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TESTING MANY MOMENT INEQUALITIES

VICTOR CHERNOZHUKOV, DENIS CHETVERIKOV, AND KENGO KATO

Abstract. This paper considers the problem of testing many moment
inequalities where the number of moment inequalities, denoted by p,
is possibly much larger than the sample size n. There are variety of
economic applications where the problem of testing many moment in-
equalities appears; a notable example is the entry model of Ciliberto
and Tamer (2009) where p = 2m+1 with m being the number of firms.
We consider the test statistic given by the maximum of p Studentized
(or t-type) statistics, and analyze various ways to compute critical val-
ues for the test. Specifically, we consider critical values based upon (i)
the union (Bonferroni) bound combined with a moderate deviation in-
equality for self-normalized sums, (ii) the multiplier bootstrap. We also
consider two step variants of (i) and (ii) by incorporating moment se-
lection. We prove validity of these methods, showing that under mild
conditions, they lead to tests with error in size decreasing polynomially
in n while allowing for p being much larger than n; indeed p can be
of order exp(nc) for some c > 0. Importantly, all these results hold
without any restriction on correlation structure between p Studentized
statistics, and also hold uniformly with respect to suitably wide classes
of underlying distributions. We also show that all the tests developed
in this paper are asymptotically minimax optimal when p grows with n.

1. Introduction

In this paper, we are interested in testing many moment inequalities
where the number of moment inequalities, denoted by p, is possibly much
larger than the sample size n. Let X1, . . . , Xn be a sequence of inde-
pendent and identically distributed (i.i.d.) random vectors in Rp, where
Xi = (Xi1, . . . , Xip)

T . For 1 ≤ j ≤ p, write µj := E[X1j ]. We are interested
in testing the null hypothesis

H0 : µj ≤ 0, 1 ≤ ∀j ≤ p, (1)
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against the alternative

H1 : µj > 0, 1 ≤ ∃j ≤ p. (2)

We refer to (1) as the moment inequalities, and we say that the jth moment
inequality is satisfied (violated) if µj ≤ 0 (µj > 0). ThusH0 is the hypothesis
that all the moment inequalities are satisfied.

There are variety of economic applications where the problem of test-
ing many moment inequalities appears. One example is the model where a
consumer is selecting a bundle of products for purchase and moment inequal-
ities come from a revealed preference argument (see Pakes, 2010). In this
example, one typically has many moment inequalities because the number
of different combinations of products from which the consumer is selecting is
huge. Another example is a market structure model of Ciliberto and Tamer
(2009) where the number of moment inequalities equals the number of pos-
sible combinations of firms presented in the market, which is exponentially
large in the number of firms that could potentially enter the market. Another
example is a dynamic model of imperfect competition of Bajari, Benkard,
and Levin (2007), where deviations from optimal policy serve to define many
moment inequalities. Other prominent examples leading to many moment
inequalities are developed in Beresteanu, Molchanov, and Molinari (2011),
Galichon and Henry (2011), and Chesher, Rosen, and Smolinski (2013),
where moment inequalities are used to provide sharp identification regions
for parameters in partially identified models. Many examples above have
a very important feature – the large number of inequalities generated are
“unstructured” in the sense that they can not be viewed as some uncon-
ditional moment inequalities generated from a small number of conditional
inequalities with a low-dimensional conditioning variable.1 This means that
the existing methods for conditional moment inequalities, albeit fruitful in
many cases, do not address this type of framework, and our methods are pre-
cisely aimed at dealing with this important case. We thus view our methods
as strongly complementary to the existing literature.

We consider the test statistic given by the maximum over p Studentized
(or t-type) statistics (see (4) ahead for the formal definition), and propose a
number of methods for computing critical values. Specifically, we consider
critical values based upon (i) the union (Bonferroni) bound combined with
a moderate deviation inequality for self-normalized sums, and (ii) the mul-
tiplier bootstrap. We will call the first option the SN method (SN refers
to the abbreviation of “Self-Normalized”), and the second option the MB
method (MB refers to the abbreviation of “Multiplier Bootstrap”). The SN

1A small number of conditional inequalities gives rise to a large number of uncondi-
tional inequalities, but these have certain continuity and tightness structure, which the
literature on conditional moment inequalities heavily exploits/relies upon. Our approach
does not exploit/rely upon such structure and can handle both many unstructured mo-
ment inequalities as well as many structured moment inequalities arising from conversion
of a small number of conditional inequalities.
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method is analytical and hence easier to implement, while the MB method is
simulation-based and computationally harder, but leads to less conservative
tests as it is able to account for correlation between p Studentized statis-
tics. We also consider two-step methods by incorporating moment selection
procedures using either the SN or MB methods.

We prove validity of these methods for computing critical values, uni-
formly in suitable classes of common distributions of Xi. We derive non-
asymptotic bounds on the rejection probabilities, where the qualification
“non-asymptotic” means that the bounds hold with fixed n (and p, and all
the other parameters), and the dependence of the constants involved in the
bounds are stated explicitly. Notably, under mild conditions, these methods
lead to the error in size decreasing polynomially in n, while allowing for p
much larger than n, that is, typically, allowing for p proportional to exp(nc)
for some c > 0. We also show that all the tests developed in this paper are
asymptotically minimax optimal when p = pn → ∞ as n → ∞.

The problem of testing moment inequalities described above is a “dual”
of that of constructing confidence regions for identifiable parameters in par-
tially identified models where identified sets are given by (unconditional)
moment inequalities, in the sense that any test of size (approximately)
α ∈ (0, 1) for the former problem will lead to a confidence region for the
latter problem with coverage (approximately) at least 1 − α (see Romano
and Shaikh, 2008). Therefore, our results on testing moment inequalities are
immediately transferred to those on construction of confidence regions for
identifiable parameters in partially identified models. That is, our methods
for computing critical values lead to methods of construction of confidence
regions with coverage error decreasing polynomially in n while allowing for
p ≫ n. Importantly, these coverage results hold uniformly in suitably wide
classes of underlying distributions, so that the resulting confidence regions
are (asymptotically) honest to such classes (see Section 5 for the precise
meaning).

The literature on testing (unconditional) moment inequalities is large;
see, for example, Chernozhukov, Hong, and Tamer (2007), Romano and
Shaikh (2008), Rosen (2008), Andrews and Guggenberger (2009), Andrews
and Soares (2010), Canay (2010), Bugni (2011), Andrews and Jia-Barwick
(2012), and Romano, Shaikh, and Wolf (2013). However, these papers deal
only with a finite (and fixed) number of moment inequalities. There are
also several papers on testing conditional moment inequalities, which can
be treated as an infinite number of unconditional moment inequalities; see
Andrews and Shi (2013), Chernozhukov, Lee, and Rosen (2013), Lee, Song,
and Whang (2013a,b), Armstrong (2011), Chetverikov (2011), and Arm-
strong and Chan (2012). However, when unconditional moment inequalities
come from conditional ones, they inherit from original inequalities certain
correlation structure that facilitates the analysis of such moment inequal-
ities. In contrast, we are interested in treating many moment inequalities
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without assuming any correlation structure, motivated by important exam-
ples such as those in Cilberto and Tamer (2009) and Pakes (2010). Menzel
(2008) considered estimation of identified sets when there are many mo-
ment inequalities using GMM criterion functions, thereby extending Cher-
nozhukov, Hong, and Tamer (2007) to the case where the number of moment
inequalities grows as the sample size increases. His results are, however, re-
stricted to the case where p grows at most of cubic root of n (and hence
p must be much smaller than n), and his approach and test statistics are
quite different from ours.

The problem of testing many moment inequalities is related to that of
multiple hypothesis testing. The difference is that the emphasis in multiple
hypothesis testing is on improving power given that some inequalities are
not satisfied, and the emphasis in testing many moment inequalities is on
improving power given that some inequalities are not binding.

The remainder of the paper is organized as follows. In Section 2, we
build our test statistic. In Section 3, we derive various ways of computing
critical values, including the SN and MBmethods and their two-step variants
discussed above, for the test and prove their validity. In Section 4, we show
asymptotic minimax optimality of our tests. In Section 5, we present the
corresponding results on construction of confidence regions for identifiable
parameters in partially identified models. In Section 6, we consider, as an
extension, critical values for our test statistic based on the empirical (or
Efron’s) bootstrap. All the technical proofs are deferred to the Appendix.

1.1. Notation and convention. We shall obey the following notation. For
an arbitrary sequence {zi}ni=1, we write En[zi] = n−1

∑n
i=1 zi. For a, b ∈ R,

we use the notation a ∨ b = max{a, b}. For any finite set J , let |J | denote
the number of elements in J . The transpose of a vector z is denoted by
zT . Moreover, we use the notation Xn

1 = {X1, . . . , Xn}. In this paper,
we (implicitly) assume that the quantities such as X1, . . . , Xn and p are all
indexed by n. We are primarily interested in the case where p = pn → ∞
as n → ∞. However, in most cases, we suppress the dependence of these
quantities on n for the notational convenience. Finally, throughout the
paper, we assume that n ≥ 2 and p ≥ 2.

2. Test statistic

We begin with preparing some notation. Recall that µj = E[X1j ]. We
assume that

E[X2
1j ] < ∞, σ2

j := Var(X1j) > 0, 1 ≤ ∀j ≤ p. (3)

For 1 ≤ j ≤ p, let µ̂j and σ̂2
j denote the sample mean and variance of

X1j , . . . , Xnj , respectively, that is,

µ̂j = En[Xij ] =
1

n

n∑
i=1

Xij , σ̂2
j = En[(Xij − En[Xij ])

2] =
1

n

n∑
i=1

(Xij − µ̂j)
2.
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Alternatively, we can use σ̃2
j = (1/(n − 1))

∑n
i=1(Xij − µ̂j)

2 instead of σ̂2
j ,

which does not alter the overall conclusions of the theorems ahead. In all
what follows, we will use σ̂2

j .
There are several different statistics that can be used for testing the null

hypothesis (1). Among all possible statistics, it is natural to consider statis-
tics that take large values when some of µ̂j are large. In this paper, we focus
on the statistic that takes large values when at least one of µ̂j is large. One
can also consider either non-Studentized or Studentized versions of the test
statistic. For a non-Studentized statistic, we mean a function of µ̂1, . . . , µ̂p,
and for a Studentized statistic, we mean a function of µ̂1/σ̂1, . . . , µ̂p/σ̂p. Stu-
dentized statistics are often considered preferable. In particular, they are
scale-invariant (that is, multiplying X1j , . . . , Xnj by a scalar value does not
change the value of the test statistic), and they typically spread power evenly
among different moment inequalities µj ≤ 0. See Romano and Wolf (2005)
for a detailed comparison of Studentized versus non-Studentized statistics
in a related context of multiple hypothesis testing. In our case, Studentiza-
tion also has an advantage that it allows us to derive an analytical critical
value for the test under weak moment conditions. In particular, for our
SN critical values, we will only require finiteness (existence) of E[|X1j |q] for
some 2 < q ≤ 3 (see Section 3.1.1). As far as multiplier bootstrap critical
values are concerned, our theory can cover a non-Studentized statistic but
Studentization leads to easily interpretable regularity conditions. For these
reasons, in this paper we study the Studentized version of the test statistic.

