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PROGRAM EVALUATION WITH HIGH-DIMENSIONAL DATA
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Abstract. We consider estimation of policy relevant treatment effects in a data-rich environ-

ment where there may be many more control variables available than there are observations.

In addition to allowing many control variables, the setting we consider allows heterogeneous

treatment effects, endogenous receipt of treatment, and function-valued outcomes. To make

informative inference possible, we assume that reduced form predictive relationships are approx-

imately sparse. That is, we require that the relationship between the covariates and the outcome,

treatment status, and instrument status can be captured up to a small approximation error us-

ing a small number of controls whose identities are unknown to the researcher. This condition

allows estimation and inference for a wide variety of treatment parameters to proceed after se-

lection of an appropriate set of control variables formed by selecting controls separately for each

reduced form relationship and then appropriately combining this set of reduced form predictive

models and associated selected controls. We provide conditions under which post-selection infer-

ence is uniformly valid across a wide-range of models and show that a key condition underlying

uniform validity of post-selection inference allowing for imperfect model selection is the use of

approximately unbiased estimating equations. We illustrate the use of the proposed treatment

effect estimation methods with an application to estimating the effect of 401(k) participation on

accumulated assets.

Keywords: local average and quantile treatment effects, endogeneity, instruments, local effects

of treatment on the treated, propensity score, LASSO

1. Introduction

The goal of many empirical analyses in economics is to understand the causal effect of some

treatment such as participation in a government program on economic outcomes. Such analy-

ses are often complicated by the fact that few economic treatments or government policies are

randomly assigned. The lack of true random assignment has led to the adoption of a variety of

quasi-experimental approaches to estimating treatment effects that are based on observational

data. Such methods include instrumental variables (IV) methods in cases where treatment is not

randomly assigned but there is some other external variable, such as eligibility for receipt of a

government program or service, that is either randomly assigned or the researcher is willing to

take as exogenous conditional on the right set of control variables. Another common approach
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is to assume that the treatment variable itself may be taken as exogenous after conditioning on

the right set of factors which leads to regression or matching based methods, among others, for

estimating treatment effects.1

A practical problem empirical researchers must face when trying to estimate treatment effects

is deciding what conditioning variables to include. When the treatment variable or instrument is

not randomly assigned, a researcher must choose what needs to be conditioned on to make the

argument that the instrument or treatment is exogenous plausible. Typically, economic intuition

will suggest a set of variables that might be important to control for but will not identify exactly

which variables are important or the functional form with which variables should enter the

model. While less crucial to plausibly identifying treatment effects, the problem of selecting

controls also arises in situations where the key treatment or instrumental variables are randomly

assigned. In these cases, a researcher interested in obtaining precisely estimated policy effects will

also typically consider including additional control variables to help absorb residual variation.

As in the case where including controls is motivated by a desire to make identification of the

treatment effect more plausible, one rarely knows exactly which variables will be most useful for

accounting for residual variation. In either case, the lack of clear guidance about what variables

to use presents the problem of selecting a set of controls from a potentially large set of variables

including raw regressors available in the data as well as interactions and other transformations

of these regressors.

In this paper, we consider estimation of the effect of an endogenous binary treatment, D, on

an outcome, Y , in the presence of a binary instrumental variable, Z, in settings with very many

controls, X. We allow for fully heterogeneous treatment effects and thus focus on estimation of

causal quantities that are appropriate in heterogeneous effects settings such as the local average

treatment effect (LATE) or the local quantile treatment effect (LQTE). We focus our discussion

on the case where identification is obtained through the use of an instrumental variable but

note that all results carry through to the case where the treatment is taken as exogenous after

conditioning on sufficient controls simply by replacing the instrument with the treatment variable

in the estimator and the formal results.

The methodology for estimating policy-relevant effects we consider allows for cases where

the number of regressors, p, is much greater than the sample size, n. Of course, informative

inference about causal parameters cannot proceed allowing for p≫ n without further restrictions.

