15)

= C
√
n2−l̂n(t+d/2) ≤ C

√
n2−(l?1−m)(t+d/2) ≤ Cĉn(γn), (E.16)

where (E.15) follows from Condition L2 and Lemma E.2, and (E.16) from
Lemma E.5, and (E.14). Since δ3n+λ0n+λ1n ≤ Cn−c, Condition H5 follows
because c′n = u′nĉn(γn) and u′n is sufficiently large (u′n ≥ C(F)). �

Finally, to prove the theorem, we will use the following lemma:
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Lemma E.8. There exist c, C > 0 such that

λ3n := sup
f∈F

Pf

(
sup
x∈X

σ̂n(x, l̂n)2 > C

(
log n

n

)−d/(2t+d)
)
≤ Cn−c.

Proof of Lemma E.8. We claim that with probability at least 1− δ3n− λ0n,

2−(l?2−s)(t+d/2)√n ≥ c
√

log n. (E.17)

Indeed, consider the event that for all l ∈ Ln,

ĉn(γn) ≤ C
√

log n and sup
x∈X

σ̂n(x, l) ≥ (1− ε3n)σ2ld/2.

By Lemmas E.2 and E.4 and Condition H4, the probability of this event is
greater than or equal to 1− δ3n − λ0n. On this event, if l?2 − s ≤ l?0, then

√
n2−(l?2−s)(t+d/2) ≥

√
n2−l

?
0(t+d/2) ≥

√
c4 log n,

and if l?2 − s > l?0, then there is an element l′ ∈ Ln such that l′ ∈ [l?2 − s, l?2),
and √

n2−l
′(t+d/2) ≥ cĉn(γn) ≥ c

√
log n,

since l′ does not belong to the set

{l ∈ Ln : C32−lt
√
n ≤M2ĉn(γn) sup

x∈X
σ̂n(x, l)},

and so also does not belong to the set

{l ∈ Ln : C32−lt
√
n ≤M2ĉn(γn)(1− ε3n)σ2ld/2)}.

Therefore, (E.17) holds in both cases on this event.
Hence, by Lemma E.6, with probability at least 1− δ3n − λ0n − λ2n,

2−l̂n(t+d/2)√n ≥ c
√

log n.

Conclude that with the same probability

sup
x∈X

σ̂n(x, l̂n)2 ≤ (1 + ε3n)2 sup
x∈X

σn,f (x, l̂n)2 ≤ C2l̂nd ≤ C
(

log n

n

)−d/(2t+d)

.

Since δ3n + λ0n + λ2n ≤ Cn−c, the result follows. �

We now finish the proof of the theorem. We have by now verified Condi-
tions H1-H6. Since Conditions H1-H6 hold with Condition H6 being satisfied
with un ≤ Cu′n ≤ C log n, Theorem 3.1 applies, so that (3.7) holds. Further,
by construction,

sup
x∈X

λ(Cn(x)) = 2(ĉn(α) + c′n) sup
x∈X

σ̂n(x, l̂n)/
√
n.

Therefore, combining Conditions H3 and H6 and Lemma E.8, we have

sup
f∈F

Pf

(
sup
x∈X

λ(Cn(x)) > Cc̄n
rn(t(f))√

log n

)
≤ δ2n + δ5n + λ3n, (E.18)

where
c̄n := cn,f (α− τn) + ε2n + u′n

√
log n.
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Since τn and ε2n are both bounded by C1n
−c1 (Condition H3), there exists

n2 such that τn ≤ α/2 and ε2n ≤ 1 for n ≥ n2. For n < n2, (4.7) holds by
choosing sufficiently large C. Consider n ≥ n2. Then

cn,f (α− τn) + ε2n ≤ cn,f (α/2) + 1

By Lemma B.1, cn,f (α/2) ≤ E[‖Gn,f‖Vn ]+
√

2| log(α/2)|. By Condition H1,
E[‖Gn,f‖Vn ] is bounded from below, and so cn,f (α/2) + 1 ≤ CE[‖Gn,f‖Vn ].
Further, E[‖Gn,f‖Vn ] ≤ C1

√
log n (Condition H1) gives

c̄n ≤ C(1 + u′n)
√

log n.