To be specific, we consider and focus on the following test statistic:

T = max
1≤j≤p

√
nµ̂j

σ̂j
. (4)

Large values of T indicate that H0 is likely to be violated, so that it would
be natural to consider the test of the form

T > c ⇒ reject H0, (5)

where c is a critical value suitably chosen in such a way that the test has
approximately size α ∈ (0, 1). We will consider various ways for calculating
critical values and prove their validity.

Rigorously speaking, the test statistic T is not defined when σ̂2
j = 0 for

some 1 ≤ j ≤ p. In such cases, we interpret the meaning of “T > c” in (5)
as √

nµ̂j > cσ̂j , 1 ≤ ∃j ≤ p,

which makes sense even if σ̂2
j = 0 for some 1 ≤ j ≤ p. We will obey such

conventions if necessary without further mentioning.
Other types of test statistics are possible. For example, one alternative is

the test statistic of the form

T ′ =

p∑
j=1

(max{µ̂j/σ̂j , 0})2 .
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The statistic T ′ has an advantage that it is less sensitive to outliers. However,
T ′ leads to good power only if many moments are violated simultaneously. In
general, T ′ is preferable against T if the researcher is interested in detecting
deviations when many inequalities are violated simultaneously, and T is
preferable against T ′ if the main interest is in detecting deviations when at
least one moment inequality is violated too much.

Another alternative is the test statistic of the form

T ′′ = min
t≤0

(µ̂− t)T Σ̂−1(µ̂− t),

where µ̂ = (µ̂1, . . . , µ̂p)
T , t = (t1, . . . , tp)

T ≤ 0 means tj ≤ 0 for all 1 ≤ j ≤ p,

and Σ̂ is some p by p symmetric positive definite matrix. This statistic in
the context of testing moment inequalities was first studied by Rosen (2008)
when the number of moment inequalities p is fixed; see also Wolak (1991) for
the analysis of this statistic in a different context. Typically, one wants to

take Σ̂ as a suitable estimate of the covariance matrix of X1, denoted by Σ.
However, when p is larger than n, it is not possible to consistently estimate
Σ without imposing some structure (such as sparsity) on it. Moreover, the
results of Bai and Saranadasa (1996) suggest that the statistic T ′ or its
variants may lead to higher power than T ′′ even when p is smaller than but
close to n.

3. Critical values

In this section, we study several methods to compute critical values for
the test statistic T so that under H0, the probability of rejecting H0 does
not exceed size α approximately. The basic idea for construction of critical
values for T lies in the fact that under H0,

T ≤ max
1≤j≤p

√
n(µ̂j − µj)/σ̂j , (6)

where the equality holds when all the moment inequalities are binding, that
is, µj = 0 for all 1 ≤ j ≤ p. Hence in order to make the test to have size α, it
is enough to choose the critical value as (a bound on) the (1−α)-quantile of
the distribution of max1≤j≤p

√
n(µ̂j − µj)/σ̂j . We consider two approaches

to construct such critical values: Self-Normalized and Multiplier Bootstrap
methods. For each of these methods, we also consider its two-step variant
by incorporating moment selection.

We will use the following notation. Pick any α ∈ (0, 1/2). Let

Zij = (Xij − µj)/σj , and Zi = (Zij , . . . , Zip)
T . (7)

Observe that E[Zij ] = 0 and E[Z2
ij ] = 1. Define

Mn,k = max
1≤j≤p

(E[|Z1j |k])1/k, k = 3, 4, Bn = (E[ max
1≤j≤p

Z4
1j ])

1/4.

Note that Bn ≥ Mn,4 ≥ Mn,3 ≥ 1.

3.1. Self-Normalized methods.
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3.1.1. One-step method. The Self-Normalized method (abbreviated as SN
method in what follows) we consider is based upon the union (Bonferroni)
bound combined with a moderate deviation inequality for self-normalized
sums. Because of inequality (6), under H0,

P(T > c) ≤
p∑

j=1

P(
√
n(µ̂j − µj)/σ̂j > c).

At a first sight, this bound is too crude when p is large since, as long as Xij

has polynomial tails, the value of c that makes the sum on the right-hand
side of the equation above bounded by size α depends polynomially on p,
which would make the test too conservative. However, we will exploit the
self-normalizing nature of the quantity

√
n(µ̂j −µj)/σ̂j so that the resulting

critical value depends on p only through its logarithm. In addition, in spite
of the fact that the SN method is based on the union (Bonferroni) bound,
we will show in Section 4 that the resulting test in asymptotically minimax
optimal when p = pn → ∞ as n → ∞.

For 1 ≤ j ≤ p, define

Uj =
√
nEn[Zij ]/

√
En[Z2

ij ].

By a simple algebra, we see that
√
n(µ̂j − µj)/σ̂j = Uj/

√
1− U2

j /n,

where the right side is increasing in Uj as long as Uj ≥ 0. Hence under H0,

P(T > c) ≤
p∑

j=1

P
(
Uj > c/

√
1 + c2/n

)
, c ≥ 0. (8)

Because, from the moderate deviation inequality for self-normalized sums
of Jing, Shao, and Wang (2003) (see Lemma A.1 in the Appendix), for
moderately large c ≥ 0,

P
(
Uj > c/

√
1 + c2/n

)
≈ P(N(0, 1) > c/

√
1 + c2/n),

we consider to take the critical value as

cSN (α) =
Φ−1(1− α/p)√

1− Φ−1(1− α/p)2/n
, (9)

where Φ(·) is the distribution function of the standard normal distribution,
and Φ−1(·) is its quantile function. We will call cSN (α) the (one-step) SN
critical value with size α as its derivation depends on the moderate deviation
inequality for self-normalized sums. Note that

Φ−1(1− α/p) ∼
√

log(p/α),

so that cSN (α) depends on p only through log p.
The following theorem provides a non-asymptotic bound on the probabil-

ity that the test statistic T exceeds the SN critical value cSN (α) under H0
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and shows that the bound converges to α under mild regularity conditions,
thereby validating the SN method.

Theorem 3.1 (Validity of one-step SN method). Suppose that Φ−1(1 −
α/p) ≤ n1/6/Mn,3. Then under H0,

P(T > cSN (α)) ≤ α
[
1 +Kn−1/2M3

n,3{1 + Φ−1(1− α/p)}3
]
, (10)

where K is a universal constant. Hence if there exist constants 0 < c1 < 1/2
and C1 > 0 such that

M3
n,3 log

3/2(p/α) ≤ C1n
1/2−c1 , (11)

then under H0,

P(T > cSN (α)) ≤ α+ Cn−c1 ,

where C is a constant depending only on c1, C1. Moreover, this bound holds
uniformly with respect to the common distribution of Xi for which (3) and
(11) are verified.

Comment 3.1. The theorem assumes that max1≤j≤p E[|X1j |3] < ∞ but
allows this quantity to diverges as n → ∞ (recall p = pn). In principle,
M3

n,3 that appears in the theorem can be replaced by max1≤j≤p E[|X1j |2+ν ]
for 0 < ν ≤ 1, which would further weaken moment conditions; however, for
the sake of simplicity of presentation, we do not explore this generalization.

3.1.2. Two-step method. We now turn to combine the SN method with mo-
ment selection. We begin with stating the motivation for moment selection.

Observe that when µj < 0 for some 1 ≤ j ≤ p, inequality (6) becomes
strict, so that when there are many j for which µj are small, the resulting
test with one-step SN critical values would tend to be more conservative.
Hence it is intuitively clear that, in order to improve the power of the test, it
is better to exclude j for which µj are below some (negative) threshold when
computing critical values. This is the basic idea behind moment selection.

More formally, let 0 < βn < α/2 be some constant. For generality, we
allow βn to depend on n; in particular, βn is allowed to decrease to zero as
the sample size n increases. Let cSN (βn) be the SN critical value with size

βn, and define the set ĴSN ⊂ {1, . . . , p} by

ĴSN = {j ∈ {1, . . . , p} :
√
nµ̂j > −2σ̂jc

SN (βn)}. (12)

Let k̂ denote the number of elements in ĴSN , that is,

k̂ = |ĴSN |.
Then the two-step SN critical value is defined by

cSN,MS(α) =


Φ−1(1−(α−2βn)/k̂)√

1−Φ−1(1−(α−2βn)/k̂)2/n
, if k̂ ≥ 1,

0, if k̂ = 0.
(13)

The following theorem establishes validity of this critical value.
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Theorem 3.2 (Validity of two-step SN method). Suppose that supn≥1 βn ≤
α/3 and there exist constants 0 < c1 < 1/2 and C1 > 0 such that

M3
n,3 log

3/2(p/βn) ≤ C1n
1/2−c1 , and B2

n log
2(p/βn) ≤ C1n

1/2−c1 . (14)

Then there exist positive constants c, C depending only on c1, C1 such that
under H0,

P(T > cSN,MS(α)) ≤ α+ Cn−c.

Moreover, this bound holds uniformly with respect to the common distribu-
tion of Xi for which (3) and (14) are verified.

3.2. Multiplier Bootstrap (MB) methods. In this section, we consider
the Multiplier Bootstrap (MB) for calculating critical values. The methods
considered in this section are computationally harder than those in the pre-
vious section but they lead to less conservative tests. In particular, we will
show that when all the moment inequalities are binding (that is, µj = 0
for all 1 ≤ j ≤ p), the asymptotic size of the tests based on these methods
coincides with the nominal size.

3.2.1. One-step method. We first consider the one-step method. Recall that,
in order to make the test to have size α, it is enough to choose the critical
value as (a bound on) the (1− α)-quantile of the distribution of

max
1≤j≤p

√
n(µ̂j − µj)/σ̂j .

The SN method finds such a bound by using the union (Bonferroni) bound
and the moderate deviation inequality for self-normalized sums. However,
the SN method may be conservative as it ignores correlation between the
coordinates in Xi.

Alternatively, we consider here a Gaussian approximation. Observe first
that under suitable regularity conditions,

max
1≤j≤p

√
n(µ̂j − µj)/σ̂j ≈ max

1≤j≤p

√
n(µ̂j − µj)/σj = max

1≤j≤n

√
nEn[Zij ],

where Zi = (Zi1, . . . , Zip)
T are defined in (7). When p is fixed, the central

limit theorem guarantees that as n → ∞,
√
nEn[Zi]

d→ Y, with Y = (Y1, . . . , Yp)
T ∼ N(0,E[Z1Z

T
1 ]),

which, by the continuous mapping theorem, implies that

max
1≤j≤p

√
nEn[Zij ]

d→ max
1≤j≤p

Yj .