We impose sufficient structure through the assumption that reduced form relationships such as

E[D|X], E[Z|X], and E[Y |X] are approximately sparse. Intuitively, approximate sparsity imposes

that these reduced form relationships can be represented up to a small approximation error as a

linear combination, possibly inside of a known link function such as the logistic function, of a small

number s≪ n of the variables in X whose identities are a priori unknown to the researcher. This

assumption allows us to use methods for estimating models in high-dimensional sparse settings

1There is a large literature about estimation of treatment effects. See, for example, the textbook treatments

in Angrist and Pischke (2008) or Wooldridge (2010) and the references therein for discussion from an economics

perspective.
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that are known to have good prediction properties to estimate the fundamental reduced form

relationships. We may then use these estimated reduced form quantities as inputs to estimating

the causal parameters of interest. Approaching the problem of estimating treatment effects within

this framework allows us to accommodate the realistic scenario in which a researcher is unsure

about exactly which confounding variables or transformations of these confounds are important

and so must search among a broad set of controls.

Valid inference following model selection is non-trivial as direct application of usual inference

procedures following model selection does not provide valid inference about causal parameters

even in low-dimensional settings, such as when there is only a single control, unless one assumes

sufficient structure on the model that perfect model selection is possible. Such structure is very

restrictive and seems unlikely to be satisfied in many economic applications. For example, a

typical condition that allows perfect model selection in a linear model is to assume that all

but a small number of coefficients are exactly zero and that the non-zero coefficients are all

large enough that they can be distinguished from zero with probability very near one in finite

samples. Such a condition rules out the possibility that there may be some variables which have

moderate, but non-zero, partial effects. Ignoring such variables may lead to only a small loss

in predictive performance while also producing a non-ignorable omitted variables bias that has

a substantive impact on estimation and inference regarding individual model parameters. For

further discussion, see Leeb and Pötscher (2008a; 2008b) and Pötscher (2009).

A key contribution of our paper is providing inferential procedures for key parameters used in

program evaluation that are theoretically valid within approximately sparse models allowing for

imperfect model selection. Our procedures build upon the insights in Belloni, Chernozhukov, and

Hansen (2010) and Belloni, Chen, Chernozhukov, and Hansen (2012) who demonstrate that valid

inference about low-dimensional structural parameters can proceed following model selection,

allowing for model selection mistakes, under two key conditions. First, estimation should be

based upon “orthogonal” moment conditions that are first-order insensitive to changes in the

values of the nuisance parameters. Specifically, if the target parameter value α0 is idenitifed via

the moment condition

EPψ(W,α0, h0) = 0, (1)

where h0 is to be estimated via a post-model-selection or regularization method, one needs to use a

moment function, ψ, such that the moment condition is orthogonal with respect to perturbations

of h around h0. More formally, the moment conditions should satisfy

∂h[EPψ(W,α0, h)]h=h0 = 0 (2)

where ∂h computes the functional derivative operator with respect to h. Second, one needs to

use a model selection procedure that keeps model selection errors “moderately” small.

The orthogonality condition embodied in (2) has a long history in statistics and econometrics.

For example, this type of orthogonality was used by Neyman (1979) in low-dimensional settings

to deal with crudely estimated parametric nuisance parameters. To the best of our knowledge,

Belloni, Chernozhukov, and Hansen (2010) and Belloni, Chen, Chernozhukov, and Hansen (2012)
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were the first to use this property in the p≫ n setting where they used it to allow Lasso or post-

Lasso estimation of the nuisance function h0, the optimal instrument, in a linear instrumental

variables model with many instruments. Using estimators based upon moment conditions with

this low-bias property insures that crude estimation of h0 via post-selection or other regularization

methods has an asymptotically negligible effect on the estimation of α0. Another paper in the

p ≫ n setting where this approach is exploited is Belloni, Chernozhukov, and Hansen (2011)

which proposes a double-selection method to construct an “orthogonal” moment equation whose

use allows one to obtain valid inference on the parameters of the linear part of the partially linear

model and on average treatment effects when treatment is exogenous conditional on observables.2