Substituting this expression into (E.18) yields (4.7). This completes the
proof of the theorem. �
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[18] Giné, E. and Nickl, R. (2010). An exponential inequality for the dis-
tribution function of the kernel density estimator, with applications to
adaptive estimation. Probab. Theory Related Fields 143 569-596.
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Supplemental Material

Deferred Proofs and Discussions

V. Chernozhukov, D. Chetverikov, and K. Kato

Appendix F. Proof of Corollary 3.1

Pick any f ∈ F . Then

Pf (f(x) ∈ C̃n(x),∀x ∈ X )

≥ Pf (|Zn,f (x, l̂n)|+ ∆n,f (l̂n) ≤ ĉn(α)σ̂n(x, l̂n)/σn,f (x, l̂n),∀x ∈ X ) (F.1)

≥ Pf (sup
x∈X
|Zn,f (x, l̂n)|+ ∆n,f (l̂n) ≤ ĉn(α)(1− ε3n))− δ3n (F.2)

≥ Pf (sup
x∈X
|Zn,f (x, l̂n)| ≤ ĉn(α)(1− ε3n)− un

√
log n)− δ3n − δ6n (F.3)

≥ Pf (‖Zn,f‖Vn ≤ ĉn(α)(1− ε3n)− un
√

log n)− δ3n − δ6n, (F.4)

where (F.1) follows by the triangle inequality, (F.2) by Condition H4, (F.3)

by assumption (3.8), and (F.4) by the inequality supx∈X |Zn,f (x, l̂n)| ≤
‖Zn,f‖Vn . Further, recalling that Wn,f = ‖Zn,f‖Vn and writing

ε̃n := ε1n + ε2n + ε3ncn,f (α) + un
√

log n,

the probability in (F.4) equals

Pf (Wn,f ≤ ĉn(α)(1− ε3n)− un
√

log n)

≥ Pf (Wn,f ≤ cn,f (α+ τn)(1− ε3n)− ε2n − un
√

log n)− δ2n (F.5)

≥ Pf (W 0
n,f ≤ cn,f (α+ τn)− ε̃n)− δ1n − δ2n (F.6)

≥ 1− α− τn − pε̃n(|Gn,f |)− δ1n − δ2n, (F.7)

where (F.5) follows by Condition H3, (F.6) by Condition H1, and (F.7) by
the definition of the Lévy concentration function pε̃n(|Gn,f |). As in the proof
of Theorem 3.1, cn,f (α) ≤ C

√
log n, so that ε̃n ≤ Cn−c. Hence (3.9) and

(3.10) follow from τn + δ1n + δ2n + δ3n + δ6n ≤ Cn−c.
To prove (3.11) and (3.12), note that when Ln is a singleton, inequality

supx∈X |Zn,f (x, l̂n)| ≤ ‖Zn,f‖Vn becomes equality. Therefore, an argument
similar to that used above yields in addition to (3.9) and (3.10),

Pf (f(x) ∈ C̃n(x), ∀x ∈ X ) ≤ 1− α+ τn + pε̃′n(|Gn,f |)
+ δ1n + δ2n + δ3n + δ6n,

where ε̃′n := ε1n + ε2n + ε3ncn,f (α− τn) +un
√

log n. Hence, (3.11) and (3.12)
follow. This completes the proof of the corollary. �
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Appendix G. Proofs of Lemmas B.1 and B.2

Proof of Lemma B.1. Pick any α ∈ (0, 1). Since E[Y (t)2] = 1 for all t ∈ T ,
the Borel-Sudakov-Tsirel’son inequality (see Theorem A.2.1 in [41]) gives
for all r > 0,

P (‖Y ‖T ≥ E[‖Y ‖T ] + r) ≤ e−r2/2.

Setting r =
√

2| logα| gives

P
(
‖Y ‖T ≥ E[‖Y ‖T ] +

√
2| logα|

)
≤ α.

This implies that c(α) ≤ E[‖Y ‖T ] +
√

2| logα|. The result with M(‖Y ‖T )
follows similarly because the Borel-Sudakov-Tsirel’son inequality also ap-
plies with M(‖Y ‖T ) replacing E[‖Y ‖T ]. �

Proof of Lemma B.2. Consider part (i). Clearly, for any g ∈ G1 · G2, ‖g‖S ≤
b1b2. Further, for any finitely discrete probability measure Q on (S,S) and
j = 1, 2, let gj1, . . . , gjNj be a set of functions from the class Gj such that
for any gj ∈ Gj , there is some k(gj) such that

EQ[(gj − gjk(gj))
2]1/2 ≤ bjτ/2.