Hence in this case it is enough to take the critical value as the (1−α)-quantile
of the distribution of max1≤j≤p Yj .

When p grows with n, however, the concept of convergence in distribution
does not apply, and different tools should be used to derive an appropriate
critical value for the test. One possible approach is to use a Berry-Esseen
theorem that provides a (suitable) non-asymptotic bound between the dis-
tributions of

√
nEn[Zi] and Y ; see, for example, Götze (1991) and Bentkus
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(2003). However, such Berry-Esseen bounds require p to be small in compar-
ison with n in order to guarantee that the distribution of

√
nEn[Zi] is close

to that of Y . Another possible approach is to compare the distributions of
max1≤j≤p

√
nEn[Zij ] and max1≤j≤p Yj directly, avoiding the comparison of

distributions of the whole vectors
√
nEn[Zi] and Y . Our recent work (Cher-

nozhukov, Chetverikov, and Kato, 2013a) shows that, under mild regularity
conditions, the distribution of max1≤j≤p

√
nEn[Zij ] can be approximated by

that of max1≤j≤p Yj in the sense of Kolmogorov distance even when p is
larger or even much larger than n.2 This result implies that we can still use
the (1 − α)-quantile of the distribution of max1≤j≤p Yj even when p grows
with n and is potentially much larger than n.3

Still, the distribution of max1≤j≤p Yj is typically unknown because the
covariance structure of Y is unknown. Hence we will approximate the dis-
tribution of max1≤j≤p Yj by the following multiplier bootstrap procedure:

Algorithm (Multiplier bootstrap).

1. Generate independent standard normal random variables ϵ1, . . . , ϵn
independent of the data Xn

1 = {X1, . . . , X
n
1 }.

2. Construct the multiplier bootstrap test statistic

W = max
1≤j≤p

√
nEn[ϵi(Xij − µ̂j)]

σ̂j
. (15)

3. Calculate cMB(α) as

cMB(α) = conditional (1− α)-quantile of W given Xn
1 . (16)

We will call cSN (α) the (one-step) Multiplier Bootstrap (MB) critical
value with size α. In practice conditional quantiles of W can be computed
with any precision by using simulation.

Intuitively, it is expected that the multiplier bootstrap works well since
conditional on the data Xn

1 , the vector(√
nEn[ϵi(Xij − µ̂j)]

σ̂j

)
1≤j≤p

has the centered normal distribution with covariance matrix

En

[
(Xij − µ̂j)

σ̂j

(Xik − µ̂k)

σ̂k

]
, 1 ≤ j, k ≤ p,

which should be close to the covariance matrix of the vector Y . Indeed, by
Theorem 2 in Chernozhukov, Chetverikov, and Kato (2013b), the primary

2The Kolmogorov distance between the distributions of two random variables ξ and η
is defined by supt∈R |P(ξ ≤ t)− P(η ≤ t)|.

3Some applications of this result can be found in Chetverikov (2011, 2012), Wasserman,
Kolar and Rinaldo (2013), and Chazal, Fasy, Lecci, Rinaldo, and Wasserman (2013).
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factor for the bound on the Kolmogorov distance between the conditional
distribution of W and the distribution of max1≤j≤p Yj is

max
1≤j,k≤p

∣∣∣∣En

[
(Xij − µ̂j)

σ̂j

(Xik − µ̂k)

σ̂k

]
− E[Z1jZ1k]

∣∣∣∣ ,
which can be small even when p ≫ n. The following theorem formally
establishes validity of the MB critical value.

Theorem 3.3 (Validity of one-step MB method). Suppose that there exist
constants 0 < c1 < 1/2 and C1 > 0 such that

(M3
n,3 ∨M2

n,4 ∨Bn)
2 log7/2(pn) ≤ C1n

1/2−c1 . (17)

Then there exist positive constants c, C depending only on c1, C1 such that
under H0,

P(T > cMB(α)) ≤ α+ Cn−c. (18)

If µj = 0 for all 1 ≤ j ≤ p, then

|P(T > cMB(α))− α| ≤ Cn−c. (19)

Moreover, all these bounds hold uniformly with respect to the common dis-
tribution of Xi for which (3) and (17) are verified.

3.2.2. Two-step method. We now consider to combine the MB method with
moment selection. To describe this procedure, let 0 < βn < α/2 be some
constant. As in the previous section, we allow βn to depend on n. Let
cMB(βn) be the (one-step) MB critical value with size βn. Define the set

ĴMB by

ĴMB = {j ∈ {1, . . . , p} :
√
nµ̂j > −2σ̂jc

MB(βn)}.
Then the two-step MB critical value cMB,MS(α) is defined by the following
procedure:

Algorithm (Multiplier bootstrap with moment selection).

1. Generate independent standard normal random variables ϵ1, . . . , ϵn
independent of the data Xn

1 .
2. Construct the bootstrap test statistic

W
ĴMB

=

{
max

j∈ĴMB

√
nEn[ϵi(Xij−µ̂j)]

σ̂j
, if ĴMB is not empty,

0 if ĴMB is empty.

3. Calculate cMB,MS(α) as

cMB,MS(α) = conditional (1− α+ 2βn)-quantile of W
ĴMB

given Xn
1 . (20)

The following theorem establishes validity of the two-step MB critical
value.

Theorem 3.4 (Validity of two-step MB method). Suppose that the assump-
tion of Theorem 3.3 is satisfied. Moreover, suppose that supn≥1 βn < α/2
and log(1/βn) ≤ C1 log n. Then all the conclusions of Theorem 3.3 hold
with cMB(α) replaced by cMB,MS(α).



12 CHERNOZHUKOV, CHETVERIKOV, AND KATO

Comment 3.2. The selection procedure used in the theorem above is most
closely related to those in Chernozhukov, Lee, and Rosen (2013) and in
Chetverikov (2011). Other selection procedures were suggested in the liter-
ature in the framework when p is fixed. Specifically, Romano, Shaikh, and
Wolf (2013) derived a moment selection method based on the construction
of rectangular confidence sets for the vector (µ1, . . . , µp)

T . To extend their
method to high dimensional setting considered here, note that by (19), we
have that µj ≤ µ̂j + σ̂jc

MB(βn)/
√
n for all 1 ≤ j ≤ p with probability

1 − βn asymptotically. Therefore, we can replace (6) with the following
probabilistic inequality: under H0,

P

(
T ≤ max

1≤j≤p

√
n(µ̂j − µj + µ̃j)

σ̂j

)
≥ 1− βn,

where

µ̃j = min(µ̂j + σ̂jc
MB(βn)/

√
n, 0).

This suggests that we could obtain a critical value based on the distribution
of bootstrap test statistic

Ŵ = max
1≤j≤p

√
nEn[ϵi(Xij − µ̂j)] +

√
nµ̃j

σ̂j
.

For brevity, however, we leave analysis of this critical value for future re-
search. □

3.3. Hybrid method. We have considered the one-step SN and MB meth-
ods and their two-step variants. In fact, we can consider “hybrids” of the
SN and MB methods. For example, we can use the SN method for moment
selection, and apply the MB method for the selected moment inequalities,
which is a computationally more tractable alternative to the two-step MB
method. For convenience of terminology, we will call this method the Hy-
brid (HB) method, which is formally described as follows: let 0 < βn < α/2

be some constants, and recall the set ĴSN ⊂ {1, . . . , p} defined in (12).

Algorithm (Hybrid method).

1. Generate independent standard normal random variables ϵ1, . . . , ϵn
independent of the data Xn

1 .
2. Construct the bootstrap test statistic

W
ĴSN

=

{
max

j∈ĴSN

√
nEn[ϵi(Xij−µ̂j)]

σ̂j
, if ĴSN is not empty,

0 if ĴSN is empty.

3. Calculate cHB(α) as

cHB(α) = conditional (1− α+ 2βn)-quantile of W
ĴSN

given Xn
1 . (21)

The following theorem establishes validity of the HB critical value cHB(α).
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Theorem 3.5 (Validity of HB critical value). Suppose that there exist con-
stants 0 < c1 < 1/2 and C1 > 0 such that (17) is verified. Moreover, suppose
that supn≥1 βn ≤ α/3 and log(1/βn) ≤ C1 log n. Then all the conclusions of

Theorem 3.3 hold with cMB(α) replaced by cHB(α).

4. Minimax optimality

In this section, we show that the tests developed in this paper are asymp-
totically minimax optimal when p = pn → ∞ as n → ∞. We start with
deriving an upper bound on the power any procedure may have in testing
(1) against (2).

Lemma 4.1 (Upper bounds on power). Let X1, . . . , Xn ∼ N(µ,Σ) i.i.d.
where Σ = diag{σ2

1, . . . , σ
2
p} and σ2

j > 0 for all 1 ≤ j ≤ p, and con-
sider testing the null hypothesis H0 : max1≤j≤p µj ≤ 0 against the alter-
native H1 : max1≤j≤p(µj/σj) ≥ θ with θ > 0 a constant. Denote by Eµ[·]
the expectation under µ. Then for any test ϕn : (Rp)n → [0, 1] such that
Eµ[ϕn(X1, . . . , Xn)] ≤ α for all µ ∈ Rp with max1≤j≤p µj ≤ 0, we have

inf
max1≤j≤p(µj/σj)≥θ

Eµ[ϕn(X1, . . . , Xn)]

≤ α+ E[|p−1∑p
j=1e

√
nθξj−nθ2/2 − 1|], (22)

where ξ1, . . . , ξp ∼ N(0, 1) i.i.d. Moreover if p = pn → ∞ as n → ∞, we
have

lim
n→∞

E[|p−1
n

∑pn
j=1e

√
nθnξj−nθ2n/2 − 1|] = 0,

where θn = (1 − ϵn)
√

2(log pn)/n, and ϵn > 0 is any sequence such that
ϵn → 0 and ϵn

√
log pn → ∞ as n → ∞.

Going back to the general setting described in Section 1, assume (3) and
consider the test statistic T defined in (4). Pick any α ∈ (0, 1/2) and consider
in general the test of the form

T > ĉ(α) ⇒ reject H0,

where ĉ(α) is a possibly data-dependent critical value which makes the test
to have size approximately α.