In the general endogenous treatment effects setting we consider in this paper, such moment

conditions can be found as efficient influence functions for certain reduced form parameters as

in Hahn (1998). Moreover, our analysis allows for function-valued outcomes. As a result, the

parameters of interest α0 are themselves function-valued; i.e. they can carry an index. We

illustrate how these efficient influence functions coupled with methods developed for forecasting

in high-dimensional sparse models can be used to estimate and obtain valid inferential statements

about a variety of structural/treatment effects. We formally demonstrate uniform in P validity

of the resulting inference within a broad class of approximately sparse models including models

where perfect model selection is theoretically impossible.

In establishing our main theoretical results, we consider variable selection for functional re-

sponse data using ℓ1-penalized methods. As examples, note that functional response data arises

when one is interested in LQTE at not just a single quantile but across a range of quantile indices

or when one is interested in how 1(Y ≤ u) relates to treatment across a range of threshold values

u. Considering such functional response data allows us to provide a unified inference procedure

that allows for inference to be drawn about interesting quantities such as distributional effects of

treatment as well as simpler objects such as the LQTE at a single quantile. Demonstrating that

the developed methods provide uniformly valid inference for functional response data in a high-

dimensional setting allowing for model selection mistakes is a main theoretical contribution of the

present paper. Our result builds upon the work of Belloni and Chernozhukov (2011b) who pro-

vide rates of convergence for variable selection when one is interested in estimating the quantile

regression process with exogenous variables. More generally, this theoretical work complements

and extends the rapidly growing set of results for ℓ1-penalized estimation methods; see, for ex-

ample, Frank and Friedman (1993); Tibshirani (1996); Fan and Li (2001); Zou (2006); Candès

and Tao (2007); Meinshausen and Yu (2009); Huang, Horowitz, and Ma (2008); Bickel, Ritov,

and Tsybakov (2009); Huang, Horowitz, and Wei (2010); Belloni and Chernozhukov (2013);

Bickel, Ritov, and Tsybakov (2009); Belloni, Chen, Chernozhukov, and Hansen (2012); van de

Geer (2008); Bach (2010); Belloni, Chernozhukov, and Wei (2013); Belloni and Chernozhukov

(2011a); Belloni, Chernozhukov, and Kato (2013); Kato (2011); and the references therein. We

2Farrell (2013) also builds upon Belloni, Chernozhukov, and Hansen (2011) focusing on the problem of estimating

average treatment effects when treatment is exogenous conditional on observables.
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also demonstrate that a simple weighted bootstrap procedure can be used to produce asymptot-

ically valid inference statements which should aid in practical implementation of our proposed

inference methods.

We illustrate the use of our methods by estimating the effect of 401(k) participation on mea-

sures of accumulated assets as in Chernozhukov and Hansen (2004).3 Similar to Chernozhukov

and Hansen (2004), we provide estimates of LATE and LQTE across a range of quantiles. We

differ from this previous work by using the high-dimensional methods developed in this paper

to allow ourselves to consider a much broader set of control variables than have previously been

considered. We find that 401(k) participation has a small impact on accumulated financial assets

at low quantiles while appearing to have a much larger impact at high quantiles. Interpreting the

quantile index as “preference for savings” as in Chernozhukov and Hansen (2004), this pattern

suggests that 401(k) participation has little causal impact on the accumulated financial assets

of those with low desire to save but a much larger impact on those with stronger preferences

for saving.4 It is interesting that these results are quite similar to those in Chernozhukov and

Hansen (2004) despite allowing for a much richer set of control variables.