By assumption, we can and will assume that Nj ≤ (2aj/τj)
vj . Then the set

{g1kg2l : k = 1, . . . , N1; l = 1, . . . , N2} contains

N1N2 ≤

(
2(av11 a

v2
2 )1/(v1+v2)

τ

)v1+v2

elements. At the same time,

EQ[(g1g2 − g1k(g1)g2k(g2))
2]1/2 ≤ EQ[g2

1(g2 − g2k(g2))
2]1/2

+ EQ[(g1 − g1k(g1))
2g2

2k(g2)]
1/2

≤ b1b2τ/2 + b1b2τ/2 = b1b2τ.

The claim of part (i) follows. Parts (ii) and (iii) follow similarly. �

Appendix H. Proofs for Appendix A

Proof of Theorem A.1. In this proof, C is an absolute constant but its value
can change at each appearance. The proof consists of applying Theorem 2.1
in [7]. Standard calculations show that for any ε ∈ (0, 1),

J(ε) :=

∫ ε

0
sup
Q

√
1 + logN(G, L2(Q), bτ)dτ ≤ Cε

√
log(a/ε)v.
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Further, for some sufficiently large C, let κn := C(bσ2+b3Kn/n)1/3. Lemma
2.2 in [7] implies

E

[
sup
g∈G

En[|g(Xi)|3]

]
≤ sup
g∈G

E
[
|g(X1)|3

]
+ Cn−1/2b3/2

(
b3/2J(δ

3/2
3 ) +

b3/2J2(δ
3/2
3 )√

nδ3
3

)
,

for any δ3 ≥ supg∈G E[|g(X1)|3]1/3/b. Setting δ3 = b1/3σ2/3/b = (σ/b)2/3

gives

E

[
sup
g∈G

En[|g(Xi)|3]

]
≤ bσ2 + Cn−1/2b3/2

(
b3/2−1σK1/2

n + b3/2Knn
−1/2

)
≤ C(bσ2 + b3Kn/n) ≤ κ3

n.

Let εn = σ/(bn1/2). Then Hn(εn) := log(supQN(G, L2(Q), bεn) ∨ n) ≤ Kn

and J(εn) ≤ CσK
1/2
n /(bn1/2). Note that since C in the definition of κn

is sufficiently large, b/κn < γ−1/3n1/3Hn(ε)−1/3. Therefore, Theorem 2.1
combined with Lemma 2.2 in [7]) shows for any γ ∈ (0, 1), q ≥ 4, and

δ4 ≥ supg∈G E[g(X1)4]1/4/b, one can construct a random variable W 0 such

that W 0 d
= ‖B‖G and

P
(
|Wn −W 0| > Cq∆n(εn, γ)

)
≤ γ + C(log n)/n, (H.1)

where Cq is an absolute constant that depends only on q, and

∆n(εn, γ) := φn(εn) + γ−1/qεnb+ γ−1/qbn−1/2 + γ−2/qbn−1/2

+ γ−1/2E1/2
n H1/2

n (εn)n−1/4 + γ−1/3κnH
2/3
n (εn)n−1/6,

φn(εn) ≤ C
(
bJ(εn) + ε−2

n bJ2(εn)n−1/2
)
,

En ≤ C
(
b2J(δ2

4) + δ−4
4 b2J2(δ2

4)n−1/2
)
.

Using the bound derived above, we have

φn(εn) ≤ C(σK1/2
n n−1/2 + bKnn

−1/2) ≤ CbKnn
−1/2,

and setting δ4 = (b2σ2)1/4/b = (σ/b)1/2,

En ≤ C(bσK1/2
n + b2Knn

−1/2).

Setting q = 4 and using Kn ≥ 1 and γ < 1 gives

γ−1/qεnb+ γ−1/qbn−1/2 + γ−2/qbn−1/2 ≤ CbKn/(γn)1/2,

γ−1/2E1/2
n H1/2

n (εn)n−1/4 ≤ C(γ−1/2(bσ)1/2K3/4
n n−1/4 + bKn/(γn)1/2),

γ−1/3κnH
2/3
n (εn)n−1/6 ≤ C(γ−1/3bKnn

−1/2 + γ−1/3b1/3σ2/3K2/3
n n−1/6).