Lemma 4.2 (Lower bounds on power). Consider the setting described above.
Suppose that there exists a constant ϵ ≥ 0 possibly depending on α such that
ĉ(α) ≤ (1 + ϵ)

√
2 log(p/α) with probability one. Then for every ϵ > 0 and

δ ∈ (0, 1/2), whenever

max
1≤j≤p

(µj/σj) ≥
(1− δ)(1 + ϵ+ ϵ)

1− 2δ

√
2 log(p/α)

n
,

we have

P(T > ĉ(α)) ≥ 1− 1

2(1− δ)2ϵ2 log(p/α)
− P( max

1≤j≤p
|σ̂j/σj − 1| > δ).
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From this lemma, we have the following corollary:

Corollary 4.1 (Asymptotic minimax optimality). Let ĉ(α) be any one
of cSN (α), cSN,MS(α), cMB(α), cMB,MS(α), or cHB(α) where we assume
supn≥1 βn ≤ α/3 whenever moment selection is used. Suppose there exist
constants 0 < c1 < 1/2 and C1 > 0 such that

B2
n log

3/2 p ≤ C1n
1/2−c1 . (23)

Then there exist constants c, C > 0 depending only on α, c1, C1 such that for
every ϵ ∈ (0, 1), whenever

max
1≤j≤p

(µj/σj) ≥ (1 + ϵ+ C log−1/2 p)

√
2 log(p/α)

n
,

we have

P(T > ĉ(α)) ≥ 1− C

ϵ2 log(p/α)
− Cn−c.

Therefore when p = pn → ∞, for any sequence ϵn satisfying ϵn → 0 and
ϵn
√
log pn → ∞, as n → ∞, we have (with keeping α fixed)

inf
max1≤j≤p(µj/σj)≥θn

Pµ(T > ĉ(α)) ≥ 1− o(1), (24)

where θn = (1 + ϵn)
√
2(log pn)/n and Pµ is the probability under µ. More-

over, the above asymptotic result (24) holds uniformly with respect to the
sequence of common distributions of Xi for which (3) and (23) are verified
with given c1, C1.

Comparing the bounds in Lemma 4.1 and Corollary 4.1, we see that all
the tests developed in this paper are asymptotically minimax optimal when
p = pn → ∞ as n → ∞ under mild regularity conditions.

5. Honest confidence regions for identifiable parameters in
partially identified models

In this section, as in Romano and Shaikh (2008) and Romano, Shaikh,
and Wolf (2013), we consider the related problem of constructing confidence
regions for identifiable parameters in partially identified models.

Let ξ1, . . . , ξn be i.i.d. random variables taking values in a (generic) mea-
surable space (S,S) with common distribution P , let Θ be a parameter space
which is a (Borel measurable) subset of a metric space (usually a Euclidean
space), and let

g : S ×Θ → Rp, (ξ, θ) 7→ g(ξ, θ) = (g1(ξ, θ), . . . , gp(ξ, θ))
T ,

be a jointly Borel measurable map. We consider the partially identified
model where the identified set Θ0(P ) is given by

Θ0(P ) = {θ ∈ Θ : EP [gj(ξ1, θ)] ≤ 0, 1 ≤ ∀j ≤ p}.
Here EP means that the expectation is taken with respect to P (similarly
PP means that the probability is taken with respect to P ). We consider the
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problem of constructing confidence regions Cn(α) = Cn(α; ξ1, . . . , ξn) ⊂ Θ
such that for some constant c, C > 0, for all n ≥ 1,

inf
P∈Pn

inf
θ∈Θ0(P )

PP (θ ∈ Cn(α)) ≥ 1− α− Cn−c, (25)

while allowing for p > n (indeed we allow p to be much larger than n),
where 0 < α < 1 and Pn is a suitable class of distributions on (S,S).4 We
call confidence regions Cn(α) for which (25) is verified asymptotically honest
to Pn with a polynomial rate, where the term is inspired by Li (1989) and
Chernozhukov, Chetverikov, and Kato (2013c).

We first state the required restriction of the class of distributions Pn. We
assume that for every P ∈ Pn,

Θ0(P ) ̸= ∅, and EP [g
2
j (ξ1, θ)] < ∞, σ2

j (θ, P ) := VarP (gj(ξ1, θ)) > 0,

1 ≤ ∀j ≤ p, ∀θ ∈ Θ0(P ). (26)

We construct confidence regions based upon duality between hypothesis
testing and construction of confidence regions. For any given θ ∈ Θ, consider
the statistic

T (θ) = max
1≤j≤p

√
nµ̂j(θ)/σ̂j(θ),

where

µ̂j(θ) = En[gj(ξi, θ)], σ̂2
j (θ) = En[(gj(ξi, θ)− µ̂j(θ))

2].

This statistic is a test statistic for the problem

Hθ : µj(θ, P ) ≤ 0, 1 ≤ ∀j ≤ p,

against

H ′
θ : µj(θ, P ) > 0, 1 ≤ ∃j ≤ p,

where µj(θ, P ) := EP [gj(ξ1, θ)]. Pick any α ∈ (0, 1/2). We consider the
confidence region of the form

Cn(α) = {θ ∈ Θ : T (θ) ≤ c(α, θ)}, (27)

where c(α, θ) is a critical value such that Cn(α) contains θ with probability
(approximately) at least 1− α whenever θ ∈ Θ0(P ).

Recall cSN (α) defined in (9), and let

cSN,MS(α, θ), cMB(α, θ), cMB,MS(α, θ), cHB(α),

be the two-step SN, one-step MB, two-step MB, and HB critical values
defined in (13), (16), (20), and (21), respectively, with Xi = (Xi1, . . . , Xip)

T

replaced by g(ξi, θ) = (g1(ξi, θ), . . . , gp(ξi, θ))
T . Moreover, let CSN

n (α) be the
confidence region (27) with c(α, θ) = cSN (α); define

CSN,MS
n (α), CMB

n (α), CMB,MS
n (α), CHB

n (α),

4We allow the class to depend on n, so that strictly speaking, we consider sequences of
classes of distributions.
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analogously. Finally, define

Mn,k(θ, P ) := max
1≤j≤p

(EP [|(gj(ξ1, θ)− µj(θ, P ))/σj(θ, P )|k])1/k, k = 3, 4,

Bn(θ, P ) :=

(
EP

[
max
1≤j≤p

|(gj(ξ1, θ)− µj(θ, P ))/σj(θ, P )|4
])1/4

.

Let 0 < c1 < 1/2, C1 > 0 be given constants (we implicitly assume that C1

is large enough). The following theorem is the main result of this section.

Theorem 5.1. Let PSN
n be the class of distributions P on (S,S) for which

(26) and (11) are verified with Mn,3 replaced by Mn,3(θ, P ) for all θ ∈ Θ0(P );

let PSN,MS
n be the class of distributions P on (S,S) for which (26) and (14)

are verified with Mn,3, Bn replaced by (respectively) Mn,3(θ, P ), Bn(θ, P ) for
all θ ∈ Θ0(P ); and let PMB

n be the class of distributions P on (S,S) for
which (26) and (17) are verified with Mn,k, Bn replaced by (respectively)

Mn,k(θ, P ), Bn(θ, P ) for all θ ∈ Θ0(P ).5 Moreover, suppose that supn≥1 βn ≤
α/3 and log(1/βn) ≤ C1 log n whenever moment selection is used. Then
there exist positive constants c, C depending only on c1, C1 such that

inf
P∈Pn

inf
θ∈Θ0(P )

PP (θ ∈ Cn(α)) ≥ 1− α− Cn−c

for every pair

(Pn, Cn) ∈
{
(PSN

n , CSN
n ), (PSN,MS

n , CSN,MS
n ), (PMB

n , CMB
n ),

(PMB
n , CMB,MS

n ), (PMB
n , CHB

n )
}
.

6. An extension: empirical bootstrap

In this paper, among many bootstrap procedures, we have focused on the
multiplier bootstrap (see, for example, Praestgaard and Wellner, 1993, for
other forms of bootstrap). Indeed, many other bootstrap procedures are
asymptotically equivalent to the multiplier bootstrap, as discussed briefly in
Comment 3.2 of Chernozhukov, Chetverikov, and Kato (2013a). For exam-
ple, we consider here the empirical (or Efron’s) bootstrap. Let X∗

1 , . . . , X
∗
n

be i.i.d. draws from the empirical distribution of Xn
1 = {X1, . . . , Xn}, and

construct the bootstrap versions of µ̂j and σ̂2
j as

µ̂∗
j = En[X

∗
ij ], σ̂∗2

j = En[(X
∗
ij − µ̂∗

j )
2].

Let

W ∗ = max
1≤j≤p

√
n(µ̂∗

j − µ̂j)

σ̂∗
j

,

and consider

cEB(α) = conditional (1− α)-quantile of W ∗ given Xn
1 ,

5For example, PSN
n = {P : (26) is verified, and M3

n,3(θ, P ) log3/2(p/α) ≤
C1n

1/2−c1 , ∀θ ∈ Θ0(P )}.
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which we call the EB (Empirical Bootstrap) critical value.
Informally, due to conditional independence of X∗

1 , . . . , X
∗
n, the condi-

tional distribution of W ∗ should be close to that of W (defined in (15)), so
that validity of the EB critical value will follow from Theorem 3.3. Formally
we have the following theorem.

Theorem 6.1 (Validity of EB method). Suppose that there exists a sequence
of positive constants Dn such that

P(|Zij | ≤ Dn, 1 ≤ ∀i ≤ n, 1 ≤ ∀j ≤ p) = 1. (28)

In addition, suppose that there exist constants 0 < c1 < 1/2 and C1 > 0
such that

D2
n log

7/2(pn) ≤ C1n
1/2−c1 . (29)

Then there exist positive constants c, C depending only on c1, C1 such that
under H0,

P(T > cEB(α)) ≤ α+ Cn−c.

If µj = 0 for all 1 ≤ j ≤ p, then

|P(T > cEB(α))| ≤ α+ Cn−c.

Moreover, all these bounds hold uniformly with respect to the common dis-
tribution of Xi for which (3), (28) and (29) are verified.

Comment 6.1. The conditions in Theorem 6.1 are stronger than those
in Theorem 3.3 in that we need to assume that the random variables Xij

are bounded, although Dn is allowed to diverge as n → ∞. A detailed
analysis of more sophisticated conditions, and the validity of more general
exchangeably weighted bootstraps (Praestgaard and Wellner, 1993) will be
pursued in the future work.

Appendix A. Proofs

In what follows, let ϕ(·) denote the density function of the standard nor-
mal distribution, and let Φ̄(·) = 1−Φ(·) where recall that Φ(·) is the distri-
bution function of the standard normal distribution.

A.1. Technical tools. We state here some technical tools used to prove
the theorems. The following lemma states a moderate deviation inequality
for self-normalized sums.

Lemma A.1. Let ξ1, . . . , ξn be independent centered random variables with
E[ξ2i ] = 1 and E[|ξi|2+ν ] < ∞ for all 1 ≤ i ≤ n where 0 < ν ≤ 1.

Let Sn =
∑n

i=1 ξi, V
2
n =

∑n
i=1 ξ

2
i , and Dn,ν = (n−1

∑n
i=1 E[|ξi|2+ν ])1/(2+ν).