1.1. Notation. A random variable W lives on the probability space (S,S, P ). We have i.i.d.

copies (Wi)
n
i=1 of W , the data. The data live on the probability space (A,A,PP ), containing

×∞i=1(S,S, P ) as a subproduct. The probability space (Ω,A,PP ) will also carry i.i.d. copies of

bootstrap multipliers (ξi)
n
i=1 which are independent of the data (Wi)

n
i=1. Note also that we use

capital letters such as W to denote random elements and use the lower case letters such as w as

fixed values that these random elements can take. We also use the standard empirical processes

Gn(f) = Gn(f(W )) = n−1/2
n∑

i=1

{f(Wi)− EP [f(Wi)]}

indexed by a measurable class of functions F : S 7→ R; see van der Vaart and Wellner (1996),

Chapter 2.3. We denote by Pn the (random) empirical probability measure that assigns prob-

ability n−1 to each Wi. In what follows, we use ‖W‖P,q to denote the Lq(P) norm of a

random variable W with law determined by P, and we use ‖W‖Pn,q to denote the empiri-

cal Lq(Pn) norm of a random variable with law determined by the empirical measure Pn, i.e.,

‖W‖Pn,q = (n−1
∑n

i=1 ‖Wi‖q)1/q.

2. The Setting and The Target Parameters

2.1. Observables and Reduced Form Parameters. The observable random variables con-

sist of Yu, X, Z, and D, where Yu is indexed by u ∈ U . The observables are a random variable

W = ((Yu)u∈U ,X,Z,D). The variable D ∈ D = {0, 1} will indicate the receipt of a treatment

3See also Poterba, Venti, and Wise (1994; 1995; 1996; 2001); Benjamin (2003); and Abadie (2003) among others.
4Results in Chernozhukov and Hansen (2004) also suggest that there is little impact on total accumulated

wealth at any quantile index suggesting that the results in the upper tail are largely due to substitutions from

non-financial wealth to the tax advantaged 401(k) saving in financial assets.
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or participation in a program. It will be typically endogenous; that is, we will typically view

the treatment as assigned non-randomly. The instrumental variable Z ∈ Z = {0, 1} is a bi-

nary instrumental variable, such as an offer of participation, that is assumed to be exogenous

conditional on observable covariates X. That is, we assume that we may treat the instrument

as randomly assigned conditional on X. We denote the support of X by X . The notions of

exogeneity and endogeneity we employ are standard, but we state them below for clarity and

completeness. We also restate standard conditions that are sufficient for a causal interpretation

of our target parameters.

The random variable Yu will be an outcome of interest. Allowing Yu to be indexed is important

for allowing treatment of functional data. For example, Yu could represent an outcome falling

short of a threshold, namely Yu = 1(Y 6 u), in the context of distributional analysis. In growth

charts analysis, Yu could be a height indexed by age u; and Yu could be a health outcome indexed

by a dosage u in dosage response studies. Our framework is tailored for such functional response

data. The special case with no index is included by simply considering U as a singleton set.

We make use of two key types of reduced form parameters for estimating the structural param-

eters of interest – (local) treatment effects and related quantities. These reduced form parameters

are defined as

αV (z) := EP [gV (z,X)] for z ∈ {0, 1} and γV := EP [V ], (3)

where z = 0 or z = 1 are the fixed values of the random variable Z and the function gV , mapping

the support ZX of vector (Z,X) to the real line R, is defined as

gV (z, x) := EP [V |Z = z,X = x]. (4)

We use V to denote a target variable whose identity may change depending on the context such

as V = 1d(D)Yu or V = 1d(D) where 1d(D) := 1(D = d) is the indicator function.

The structural parameters we consider are smooth functionals of these reduced-form parame-

ters. In our approach to estimating treatment effects, we estimate the key reduced form parameter

αV (z) using recent approaches to dealing with high-dimensional data coupled with using “low-

bias” estimating equations. The low-bias property is crucial for dealing with the “non-regular”

nature of penalized and post-selection estimators which do not admit linearizations except under

very restrictive conditions. The use of regularization by model selection or penalization is in turn

motivated by the desire to accommodate high-dimensional data.