Substituting these bounds into (H.1) and using the definition of ∆n(εn, γn),
we obtain the asserted claim. �
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The proof of Theorem A.2 uses the following technical results.

Theorem H.1. Let X and Y be Gaussian random vectors in Rp with mean
zero and covariance matrices ΣX and ΣY , respectively. Then for every g ∈
C2(R),∣∣∣∣E [g(max

1≤j≤p
Xj

)]
− E

[
g

(
max

1≤j≤p
Yj

)]∣∣∣∣ ≤ ‖g′′‖∞∆/2 + 2‖g′‖∞
√

2∆ log p,

where ∆ = max1≤j,k≤p |ΣX
jk − ΣY

jk|.

Proof. See Theorem 1 in [8]. �

Theorem H.2. Let µ and ν be Borel probability measures on R. Let ε > 0
and δ > 0. Suppose that µ(A) ≤ ν(Aδ) + ε for every Borel subset A of R.
Let V be a random variable with distribution µ. Then there is a random
variable W with distribution ν such that P(|V −W | > δ) ≤ ε.

Proof. See Lemma 4.1 in [7]. �

Theorem H.3. Let β > 0 and δ > 1/β. For every Borel subset B of R,
there is a smooth function g : R→ R and absolute constant A > 0 such that
‖g′‖∞ ≤ δ−1, ‖g′′‖∞ ≤ Aβδ−1, and for all t ∈ R

(1− ε)1B(t) ≤ g(t) ≤ ε+ (1− ε)1B3δ(t),

where ε = εβ,δ is given by

ε =
√
e−α(1 + α) < 1, α = β2δ2 − 1.

Proof. See Lemma 4.2 in [7]. �

We are now in position to prove Theorem A.2.

Proof of Theorem A.2. In this proof, C is an absolute constant but its value
can change at each appearance. Define G · G = {g · g̃ : g, g̃ ∈ G} and
(G−G)2 = {(g−g̃)2 : g, g̃ ∈ G}. Lemma B.2 implies that G·G is VC(b2, 2a, 2v)
type and (G − G)2 is VC(4b2, 2a, 4v) type function classes. In addition,
E[g2] ≤ b2σ2 for all g ∈ G·G and E[g2] ≤ 16b2σ2 for all g ∈ (G−G)2. Together
with the assumed condition b2Kn ≤ nσ2, this justifies an application of
Talagrand’s inequality (Theorem B.1) with t = log n, which gives

P

(
sup
g∈G
|En[g(Xi)]− E[g(X1)]| ≤

√
σ2Kn

n

)
≥ 1− 1

n
, (H.2)

P

(
sup
g∈G·G

|En[g(Xi)]− E[g(X1)]| ≤
√
b2σ2Kn

n

)
≥ 1− 1

n
, (H.3)

P

(
sup

g∈(G−G)2
|En[g(Xi)]− E[g(X1)]| ≤

√
b2σ2Kn

n

)
≥ 1− 1

n
. (H.4)

Let Sn,0 ∈ Sn be the intersection of events in (H.2)-(H.4). Then P(Xn
1 ∈

Sn,0) ≥ 1− 3/n.
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Fix any xn1 ∈ Sn,0. Let τ = σ/(bn1/2), and let {g1, . . . , gN} ⊂ G be a
subset of elements of G such that for any g ∈ G there exists j = j(g) ∈
{1, . . . , N} such that E[(g(X1)− gj(X1))2] ≤ b2τ2. We can and will assume
that N ≤ (a/τ)v. Define

W (xn1 )(τ) := max
1≤j≤N

|G̃n(xn1 , ξ
n
1 )(gj)|,

W 0(τ) := max
1≤j≤N

|B(gj)|.

In addition, define W̃ 0 := ‖B‖G and

G(τ) :=
{
g − g̃ : g, g̃ ∈ G,E[(g(X1)− g̃(X1))2] ≤ b2τ2

}
.