Then uniformly in 0 ≤ x ≤ n
ν

2(2+ν) /Dn,ν ,∣∣∣∣P(Sn/Vn ≥ x)

Φ̄(x)
− 1

∣∣∣∣ ≤ Kn−ν/2D2+ν
n,ν (1 + x)2+ν ,

where K is a universal constant.
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Proof. See Theorem 7.4 in Lai, de la Peña, and Shao (2009) or the original
paper Jing, Shao, and Wang (2003). □

The following lemma states a Fuk-Nagaev type inequality, which is a
deviation inequality for the maximum of the sum of random vectors from
its expectation.

Lemma A.2 (A Fuk-Nagaev type inequality). Let X1, . . . , Xn be indepen-
dent random vectors in Rp. Define σ2 := max1≤j≤p

∑n
i=1 E[X

2
ij ]. Then for

every s > 1 and t > 0,

P

(
max
1≤j≤p

∣∣∣∣∣
n∑

i=1

(Xij − E[Xij ])

∣∣∣∣∣ ≥ 2E

[
max
1≤j≤p

∣∣∣∣∣
n∑

i=1

(Xij − E[Xij ])

∣∣∣∣∣
]
+ t

)

≤ e−t2/(3σ2) +Ks

n∑
i=1

E[ max
1≤j≤p

|Xij |s]/ts,

where Ks is a constant depending only on s.

Proof. See Theorem 3.1 in Einmahl and Li (2008). Note that Einmahl and
Li (2008) assumed that s > 2 but their proof applies to the case where
s > 1. More precisely, we apply Theorem 3.1 in Einmahl and Li (2008) with
(B, ∥·∥) = (Rp, | · |∞) where |x|∞ = max1≤j≤p |xj | for x = (x1, . . . , xp)

T , and
η = δ = 1. The unit ball of the dual of (Rp, |·|∞) is the set of linear functions
{x = (x1, . . . , xp)

T 7→
∑p

j=1 λjxj :
∑p

j=1 |λj | ≤ 1}, and for λ1, . . . , λp with∑p
j=1 |λj | ≤ 1, by Jensen’s inequality,∑n

i=1 E[(
∑p

j=1 λjXij)
2] =

∑n
i=1 E[(

∑p
j=1 |λj |sign(λj)Xij)

2]

≤
∑p

j=1 |λj |
∑n

i=1 E[X
2
ij ] ≤ max1≤j≤p

∑n
i=1 E[X

2
ij ] = σ2,

where sign(λj) is the sign of λj . Hence in this case Λ2
n in Theorem 3.1 of

Einmahl and Li (2008) is bounded by (and indeed equal to) σ2. □

In order to use Lemma A.2, we need a suitable bound on the expectation
of the maximum. The following lemma is useful for that purpose.

Lemma A.3. Let X1, . . . , Xn be independent random vectors in Rp with p ≥
2. Define M := max1≤i≤nmax1≤j≤p |Xij | and σ2 := max1≤j≤p

∑n
i=1 E[X

2
ij ].

Then

E

[
max
1≤j≤p

∣∣∣∣∣
n∑

i=1

(Xij − E[Xij ])

∣∣∣∣∣
]
≤ K(σ

√
log p+

√
E[M2] log p),

where K is a universal constant.

Proof. See Lemma 8 in Chernozhukov, Chetverikov, and Kato (2013b). □

For bounding E[M2], we will frequently use the following inequality: let
ξ1, . . . , ξn be arbitrary random variables with E[|ξi|s] < ∞ for all 1 ≤ i ≤ n
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for some s ≥ 1. Then

E[ max
1≤i≤n

|ξi|] ≤ (E[ max
1≤i≤n

|ξi|s])1/s

≤ (
∑n

i=1E[|ξi|
s])1/s ≤ n1/s max

1≤i≤n
(E[|ξi|s])1/s.

For centered normal random variables ξ1, . . . , ξn with σ2 = max1≤i≤n E[ξ
2
i ],

we have

E[ max
1≤j≤p

ξi] ≤
√

2σ2 log p.

See, for example, Proposition 1.1.3 in Talagrand (2003).

Lemma A.4. Let (Y1, . . . , Yp)
T be a normal random vector with E[Yj ] = 0

and E[Y 2
j ] = 1 for all 1 ≤ j ≤ p. (i) For α ∈ (0, 1), let c0(α) denote the

(1−α)-quantile of the distribution of max1≤j≤p Yj. Then c0(α) ≤
√
2 log p+√

2 log(1/α). (ii) For every t ∈ R and ϵ > 0, P(|max1≤j≤p Yj − t| ≤ ϵ) ≤
4ϵ(

√
2 log p+ 1).

Proof. Part (ii) follows from Theorem 3 in Chernozhukov, Chetverikov, and
Kato (2013b) together with the fact that

E[ max
1≤j≤p

Yj ] ≤
√

2 log p. (30)

For part (i), by the Borell-Sudakov-Tsirelson inequality (see Theorem A.2.1
in van der Vaart and Wellner (1996)), for every r > 0,

P( max
1≤j≤p

Yj ≥ E[ max
1≤j≤p

Yj ] + r) ≤ e−r2/2,

by which we have

c0(α) ≤ E[ max
1≤j≤p

Yj ] +
√

2 log(1/α). (31)

Combining (31) and (30) leads to the desired result. □

A.2. Proof of Theorem 3.1. The first assertion follows from inequality
(8) and Lemma A.1 with ν = 1. To prove the second assertion, we first

note the well known fact that 1−Φ(t) ≤ e−t2/2 for t > 0, by which we have

Φ−1(1− α/p) ≤
√

2 log(p/α).6 Hence if M3
n,3 log

3/2(p/α) ≤ C1n
1/2−c1 , it is

straightforward to verify that the right side on (10) is bounded by Cn−c1

for some constant C depending only on c1, C1. □

6The inequality 1−Φ(t) ≤ e−t2/2 for t > 0 can be proved by using Markov’s inequality,
P(ξ > t) ≤ e−λtE[eλξ] for λ > 0 with ξ ∼ N(0, 1), and optimizing the bound with respect

to λ > 0; there is a sharper inequality, namely 1 − Φ(t) ≤ e−t2/2/2 for t > 0 (see, for
example, Proposition 2.1 in Dudley, 1999), but we do not need this sharp inequality in
this paper.
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A.3. Proof of Theorem 3.2. We first prove the following technical lemma.
Recall that Bn = (E[max1≤j≤p Z

4
1j ])

1/4.

Lemma A.5. For every 0 < c < 1,

P

(
max
1≤j≤p

|(σ̂j/σj)− 1| > K(n−(1−c)/2B2
n log p+ n−3/2B2

n log
2 p)

)
≤ K ′n−c,

where K,K ′ are universal constants.

Proof. Here K1,K2, . . . denote universal positive constants. Note that for
a > 0,

|
√
a− 1| = |a− 1|√

a+ 1
≤ |a− 1|,

so that for r > 0,

P

(
max
1≤j≤p

|(σ̂j/σj)− 1| > r

)
≤ P

(
max
1≤j≤p

|(σ̂2
j /σ

2
j )− 1| > r

)
.

Using the expression

σ̂2
j /σ

2
j − 1 = (En[Z

2
ij ]− 1)− (En[Zij ])

2,

we have

P

(
max
1≤j≤p

|σ̂2
j /σ

2
j − 1| > r

)
≤ P

(
max
1≤j≤p

|En[Z
2
ij ]− 1| > r/2

)
+ P

(
max
1≤j≤p

|En[Zij ]| >
√

r/2

)
.

We wish to bound the two terms on the right side by using the Fuk-Nagaev
inequality (Lemma A.2) combined with the maximal inequality of Lemma
A.3.

By Lemma A.3 (with the crude bounds E[Z4
1j ] ≤ B4

n and E[maxi,j Z
4
ij ] ≤

nB4
n), we have

E

[
max
1≤j≤p

|En[Z
2
ij ]− 1|

]
≤ K1B

2
n(log p)/

√
n,

so that by Lemma A.2, for every t > 0,

P

(
max
1≤j≤p

|En[Z
2
ij ]− 1| > 2K1B

2
n(log p)/

√
n+ t

)
≤ e−nt2/(3B4

n)+K2t
−2n−1B4

n.

Taking t = n−(1−c)/2B2
n with 0 < c < 1, the right side becomes e−nc/3 +

K2n
−c ≤ K3n

−c. Hence we have

P

(
max
1≤j≤p

|En[Z
2
ij ]− 1| > K4n

−(1−c)/2B2
n(log p)

)
≤ K3n

−c. (32)

Similarly, using Lemma A.3, we have

E

[
max
1≤j≤p

|En[Zij ]|
]
≤ K5(n

−1/2
√

log p+ n−3/4Bn log p),
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so that by Lemma A.2, for every t > 0,

P

(
max
1≤j≤p

|En[Zij ]| > 2K5(n
−1/2

√
log p+ n−3/4Bn log p) + t

)
≤ e−nt2/3 +K6t

−4n−3B4
n.

Taking t = n−1/4Bn, the right side becomes e−n1/2Bn/3 +K6n
−2 ≤ K7n

−2.
Hence we have

P

(
max
1≤j≤p

|En[Zij ]| > K8(n
−1/4Bn

√
log p+ n−3/4Bn log p)

)
≤ K7n

−2. (33)

Combining (32) and (33) leads to the desired result. □
Proof of Theorem 3.2. Here c, C denote generic positive constants depend-
ing only on c1, C1; their values may change from place to place. Define

J1 = {j ∈ {1, . . . , p} :
√
nµj > −σjc

SN (βn)}, Jc
1 = {1, . . . , p}\J1. (34)

For k ≥ 1, let

cSN,MS(α, k) =
Φ−1(1− (α− 2βn)/k)√

1− Φ−1(1− (α− 2βn)/k)2/n
.

Note that cSN,MS(α) = cSN,MS(α, k̂) when k̂ ≥ 1. We divide the proof into
several steps.

Step 1. We wish to prove that with probability larger than 1−βn−Cn−c,
µ̂j ≤ 0 for all j ∈ Jc

1 .

Observe that

µ̂j > 0, ∃j ∈ Jc
1 ⇒

√
n(µ̂j − µj) > σjc

SN (βn), 1 ≤ ∃j ≤ p,

so that it is enough to prove that

P

(
max
1≤j≤p

[√
n(µ̂j − µj)− σjc

SN (βn)
]
> 0

)
≤ βn + Cn−c. (35)

Since whenever σj/σ̂j − 1 ≥ −r for some 0 < r < 1,

σj = σ̂j(1 + (σj/σ̂j − 1)) ≥ σ̂j(1− r),

the left side on (35) is bounded by

P

(
max
1≤j≤p

√
n(µ̂j − µj)/σ̂j > (1− r)cSN (βn)

)
+ P

(
max
1≤j≤p

|(σj/σ̂j)− 1| > r

)
, (36)

where 0 < r < 1 is arbitrary.
Take r = rn = n−(1−c1)/2B2

n log p. Then rn < 1 for large n, and since

|a− 1| ≤ r

r + 1
⇒ |a−1 − 1| ≤ r,

we see that by Lemma A.5, the second term in (36) is bounded by Cn−c.
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Consider the first term in (36). It is not difficult to see that

P

(
max
1≤j≤p

√
n(µ̂j − µj)/σ̂j > (1− r)cSN (βn)

)
≤ P

(
max
1≤j≤p

Uj > (1− r)Φ−1(1− βn/p)

)
≤

p∑
j=1

P
(
Uj > (1− r)Φ−1(1− βn/p)

)
.