2.2. Target Structural Parameters – Local Treatment Effects. The reduced form param-

eters defined in (3) are key because the structural parameters of interest are functionals of these

elementary objects. The local average structural function (LASF) defined as

θYu(d) =
α1d(D)Yu

(1) − α1d(D)Yu
(0)

α1d(D)(1) − α1d(D)(0)
, d ∈ {0, 1} (5)

underlies the formation of many commonly used treatment effects. The LASF identifies the

average outcome for the group of compliers, individuals whose treatment state may be influenced

by variation in the instrument, in the treated and non-treated states under standard assumptions;
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see, e.g. Imbens and Angrist (1994). The local average treatment effect (LATE) is defined as

the difference of the two values of the LASF:

θYu(1)− θYu(0). (6)

The term local designates that this parameter does not measure the effect on the entire population

but is local in the sense that it measures the effect for the subpopulation of compliers.

When there is no endogeneity, formally when D ≡ Z, the LASF and LATE become the

average structural function (ASF) and average treatment effects (ATE). Thus, our results cover

this situation as a special case. In this special case, the ASF and ATE are given by

θYu(z) = αYu(z), θYu(1)− θYu(0) = αYu(1)− αYu(0). (7)

We also note that the impact of the instrument Z itself may be of interest since Z often encodes

an offer of participation in a program. In this case, the parameters of interest are again simply

the reduced form parameters αYu(z) and αYu(1)−αYu(0). Thus, the LASF and LATE are primary

targets of interest in this paper with analysis of the ASF and ATE subsumed as special cases.

2.2.1. Local Distribution and Quantile Treatment Effects. Setting Yu = Y in (5) and (6) provides

the conventional LASF and LATE. An important generalization arises by letting Yu = 1(Y 6 u)

be the binary encoding of the outcome of interest falling below a threshold u. In this case, the

family of effects

(θYu(1)− θYu(0))u∈R, (8)

describe the local distributional treatment effects (LDTE). Similarly, we can look at the quantile

transforms of the curves u 7→ θYu(z),

θ←Y (τ, z) := inf{u ∈ R : θYu(z) > τ}, (9)

and examine the family of local quantile treatment effects (LQTE):

(θ←Y (τ, 1)− θ←Y (τ, 0))τ∈(0,1). (10)

2.3. Target Structural Parameters – Local Treatment Effects on the Treated. In ad-

dition to the local treatment effects given in Section 2.2, we may be interested in local treatment

effects on the treated. The key object in defining local treatment effects on the treated is the

local average structural function for the treated (LASF-T) which is defined by its two values:

ϑYu(d) =
γ1d(D)Yu

− α1d(D)Yu
(0)

γ1d(D) − α1d(D)(0)
, d ∈ {0, 1}. (11)

These quantities identify the average outcome for the group of treated compliers in the treated

and non-treated states under assumptions stated below. The local average treatment effect on the

treated (LATE-T) introduced in Hong and Nekipelov (2010) is defined simply as the difference

of two values of LASF-T:

ϑYu(1)− ϑYu(0). (12)

The LATE-T may be of interest because it measures the average treatment effect for treated

compliers, namely the subgroup of compliers that actually receive the treatment.
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When the treatment is assigned randomly given controls so we can take D = Z, the LASF-

T and LATE-T become the average structural function for the treated (ASF-T) and average

treatment effects on the treated (ATE-T). In this special case, the ASF-T and ATE-T are given

by

ϑYu(1) =
γ11(D)Yu

γ11(D)
, ϑYu(0) =

γ10(D)Yu
− αYu(0)

γ10(D) − 1
, ϑYu(1) − ϑYu(0); (13)

and we can use our results to provide estimation and inference results for these quantities.