Clearly, we have |W̃n(xn1 )−W (xn1 )(τ)| ≤ ‖G̃n(xn1 , ξ
n
1 )‖G(τ) and |W̃ 0−W 0(τ)| ≤

‖B‖G(τ). The rest of the proof consists of 3 steps. Steps 1 and 2 pro-

vide bounds on ‖G̃n(xn1 , ξ
n
1 )‖G(τ) and ‖B‖G(τ), respectively. Step 3 gives

a coupling inequality and finishes the proof using a method for comparing
W (xn1 )(τ) and W 0(τ).

Step 1 (Bound on ‖G̃n(xn1 , ξ
n
1 )‖G(τ)). Here we show that with probability at

least 1− 2/n,

‖G̃n(xn1 , ξ
n
1 )‖G(τ) ≤ L

{√
σ2Kn

n
+

(
b2σ2K3

n

n

)1/4
}

= Lψn

for some absolute constant L.
Note that

sup
g∈G(τ)

|En[g(xi)
2]− (En[g(xi)])

2| ≤ sup
g∈G(τ)

En[g(xi)
2] =: D(τ).

Then D(τ) ≤ p1 + p2 ≤ σ2/n+
√
b2σ2Kn/n where

p1 := sup
g∈G(τ)

E[g(X1)2] ≤ b2τ2 = σ2/n,

p2 := sup
g∈G(τ)

|En[g(xi)
2]− E[g(X1)2]| ≤ sup

g∈(G−G)2
|En[g(xi)]− E[g(X1)]|.

≤
√
b2σ2Kn/n.

By the Borell-Sudakov-Tsirel’son inequality (see Theorem A.2.1 in [41]),
with probability at least 1− 2/n,

‖G̃n(xn1 , ξ
n
1 )‖G(τ) ≤ E

[
‖G̃n(xn1 , ξ

n
1 )‖G(τ)

]
+
√

2D(τ) log n.

Further, E[‖G̃n(xn1 , ξ
n
1 )‖G(τ)] ≤ C(r1 + r2) where

r1 := E

[
sup
g∈G(τ)

∣∣∣∣∣ 1√
n

n∑
i=1

ξig(xi)

∣∣∣∣∣
]
,

r2 := sup
g∈G(τ)

|En[g(xi)]|.
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To bound r1, let ϕ = σ/(bn1/2)+(σ2Kn/(b
2n))1/4. Note that

√
D(τ)/b ≤ ϕ

and ϕ ≤ 1 + (Kn/n)1/4 ≤ 2 < a. Hence, by Corollary 2.2.8 in [41],

r1 ≤ Cb
∫ ϕ

0

√
sup
Q

logN(G, L2(Q), bε)dε ≤ Cbϕ
√

log(a/ϕ)v

≤
√
Kn

(
σ√
n

+

(
b2σ2Kn

n

)1/4
)
.

To bound r2, we have

r2 ≤ 2 sup
g∈G
|En[g(xi)]− E[g(X1)]|+ sup

g∈G(τ)
E[|g(X1)|]

≤ 2
√
σ2Kn/n+ bτ ≤ 3

√
σ2Kn/n.

Combining these inequalities gives the claim of step 1.

Step 2 (Bound on ‖B‖G(τ)). We show that with probability at least 1−2/n,

‖B‖G(τ) ≤
√
σ2Kn

n
≤ ψn.

By the Borell-Sudakov-Tsirel’son inequality, with probability at least 1−
2/n,

‖B‖G(τ) ≤ E[‖B‖G(τ)] + bτ
√

2 log n.

By Corollary 2.2.8 in [41],

E[‖B‖G(τ)] ≤ Cb
∫ τ

0

√
sup
Q

logN(G, L2(Q), bε)dε ≤ Cbτ
√

log(a/τ)v.

Substituting τ = σ/(bn1/2) into these inequalities gives the claim of step 2.

Step 3 (Coupling Inequality). This is the main step of the proof. Let δ > 0
and β = 2

√
log n/δ. Then

ε :=

√
e1−β2δ2β2δ2 ≤ C/n.

Take any Borel subset B of R and apply Theorem H.3 to define a function f
corresponding to the set BLψn , Lψn-enlargement of the set B, with chosen
β and δ. We have for all t ∈ R,

(1− ε)1BLψn (t) ≤ f(t) ≤ ε+ (1− ε)1BLψn+3δ(t).