Note that (1 − r)Φ−1(1 − βn/p) ≤
√

2 log(p/βn) ≤ n1/6/Mn,3 for large n.
Hence, by Lemma A.1, the far right side is bounded by

pΦ̄
(
(1− r)Φ−1(1− βn/p)

) [
1 + n−1/2CM3

n,3

{
1 + (1− r)Φ−1(1− βn/p)

}3]
≤ pΦ̄

(
(1− r)Φ−1(1− βn/p)

) [
1 + n−1/2CM3

n,3{1 + Φ−1(1− βn/p)}3
]
.

Observe that n−1/2M3
n,3{1 + Φ−1(1− βn/p)}3 ≤ Cn−c1 . Moreover, putting

ξ = Φ−1(1− βn/p), we have

pΦ̄ ((1− r)ξ) = βn + rpξϕ
(
(1− r′)ξ

)
(∃r′ ∈ [0, r])

≤ βn + rpξϕ ((1− r)ξ) .

Using the inequality (1 − r)2ξ2 = ξ2 + r2ξ2 − 2rξ2 ≥ ξ2 − 2rξ2, we have

ϕ ((1− r)ξ) ≤ erx
2
ϕ(ξ). Since βn < α/2 < 1/4 and p ≥ 2, we have ξ ≥

Φ−1(1 − 1/8) > 1, so that by Proposition 2.1 in Dudley (1999), we have
ϕ(ξ) ≤ 2ξ(1− Φ(ξ)) = 2ξβn/p.

7 Hence

pΦ̄ ((1− r)ξ) ≤ βn(1 + 2rξ2erξ
2
).

Recall that we have taken r = rn = n−(1−c1)/2B2
n log p, so that

rξ2 ≤ 2n−(1−c1)/2B2
n log

2(p/βn) ≤ Cn−c1/2.

Therefore, the first term in (36) is bounded by βn + Cn−c for large n. The
conclusion of Step 1 is verified for large n and hence for all n by adjusting
the constant C.

Step 2. We wish to prove that with probability larger than 1−βn−Cn−c,

ĴSN ⊃ J1.

Observe that

P(ĴSN ̸⊃ J1) ≤ P

(
max
1≤j≤p

[√
n(µj − µ̂j)− (2σ̂j − σj)c

SN (βn)
]
> 0

)
. (37)

Since whenever 1− σj/σ̂j ≥ −r for some 0 < r < 1,

2σ̂j − σj = σ̂j(1 + (1− σj/σ̂j)) ≥ σ̂j(1− r),

7Note that the second part of Proposition 2.1 in Dudley (1999) asserts that ϕ(t)/t ≤
P(|N(0, 1)| > t) = 2(1− Φ(t)) when t ≥ 1, so that ϕ(t) ≤ 2t(1− Φ(t)).
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the right side on (37) is bounded by

P

(
max
1≤j≤p

√
n(µj − µ̂j)/σ̂j > (1− r)cSN (βn)

)
+ P

(
max
1≤j≤p

|(σj/σ̂j)− 1| > r

)
,

where 0 < r < 1 is arbitrary. By the proof of Step 1, we see that the sum
of these terms is bounded by βn +Cn−c with suitable r, which leads to the
conclusion of Step 2.

Step 3. We are now in position to finish the proof of Theorem 3.2.
Consider first the case where J1 = ∅. Then by Step 1, with probability larger
than βn+Cn−c, T ≤ 0, so that P(T > cSN,MS(α)) ≤ βn+Cn−c ≤ α+Cn−c.
Suppose now that |J1| ≥ 1. Observe that

{T > cSN,MS(α)} ∩ {µ̂j ≤ 0, ∀j ∈ Jc
1} ⊂ {max

j∈J1
(
√
nµ̂j/σ̂j) > cSN,MS(α)}.

Moreover, as cSN,MS(α, k) is non-decreasing in k,

{max
j∈J1

(
√
nµ̂j/σ̂j) > cSN,MS(α)} ∩ {ĴSN ⊃ J1}

⊂ {max
j∈J1

(
√
nµ̂j/σ̂j) > cSN,MS(α, |J1|)}.

Therefore, by Steps 1 and 2, we have

P(T > cSN,MS(α))

≤ P(max
j∈J1

(
√
nµ̂j/σ̂j) > cSN,MS(α, |J1|)) + 2βn + Cn−c

≤ P(max
j∈J1

√
n(µ̂j − µj)/σ̂j > cSN,MS(α, |J1|)) + 2βn + Cn−c. (38)

By Theorem 3.1, we see that

P(max
j∈J1

√
n(µ̂j − µj)/σ̂j) > cSN,MS(α, |J1|)) ≤ α− 2βn + Cn−c. (39)

Combining (38) and (39) completes the proof of the theorem. □
A.4. Proof of Theorem 3.3. Here c, C denote generic positive constants
depending only on c1, C1; their values may change from place to place. De-
fine

T̄ = max
1≤j≤p

√
n(µ̂j − µj)

σ̂j
, and T0 = max

1≤j≤p

√
n(µ̂j − µj)

σj
.

Moreover, define

W̄ = max
1≤j≤p

√
nEn[ϵi(Xij − µ̂j)]

σj
, and W0 = max

1≤j≤p

√
nEn[ϵi(Xij − µj)]

σj
.

We begin with noting that under H0, P(T > cMB(α)) ≤ P(T̄ > cMB(α)),
and if all the moment inequalities are binding, that is, µj = 0 for all 1 ≤
j ≤ p, then P(T > cMB(α)) = P(T̄ > cMB(α)). Hence, by Corollary 3.1 of
Chernozhukov, Chetverikov, and Kato (2013a) (applied with xi = Zi), the
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conclusion of the theorem follows if we can prove that there exist sequences
{ζn1} and {ζn2} of positive constants with ζn1

√
log p+ζn2 ≤ Cn−c such that

P(|T̄−T0| > ζn1) ≤ Cn−c, P(P(|W−W0| > ζn1 | Xn
1 ) > ζn2) ≤ Cn−c. (40)

We wish to verify these conditions with

ζn1 = n−(1−c1)/2B2
n log

3/2 p, and ζn2 = C ′n−c′ ,

where c′, C ′ are suitable positive constants that depend only on c1, C1. We
note that because of the assumption that B4

n log
7(pn) ≤ C1n

1/2−c1 , these
choices satisfy ζn1

√
log p+ ζn2 ≤ Cn−c.

We first verify the first part of (40). Observe that

|T̄ − T0| ≤ max
1≤j≤p

|(σj/σ̂j)− 1| × max
1≤j≤p

|
√
nEn[Zij ]|.

By Lemma A.5 and the simple fact that |a− 1| ≤ r/(r+1) ⇒ |a−1 − 1| ≤ r
(r > 0), we have

P

(
max
1≤j≤p

|(σj/σ̂j)− 1| > n−1/2+c1/4B2
n log p

)
≤ Cn−c.

Moreover,

P( max
1≤j≤p

|
√
nEn[Zij ]| > nc1/4

√
log p) ≤ Cn−c.

Hence the first part of (40) is verified (note that n−1/2+c1/4B2
n(log p) ×

nc1/4
√
log p = ζn1).

To verify the second part of (40), define An by the event such that

An =

{
max
1≤j≤p

|(σ̂j/σj)− 1| ≤ n−1/2+c1/4B2
n log p

}
∩{

max
1≤j≤p

|
√
nEn[Zij ]| ≤ nc1/4

√
log p

}
.

By the previous step, we see that P(An) > 1− Cn−c. Observe that

P(|W−W0| > ζn1 | Xn
1 ) ≤ P(|W−W̄ | > ζn1/2 | Xn

1 )+P(|W̄−W0| > ζn1/2 | Xn
1 ).

Consider the first term on the right side. Observe that

|W − W̄ | ≤ max
1≤j≤p

|(σ̂j/σj)− 1| × |W |.

Conditional on the data Xn
1 , the vector (

√
nEn[ϵi(Xij−µ̂j)/σ̂j ])1≤j≤p is nor-

mal with mean zero and all the diagonal elements of the covariance matrix
are one. Hence

E[|W | | Xn
1 ] ≤

√
2 log(2p),

so that by Markov’s inequality, on the event An,

P(|W − W̄ | > ζn1/2 | Xn
1 ) ≤ (2/ζn1) max

1≤j≤p
|(σ̂j/σj)− 1| × E[|W | | Xn

1 ],

which is bounded by Cn−c1/4. On the other hand, observe that

|W̄ −W0| ≤ |En[ϵi]| × max
1≤j≤p

|
√
nEn[Zij ]|.
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Hence by Markov’s inequality, on the event An,

P(|W̄ −W0| > ζn1/2) ≤ Cζ−1
n1 n

−1/2 × nc1/4
√

log p ≤ Cn−c1/4.

Therefore, the second part of (40) is verified. □

A.5. Proof of Theorem 3.4. We first prove the following technical lemma.
Define

∆̂ = max
1≤j,k≤p

∣∣∣∣En

[
(Xij − µ̂j)

σ̂j

(Xik − µ̂k)

σ̂k

]
− E[Z1jZ1k]

∣∣∣∣ .
Recall that Bn = (E[max1≤j≤p Z

4
1j ])

1/4.

Lemma A.6. Suppose that there exists a constant C1 such that log p ≤ C1n.
Then for every 0 < c < 1, there exist positive constants C,C ′ depending only
on c, C1 such that

P
(
∆̂ > C ′n−(1−c)/2B2

n log p
)
≤ Cn−c,

whenever C ′n−(1−c)/2B2
n log p ≤ 1/2.

Proof. Here C,C ′ denote generic positive constants depending only on c, C1;
their values may change from place to place. Observe that

En

[
(Xij − µ̂j)

σ̂j

(Xik − µ̂k)

σ̂k

]
− E[Z1jZ1k]

=
1

(σ̂j/σj)(σ̂k/σk)
(En[ZijZik]− E[Z1jZ1k])−

1

(σ̂j/σj)(σ̂k/σk)
En[Zij ]En[Zik]

+

(
1

(σ̂j/σj)(σ̂k/σk)
− 1

)
E[Z1jZik].

Hence, since |E[Z1jZ1k]| ≤ 1, we have

∆̂ ≤ max
1≤j,k≤p

∣∣∣∣ 1

(σ̂j/σj)(σ̂k/σk)
(En[ZijZik]− E[Z1jZ1k])

∣∣∣∣
+ max

1≤j,k≤p

∣∣∣∣ 1

(σ̂j/σj)(σ̂k/σk)
En[Zij ]En[Zik]

∣∣∣∣+ max
1≤j,k≤p

∣∣∣∣ 1

(σ̂j/σj)(σ̂k/σk)
− 1

∣∣∣∣
=: I + II + III.

By Lemma A.5, we see that with probability larger than 1− Cn−c,

max
1≤j≤p

|(σ̂j/σj)− 1| ≤ C ′n−(1−c)/2B2
n log p,

Hence as long as C ′n−(1−c)/2B2
n log p ≤ 1/2, with probability larger than

1− Cn−c,

σ̂j/σj ≥ 1/2, 1 ≤ ∀j ≤ p, and III ≤ C ′n−(1−c)/2B2
n log p.

On the event σ̂j/σj ≥ 1/2, 1 ≤ ∀j ≤ p, we have

I ≤ 4 max
1≤j,k≤p

|En[ZijZik]− E[Z1jZ1k]|, II ≤ 4 max
1≤j≤p

(En[Zij ])
2.
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By inequality (33) in the proof of Lemma A.5, we see that with probability

larger than 1 − Cn−2, max1≤j≤p(En[Zij ])
2 ≤ C ′n−1/2B2

n log p. Therefore,
the conclusion of the lemma will follow if we can prove that with probability
larger than 1− Cn−c,

∆̂′ := max
1≤j,k≤p

|En[ZijZik]− E[Z1jZ1k]| ≤ C ′n−(1−c)/2B2
n log p.

By Lemma A.2, for every t > 0,

P(∆̂′ > 2E[∆̂′] + t) ≤ e−nt2/(3B4
n) +Kt−2n−1B4

n.

Moreover, by Lemma A.3,

E[∆̂′] ≤ K ′B2
n(log n)/

√
n.

Hence by taking t = n−(1−c)/2B2
n, we see that

P(∆̂′ > C ′n−(1−c)/2B2
n log p) ≤ Cn−c.

This completes the proof. □
Proof of Theorem 3.4. Here c, C denote generic positive constants depend-
ing only on c1, C1; their values may change from place to place. Let

(Y1, . . . , Yp)
T ∼ N(0,E[Z1Z

T
1 ]).

For γ ∈ (0, 1), denote by c0(γ) the (1 − γ)-quantile of the distribution of
max1≤j≤p Yj . We divide the proof into several steps.

Step 1. We wish to prove that with probability larger than 1 − Cn−c,
cMB(βn) ≥ c0(βn+νn), where νn = C ′n−c′ and where c′, C ′ are some positive
constant depending only on c1, C1.

Recall that conditional on Xn
1 , the vector (

√
nEn[ϵi(Xij − µ̂j)/σ̂j ])1≤j≤p

is normal with mean zero and covariance matrix

En

[
(Xij − µ̂j)

σ̂j

(Xik − µ̂k)

σ̂k

]
, j, k = 1, . . . , p.

Hence by Theorem 2 in Chernozhukov, Chetverikov, and Kato (2013b),

sup
t∈R

|P(W ≤ t | Xn
1 )− P( max

1≤j≤p
Yj ≤ t)| ≤ K∆̂1/3(1 ∨ log(p/∆̂))2/3,

whereK is a universal constant. Because of the assumption thatB2
n log

7/2(pn) ≤
C1n

1/2−c1 and Lemma A.6, we see that with probability larger than 1−Cn−c,
the right side is bounded by C ′n−c′(=: νn) with suitable constants c′, C ′

that depend only on c1, C1. This implies that with probability larger than
1− Cn−c,

P( max
1≤j≤p

Yj ≤ t) ≥ P(W ≤ t | Xn
1 )− νn, ∀t ∈ R.

Since the conditional distribution of W has no point masses, we have

P( max
1≤j≤p

Yj ≤ t)|t=cMB(βn) ≥ 1− βn − νn,

which implies that cMB(βn) ≥ c0(βn + νn).
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Step 2. Define

J2 = {j ∈ {1, . . . , p} :
√
nµj > −σjc0(βn + νn)}, Jc

2 = {1, . . . , p}\J2.
We wish to prove that with probability larger than 1 − βn − Cn−c, µ̂j ≤ 0
for all j ∈ Jc.

Like in the proof of Theorem 3.2, observe that

µ̂j > 0, ∃j ∈ Jc
2 ⇒

√
n(µ̂j − µj) > σjc0(βn + νn), 1 ≤ ∃j ≤ p,

so that it is enough to prove that

P

(
max
1≤j≤p

√
n(µ̂j − µj)

σj
> c0(βn + νn)

)
≤ βn + Cn−c.

But this follows from Corollary 2.1 in Chernozhukov, Chetverikov, and Kato
(2013a) (and the fact that νn = C ′n−c′). This concludes Step 2.

Step 3. We wish to prove that with probability larger than 1−βn−Cn−c,

ĴMB ⊃ J2.

Like in the proof of Theorem 3.2, observe that

P(ĴMB ̸⊃ J2)

≤ P

(
max
1≤j≤p

[√
n(µj − µ̂j)− (2σ̂jc

MB(βn)− σjc0(βn + νn))
]
> 0

)
.

Since whenever cMB(βn) ≥ c0(βn + νn) and σ̂j/σj − 1 ≥ −r/2 for some
r > 0,

2σ̂jc
MB(βn)− σjc0(βn + νn) ≥ (2σ̂j − σj)c0(βn + νn)

= σj(1 + 2(σ̂j/σj − 1))c0(βn + νn) ≥ (1− r)σjc0(βn + νn),

we have

P(ĴMB ̸⊃ J2) ≤ P

(
max
1≤j≤p

√
n(µj − µ̂j)

σj
> (1− r)c0(βn + νn)

)
+ P

(
cMB(βn) < c0(βn + νn)

)
+ P

(
max
1≤j≤p

|(σ̂j/σj)− 1| > r/2

)
.

By Corollary 2.1 in Chernozhukov, Chetverikov, and Kato (2013a), the first
term on the right side is bounded by

P( max
1≤j≤p

Yj > (1− r)c0(βn + νn)) + Cn−c.

Moreover, by Lemma A.4,

P( max
1≤j≤p

Yj > (1− r)c0(βn + νn))

≤ βn + νn + 4r
(√

2 log p+ 1)(
√

2 log p+
√

2 log(1/(βn + νn))
)
,

which is bounded by βn + νn + Cr log(pn). Thus, using Step 1, we see that

P(ĴMB ̸⊃ J2) ≤ βn + P

(
max
1≤j≤p

|(σ̂j/σj)− 1| > r/2

)
+ C(r log(pn) + n−c).
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Choosing r = rn = n−(1−c1)/2B2
n log p, we see that, by Lemma A.5, the

second term on the right side is bounded by Cn−c, and

r log(pn) ≤ n−(1−c1)/2B2
n log

2(pn) ≤ C1n
−c1/2,

because of the assumption that B2
n log

7/2(pn) ≤ C1n
1/2−c1 . This leads to

the conclusion of Step 3.

Step 4. We are now in position to finish the proof of the theorem. Note
that when J2 = ∅, by Step 2 we have that T ≤ 0 with probability larger than
1−βn−Cn−c. But as cMB,MS(α) ≥ 0, we have P(T > cMB,MS(α)) ≤ βn+
Cn−c ≤ α + Cn−c. Consider the case where J2 ̸= ∅. Define cMB,MS(α, J2)

by the same bootstrap procedure as cMB,MS(α) with ĴMB replaced by J2.

Note that cMB,MS(α) ≥ cMB,MS(α, J2) on the event ĴMB ⊃ J2. Therefore,
arguing as in Step 3 of the proof of Theorem 3.2,

P(T > cMB,MS(α)) ≤ P(max
j∈J2

√
nµ̂j/σ̂j > cMB,MS(α)) + βn + Cn−c

≤ P(max
j∈J2

√
nµ̂j/σ̂j > cMB,MS(α, J2)) + 2βn + Cn−c

≤ P(max
j∈J2

√
n(µ̂j − µj)/σ̂j > cMB,MS(α, J2)) + 2βn + Cn−c

≤ α− 2βn + 2βn + Cn−c = α+ Cn−c.

Moreover, when µj = 0 for all 1 ≤ j ≤ p, we have J2 = {1, . . . , p}.
Hence by Step 3, cMB,MS(α) = cMB,MS(α, J2) with probability larger than
1− βn − Cn−c. Therefore,

P(T > cMB,MS(α)) = P( max
1≤j≤p

√
n(µ̂j − µj)/σ̂j > cMB,MS(α))

≥ P( max
1≤j≤p

√
n(µ̂j − µj)/σ̂j > cMB,MS(α, J2))− βn − Cn−c

≥ α− 3βn − Cn−c.

The last assertion follows trivially. This completes the proof of the theorem.
□

A.6. Proof of Theorem 3.5. Recall the set J1 ⊂ {1, . . . , p} defined in
(34). By Steps 1 and 2 in the proof of Theorem 3.2, we see that

P(µ̂j ≤ 0, ∀j ∈ Jc
1) > 1− βn − Cn−c, P(ĴSN ⊃ J1) > 1− βn − Cn−c,

where c, C are some positive constants depending only on c1, C1. The rest
of the proof is completely analogous to Step 4 in the proof of Theorem 3.4
and hence omitted. □

A.7. Proof of Lemma 4.1. We first assume that σ2
1, . . . , σ

2
p are known.

Since X̄ := En[Xi] is a sufficient statistic for µ, we only have to consider a
test that depends only on X̄. Let ϕn : Rp → [0, 1], X̄ 7→ ϕn(X̄), be a test
such that Eµ[ϕn(X̄)] ≤ α for all µ ∈ Rp with max1≤j≤p µj ≤ 0. Let µ[j] be
the vector in Rp such that only the j-th element is nonzero and θσj . Denote
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by E0[·] the expectation under µ = 0, and denote by Ej [·] the expectation
under µ = µ[j]. Then we have

inf
max1≤j≤p(µj/σj)≥θ

Eµ[ϕn(X̄)]− α ≤ 1

p

p∑
j=1

Ej [ϕn(X̄)]− E0[ϕn(X̄)]. (41)

Under µ = µ[j], we have X̄ ∼ N(µ[j], n−1Σ), so that

Ej [ϕ(X̄)] = E0[e
nθX̄j/σj−nθ2/2ϕn(X̄)].

Hence the right side on (41) is written as

E0

1

p

p∑
j=1

enθX̄j/σj−nθ2/2 − 1

ϕn(X̄)

 ≤ E0

∣∣∣∣∣∣1p
p∑

j=1

enθX̄j/σj−nθ2/2 − 1

∣∣∣∣∣∣
 .