Further,

∆ := sup
g1,g2∈G

|∆g1,g2 | ≤ C
√
b2σ2Kn

n
,

where

∆g1,g2 := (En[g1(xi)g2(xi)]− En[g1(xi)]En[g2(xi)])

− (E[g1(X1)g2(X1)]− E[g1(X1)]E[g2(X1)]) .
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So, applying Theorem H.1 to W (xn1 )(τ) and W 0(τ) with chosen f gives∣∣E[f(W (xn1 )(τ))]− E[f(W 0(τ))]
∣∣ ≤ C

δ2

√
b2σ2Kn log n

n
+
C

δ

(
b2σ2K3

n

n

)1/4

.

We will assume that b2σ2K3
n/(nδ

4) ≤ 1 (otherwise, the bound claimed in
the statement of the theorem is trivial). Then∣∣E[f(W (xn1 )(τ))]− E[f(W 0(τ))]

∣∣ ≤ C

δ

(
b2σ2K3

n

n

)1/4

≤ Cγn(δ).

Therefore,

E[1B(W̃n(xn1 ))] ≤ E[1BLψn (W (xn1 )(τ))] + 2/n

≤ E[f(W (xn1 )(τ))]/(1− ε) + 2/n

≤ E[f(W 0(τ))]/(1− ε) + Cγn(δ)

≤ E[1BLψn+3δ(W 0(τ))] + Cγn(δ)

≤ E[1B(L+1)ψn+3δ(W̃ 0)] + Cγn(δ),

where C is varying from line to line. The claim of the theorem follows by
applying Theorem H.2. �

Appendix I. Proof of Lemmas E.1 and E.2

Proof of Lemma E.1. Since∑
k1,...,kd∈Z

∏
1≤m≤d

φ(xm − km)2 =
∏

1≤m≤d

∑
km∈Z

φ(xm − km)2,

it suffices to consider the case d = 1. Then (E.1) becomes∑
k∈Z

φ(x− k)2 ≥ cφ.

Since the function
∑

k∈Z φ(· − k)2 has period 1, it suffices to consider x ∈
[0, 1]. It follows from Lemma 8.6 in [23] that the series

∑
k∈Z φ(· − k)2

converges uniformly, and hence
∑

k∈Z φ(· − k)2 is continuous (the functions∑
k:|k|≤m φ(· − k)2 are continuous for all m by our assumptions on the reg-

ularity of the farther wavelet). Further, it follows from Corollary 8.1 in [23]
that

∑
k∈Z φ(· − k) is identically equal to some non-zero constant, so that∑

k∈Z φ(x − k)2 > 0 for all x ∈ [0, 1]. Since the minimum of a continuous
function on a compact set is achieved, the asserted claim follows. �

Proof of Lemma E.2. Fix f ∈ F , l ∈ Ln, and x ∈ X . Note that we have

2−ld|Kl(y, x)| ≤ C exp(−2lc|y − x|), (I.1)

for all y ∈ X . Indeed, for convolution kernels and compactly supported
wavelets, this follows from compactness of the support of K(·) and φ(·),
respectively, and for Battle-Lemarié wavelets, this follows from Lemma 8.6
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in [23]. Therefore, |Kl(y, x)| ≤ 2ldC for all y ∈ X , |Ef [Kl(X1, x)]| ≤ C, and

Ef [Kl(X1, x)2] ≤ 2ldC. Further,

Ef [Kl(X1, x)2] =

∫
Rd
Kl(y, x)2f(y)dy ≥

∫
y:|y−x|≤δ

Kl(y, x)2f(y)dy

≥ f
∫
y:|y−x|≤δ

Kl(y, x)2dy ≥ f

(∫
Rd
Kl(y, x)2dy −

∫
y:|y−x|>δ

Kl(y, x)2dy

)
.

By (I.1),∫
y:|y−x|>δ

Kl(y, x)2dy ≤ 22ldC

∫
y:|y−x|>δ

exp(−2l+1c|y − x|)dy

= 2ldC

∫
y:|y|>2lδ

exp(−2c|y|)dy ≤ C.

In addition, for convolution kernels,∫
Rd
Kl(y, x)2dy = 2ld

∫
Rd
K(y)2dy ≥ 2ldc,

and for wavelet projection kernels, for x = (x1, . . . , xm)′,∫
Rd
Kl(y, x)2dy = 2ld

∑
k1,...,km∈Z

∏
1≤m≤d

φ(2lxm − km)2 ≥ 2ldc,

where the equality follows from orthonormality in L2(R) of the system
{φ(· − k), k ∈ Z} and the inequality follows from Lemma E.1. Therefore,
for sufficiently large n, so that l ≥ lmin,n ≥ c5 log n is sufficiently large, we

have Ef [Kl(X1, x)2] ≥ 2ldc. Hence, for sufficiently large n, (E.2) holds for
all f ∈ F and l ∈ Ln and σn ≤ C. Further, when d = 1, the function
class K̄d := {2−ldKl(·, x) : l ∈ N, x ∈ Rd} is VC(b, a, v) type for some b,
a, and v independent of n by discussion on p. 911 in [14] (for convolution
kernels), Lemma 2 in [17] (for compactly supported wavelets), and Lemma
2 in [20] (for Battle-Lemarié wavelets). When d > 1, K̄d is VC(b, a, v) type
class (with possibly different b, a, and v) by Lemma B.2. Now, another ap-
plication of Lemma B.2 shows that Kn,f is VC(bn, an, vn) type class where

bn ≤ C2lmax,nd/2, an ≤ C, and vn ≤ C. This completes the proof of the
lemma. �

Appendix J. On use of non-wavelet projection kernels

In Section 3, we provided weak conditions for the construction of hon-
est confidence bands in density estimation. In particular, we demonstrated
that, as long as the bias can be controlled, our confidence bands are honest
if assumptions of Theorem 3.2 hold. In this section, we verify these assump-
tions for Fourier and Legendre polynomial projection kernels. We show that
these conditions hold under weak conditions on the number of series terms
for Fourier projection kernel and under somewhat stronger conditions on the
number of series terms for Legendre polynomial projection kernel.
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Fourier projection kernel. Here we show that assumptions of Theorem
3.2 hold for Fourier projection kernel under weak conditions on the number
of series terms. Assume that d = 1, X = [−1, 1], and Kl(·, ·) is the projection
kernel function based on the Fourier basis as defined in (3.17) and (3.18).
Assume in addition that the density f is supported on X , and is bounded
from below and from above on X uniformly over F . Finally, assume that
supx∈X |Ef [Kl(X1, x)]−f(x)| ≤ C uniformly over f ∈ F and l ∈ Ln for some
C > 0. The last assumption holds if supx∈X |Ef [Kl(X1, x)] − f(x)| → 0 as
l → ∞ uniformly over f ∈ F so that Fourier projection kernel estimator is
asymptotically unbiased, which is necessary for consistency of the estimator.
Then we obtain the following bounds.

First, since ϕ1(x) = 1, ϕj+1(x) = cos(πjx), j = 1, 2, . . . , we have

cm ≤
M∑
j=1

ϕj(x)2 ≤ Cm, (J.1)

uniformly over all x ∈ [−1, 1] and m ≥ 1 for some c, C > 0. The upper
bound in (J.1) is trivial because | cos(πjx)| ≤ 1. To prove the lower bound,
we have

m∑
j=1

cos2(πjx) =
1

2

m∑
j=1

(1 + cos(2πjx)) =
m

2
− 1

4
+

1

2

1

2
+

m∑
j=1

cos(2πjx)


=
m

2
− 1

4
+

sin((2m+ 1)πx)

4 sin(πx)
, (J.2)

and the last term in (J.2) is bounded from below by some absolute constant
yielding the lower bound in (J.1). Therefore, |Kl(y, x)| ≤ C2l, |Ef [Kl(X1, x)]| ≤
C and

c2l ≤ c
[2l]∑
j=1

ϕj(x)2 ≤ Ef [Kl(X1, x)2] ≤ C
[2l]∑
j=1

ϕj(x)2 ≤ C2l,

uniformly over f ∈ F , l ∈ Ln, and x ∈ X . This implies that c2l ≤
σn,f (x, l)2 ≤ C2l uniformly over f ∈ F , l ∈ Ln, and x ∈ X and so σn ≤ C.
Further, uniformly over x1, x2, y ∈ X ,∣∣∣∣∣∣

[2l]∑
j=1

ϕj(y)ϕj(x1)−
[2l]∑
j=1

ϕj(y)ϕj(x2)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣

[2l]∑
j=1

ϕj(y)(ϕj(x1)− ϕj(x2))

∣∣∣∣∣∣
≤

 [2l]∑
j=1

ϕj(y)2

[2l]∑
j=1

(ϕj(x1)− ϕj(x2))2

1/2

≤ C2l/2|x1 − x2|

 [2l]∑
j=1

j2

1/2

= C22l|x1 − x2|.