Note that under µ = 0,
√
nX̄1/σ1, . . . ,

√
nX̄p/σp ∼ N(0, 1) i.i.d. Hence we

obtain the assertion (22).
When σ2

1, . . . , σ
2
p are unknown, the previous argument shows that the

assertion (22) holds for any test with size α that depends on X1, . . . , Xn

and σ2
1, . . . , σ

2
n, from which we can immediately see that the assertion (22)

holds for any test with size α that depends only on X1, . . . , Xn.
The last assertion follows from application of Lemma 6.2 in Dümbgen and

Spokoiny (2001). □

A.8. Proof of Lemma 4.2. Let j∗ ∈ {1, . . . , p} be any index such that
µj∗/σj∗ = max1≤j≤p(µj/σj). Then whenever max1≤j≤p |σ̂j/σj − 1| ≤ δ,

T ≥
√
nµ̂j∗/σ̂j∗ =

√
nµj∗/σ̂j∗ +

√
n(µ̂j∗ − µj∗)/σ̂j∗

≥ ((1− 2δ)/(1− δ)) ·
√
nµj∗/σj∗ +

√
n(µ̂j∗ − µj∗)/σ̂j∗

≥ (1 + ϵ+ ϵ)
√

2 log(p/α) +
√
n(µ̂j∗ − µj∗)/σ̂j∗ ,

so that
√
n(µ̂j∗ − µj∗)/σ̂j∗ > −ϵ

√
2 log(p/α) ⇒ T > ĉ(α).

Hence we have

P(T > ĉ(α))

≥ P

(
{T > ĉ(α)} ∩

{
max
1≤j≤p

|σ̂j/σj − 1| ≤ δ

})
≥ P

({√
n(µ̂j∗ − µj∗)/σ̂j∗ > −ϵ

√
2 log(p/α)

}
∩
{
max
1≤j≤p

|σ̂j/σj − 1| ≤ δ

})
≥ P

({√
n(µ̂j∗ − µj∗)/σj∗ > −(1− δ)ϵ

√
2 log(p/α)

}
∩
{
max
1≤j≤p

|σ̂j/σj − 1| ≤ δ

})
≥ P

(√
n(µ̂j∗ − µj∗)/σj∗ > −(1− δ)ϵ

√
2 log(p/α)

)
− P( max

1≤j≤p
|σ̂j/σj − 1| > δ).
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By Markov’s inequality, we have

P
(√

n(µ̂j∗ − µj∗)/σj∗ > −(1− δ)ϵ
√

2 log(p/α)
)

= 1− P
(√

n(µj∗ − µ̂j∗)/σj∗ > (1− δ)ϵ
√

2 log(p/α)
)

≥ 1− 1

2(1− δ)2ϵ2 log(p/α)
.

This completes the proof. □

A.9. Proof of Corollary 4.1. Here c, C denote generic positive constants
depending only on α, c1, C1; their values may change from place to place.
We begin with noting that since B2

n log
3/2 p ≤ C1n

1/2−c1 , it follows from

Lemma A.5 that there exists δn < min{C log−1/2 p, 1/2} such that

P

(
max
1≤j≤p

|(σ̂j/σj)− 1| > δn

)
≤ Cn−c.

Hence, by Lemma 4.2, we only have to verify that with probability one,

ĉ(α) ≤ (1 + C log−1/2 p)
√

2 log(p/α). (42)

To this end, since βn ≤ α/3, we note that

cSN,MS(α) ≤ cSN (α/3), cMB,MS(α) ∨ cHB(α) ≤ cMB(α/3),

so that it suffices to verify (42) with ĉ(α) = cSN (α) and cMB(α).

For ĉ(α) = cSN (α), since Φ−1(1− p/α) ≤
√

2 log(p/α) and log3/2 p ≤ Cn
(recall that Bn ≥ 1), it is straightforward to see that (42) is verified. For
ĉ(α) = cMB(α), it follows from Lemma A.4 that cMB(α) ≤

√
2 log p +√

2 log(1/α), so that (42) is verified. This completes the proof. □

A.10. Proof of Theorem 5.1. The theorem readily follows from Theorems
3.1-3.5. □

A.11. Proof of Theorem 6.1. Here as before c, C denote generic positive
constants depending only on c1, C1; their values may change from place to
place. Let Z∗

ij = (X∗
ij − µ̂j)/σ̂j , and

W ∗
0 = max

1≤j≤p

√
nEn[Z

∗
ij ].

Define the event A′
n by

A′
n = {|Zij | ≤ Dn, 1 ≤ ∀i ≤ n, 1 ≤ ∀j ≤ p}∩{|σ̂j/σj−1| ≤ 1/2, 1 ≤ ∀j ≤ p}.

By Lemma A.5, we have P(A′
n) > 1− Cn−c. On the event An,

max
1≤i≤n

max
1≤j≤p

|Z∗
ij | ≤ max

1≤i≤n
max
1≤j≤p

|Xij − µ̂j |
σ̂j

≤ max
1≤i≤n

max
1≤j≤p

σj
σ̂j

|Zij − En[Zij ]| ≤ (3/2) · 2Dn = 3Dn,
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so that, under the present assumption that D2
n log

7/2(pn) ≤ C1n
1/2−c1 , by

Corollary 2.1 in Chernozhukov, Chetverikov, and Kato (2013a), we have

sup
t∈R

|P(W ∗
0 ≤ t | Xn

1 )− P(W ≤ t | Xn
1 )| ≤ Cn−c, (43)

whereW is defined in (15) (note that conditional onXn
1 ,

√
nEn[Z

∗
i ] has mean

zero and the same covariance matrix as (
√
nEn[ϵi(Xij − µ̂j)]/σ̂j)1≤j≤p).

Moreover, observe that

|W ∗ −W ∗
0 | ≤ max

1≤j≤p
|(σ̂j/σ̂∗

j )− 1| × |W ∗
0 | =: I + II.

On the event A′
n, by Lemma A.5 (applied with Zij = Z∗

ij) together with a
simple argument, we have

P(I > Cn−1/2+c1/8D2
n log p | Xn

1 ) ≤ Cn−c1/8.

On the same event, by Lemma A.3, we have

E[II | Xn
1 ] ≤ C(

√
log p+Dn log p/

√
n) ≤ C

√
log p,

so that by Markov’s inequality, P(II > nc1/8
√
log p | Xn

1 ) ≤ Cn−c1/8. Hence
we conclude that, on the event A′

n,

P(|W ∗ −W ∗
0 | > ζn | Xn

1 ) ≤ Cn−c, (44)

where ζn = Cn−1/2+c1/4Dn log
3/2 p. Here note that

ζn
√

log p ≤ Cn−c. (45)

Combining (43), (44), (45) and Lemma A.4 (ii), we can deduce that, on
the event A′

n,

sup
t∈R

|P(W ∗ ≤ t | Xn
1 )− P(W ≤ t | Xn

1 )| < Cn−c.

[Note here that conditional on Xn
1 , each

√
nEn[ϵi(Xij− µ̂j)]/σ̂j is a standard

normal random variable.] This leads to

cMB(α+ νn) ≤ cEB(α) ≤ cMB(α− νn),

with νn = Cn−c. Therefore, all the conclusions of the theorem follow from
Theorem 3.3. This completes the proof. □

References

Andrews, D. and Jia-Barwick, P. (2012). Inference for parameters defined
by moment inequalities: a recommended moment selection procedure.
Econometrica 80 2805-2826.

Andrews, D. and Guggenberger, P. (2009). Validity of subsampling and plug-
in asymptotic inference for parameters defined by moment inequalities.
Econometric Theory 25 669-709.

Andrews, D. and Shi, X. (2013). Inference based on conditional moment
inequalities. Econometrica 81 609-666.



32 CHERNOZHUKOV, CHETVERIKOV, AND KATO

Andrews, D. and Soares, G. (2010). Inference for parameters defined by
moment inequalities using generalized moment selection. Econometrica
78 119-157.

Armstrong, T. (2011). Asymptotically exact inference in conditional moment
inequality models. arXiv:1112.1024.

Armstrong, T. and Chan, H. (2012). Multiscale adaptive inference on con-
ditional moment inequalities. arXiv:1212.5729.

Bai, Z. and Saranadasa, H. (1996). Effect of high dimension: by an example
of a two sample problem. Statist. Sinica 6 311-329.

Bajari, P., Benkard, C., and Levin, J. (2007). Estimating dynamic models
of imperfect competition. Econometrica 75 1331-1370.

Bentkus, V. (2003). On the dependence of the Berry-Esseen bound on di-
mension. J. Statist. Plann. Infer. 113 385-402.

Beresteanu, A., Molchanov, I., and Molinari, F. (2011). Sharp identification
regions in models with convex moment predictions. Econometrica 79 1785-
1821.

Bugni, F. (2011). A comparison of inferential methods in partially identified
models in terms of error in the coverage probability. Preprint.

Canay, I. (2010). EL inference for partially identified models: large devia-
tions optimality and bootstrap validity. J. Econometrics 156 408-425.

Chazal, F., Fasy, B., Lecci, F., Rinaldo, A., and Wasserman, L.
(2013). Stochastic convergence of persistence landscapes and silhouettes.
arXiv:1312.0308.

Chernozhukov, V., Chetverikov, D., and Kato, K. (2013a). Gaussian approx-
imations and multiplier bootstrap for maxima of sums of high-dimensional
random vectors. Ann. Statist. 41 2786-2819.

Chernozhukov, V., Chetverikov, D., and Kato, K. (2013b). Comparison
and anti-concentration bounds for maxima of Gaussian random vectors.
arXiv:1301.4807.

Chernozhukov, V., Chetverikov, D., and Kato, K. (2013c). Anti-
concentration and honest, adaptive confidence bands. arXiv:1303.7152.

Chernozhukov, V., Hong, H., and Tamer, E. (2007). Estimation and confi-
dence regions for parameter sets in econometric models. Econometrica 75
1243-1248.

Chernozhukov, V., Lee, S., and Rosen, A. (2013). Intersection bounds: esti-
mation and inference. Econometrica 81 667-737.

Chesher, A., Rosen, A., and Smolinski, K. (2013). An instrumental variable
model of multiple discrete choice. Quantitative Economics 4 157-196.

Chetverikov, D. (2011). Adaptive test of conditional moment inequalities.
arXiv:1201.0167.

Chetverikov, D. (2012). Testing regression monotonicity in econometric
models. arXiv:1212.6757.

Ciliberto, F. and Tamer, E. (2009). Market structure and multiple equilibria
in airline markets. Econometrica 77 1791-1828.



MANY MOMENT INEQUALITIES 33

Dudley, R.M. (1999). Uniform Central Limit Theorems. Cambridge Univer-
sity Press.
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