Therefore, it follows from Example 19.7 in [40] that the function class
{Kl(·, x) : x ∈ X} is VC(bl, al, vl) type class with bl ≤ C2l, al ≤ C2l, and
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vl ≤ C, and so Lemma B.2 implies that Kn,f is VC(bn, an, vn) type class

with bn ≤ C2lmax,n/2, an ≤ C22lmax,n , and vn ≤ C where lmax,n = sup{Ln}.
Hence, the assumption that b2nσ

4
nK

4
n/n ≤ C2n

−c2 becomes 2lmax,n(log4 n)/n ≤
C2n

−c2 (with possibly different c2, C2) as long as lmax,n ≤ C log n for some

C > 0. When d > 1 and X = [−1, 1]d, a similar argument shows that the
assumption that b2nσ

4
nK

4
n/n ≤ C2n

−c2 becomes 2lmax,nd(log4 n)/n ≤ C2n
−c2

(with possibly different c2, C2) as long as lmax,n ≤ C log n for some C > 0.

Legendre polynomial projection kernel. Here we provide primitive
conditions that suffice for assumptions of Theorem 3.2 in the case of Le-
gendre polynomial projection kernel. Assume that d = 1, X = [−1, 1], and
Kl(·, ·) is the projection kernel function based on the Legendre polynomial
basis as defined in (3.17) and (3.19). Assume in addition that the density f
is supported on X and is bounded from above on X uniformly over F . Fur-
ther, assume that supx∈X |Ef [Kl(X1, x)]− f(x)| ≤ C uniformly over f ∈ F
and l ∈ Ln for some C > 0. See discussion of this assumption for the case
of Fourier projection kernel above.

Note that when ϕ1(·), ϕ2(·), . . . are Legendre polynomials, it is known

that
∑K

j=1 ϕj(x)2 ≤ CK2 for some C > 0; see, for example, [32]. There-

fore, under our assumptions, |Kl(y, x)| ≤ C22l, |Ef [Kl(X1, x)]| ≤ C, and

Ef [Kl(X1, x)2] ≤ C22l uniformly over f ∈ F , l ∈ Ln, and x ∈ X . Assume

also that Ef [Kl(X1, x)2] ≥ c22l uniformly over f ∈ F , l ∈ Ln, and x ∈ X .
Given the upper bound on Ef [Kl(X1, x)2] above, the last assumption can be
interpreted as that the variance of the kernel estimator is of the same order
for all x ∈ X . These bounds imply that c22l ≤ σn,f (x, l)2 ≤ C22l uniformly
over f ∈ F , l ∈ Ln, and x ∈ X and so σn ≤ C. Further, the same argument
as that applied in the case of Fourier series shows that {Kl(·, x) : x ∈ X}
is VC(bl, al, vl) type class with bl ≤ C22l, al ≤ C2cl, and vl ≤ C, and so
Lemma B.2 implies that Kn,f is VC(bn, an, vn) type class with bn ≤ C2lmax,n ,

an ≤ C2clmax,n , and vn ≤ C where lmax,n = sup{Ln}. Hence, the assumption

that b2nσ
4
nK

4
n/n ≤ C2n

−c2 becomes 22lmax,n(log4 n)/n ≤ C2n
−c2 (with possi-

bly different c2 and C2) as long as lmax,n ≤ C log n for some C > 0. When

d > 1 and X = [−1, 1]d, a similar argument shows that the assumption that
b2nσ

4
nK

4
n/n ≤ C2n

−c2 becomes 22lmax,nd(log4 n)/n ≤ C2n
−c2 (with possibly

different c2 and C2) as long as lmax,n ≤ C log n for some C > 0.
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