2.3.1. Local Distribution and Quantile Treatment Effects on the Treated. Local distributional

treatment effects on the treated (LDTE-T) and local quantile treatment effects on the treated

(LQTE-T) can also be defined. As in Section 2.2.1, we let Yu = 1(Y 6 u) be the binary encoding

of an outcome of interest, Y , falling below a threshold u. The family of treatment effects

(ϑYu(1) − ϑYu(0))u∈R (14)

then describes the LDTE-T. We can also use the quantile transforms of the curves u 7→ ϑYu(z),

ϑ←Y (τ, z) := inf{u ∈ R : ϑYu(z) > τ}, (15)

and define LQTE-T:

(ϑ←Y (τ, 1)− ϑ←Y (τ, 0))τ∈(0,1). (16)

Under conditional exogeneity LQTE and LQTE-T reduce the quantile treatment effects (QTE)

(Koenker (2005)) and quantile treatment effects for the treated (QTE-T).

2.4. Causal Interpretations for Structural Parameters. The quantities discussed in Sec-

tions 2.2 and 2.3 have causal interpretations under standard conditions. To discuss these con-

ditions, we use potential outcomes notation: Yu1 and Yu0 denote the potential outcomes under

treatment states 1 and 0. These outcomes are not observed jointly, and we instead observe

Yu = DYu1 + (1 −D)Yu0, where D ∈ D = {0, 1} is the random variable indicating participation

or treatment state. Under exogeneity, D is assigned independently of the potential outcomes

conditional on covariates X, i.e. (Yu1, Yu0) ⊥ D | X a.s., where ⊥ denotes statistical indepen-

dence.

When exogeneity fails, D may depend on the potential outcomes. For example, people may

drop out of a program if they think the program will not benefit them. In this case, instrumental

variables are useful in creating quasi-experimental fluctuations in D that may identify useful

effects. To provide identification in this setting, we assume the existence of an instrument Z,

such as an offer of participation, that is assigned randomly conditional on observable covariates

X. We further assume the instrument is binary. Let the random variables D1 and D0 indicate

the participation decisions under the potential instrument states 1 and 0, respectively. These

variables may in general depend on the potential outcomes. As with the potential outcomes,

the participation decisions under both instrument states are not observed jointly. The realized

participation decision is then given by D = ZD1 + (1− Z)D0.
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There are many causal quantities of interest for program evaluation. Chief among these are

various structural averages

• average structural function (ASF): EP [Yud],

• average structural function for the treated (ASF-T): EP [Yud | D = 1],

• local average structural function (LASF): EP [Yud | D1 > D0],

• local average structural function for the treated (LASF-T): EP [Yud | D1 > D0,D = 1],

as well as effects derived from them such as

• average treatment effects (ATE): EP [Yu1]− EP [Yu0],

• average treatment effect for the treated (ATE-T): EP [Yu1 | D = 1]− EP [Yu0 | D = 1],

• local average treatment effect (LATE): EP [Yu1 | D1 > D0]− EP [Yu0 | D1 > D0],

• local average treatment effect for the treated (LATE-T): EP [Yu1 | D1 > D0,D =

1]− EP [Yu0 | D1 > D0,D = 1].

These causal quantities are the same as the stuctural parameters defined in Sections 2.2-2.3 under

the following well-known sufficient condition.

Assumption 1 (Causal Interpretability). The following conditions hold P -almost surely: (Ex-

ogeneity) ((Yu1, Yu0)u∈U ,D1,D0) ⊥ Z | X; (First Stage) EP [D1 | X] 6= EP [D0 | X]; (Non-

Degeneracy) P (Z = 1 | X) ∈ (0, 1); (Monotonicity) P (D1 > D0 | X) = 1. �

This condition is much-used in the program evaluation literature. It also has an equivalent

formulation in terms of a simultaneous equation model with a binary endogenous variable; see

Vytlacil (2002) and Heckman and Vytlacil (1999). For a thorough discussion of this assumption,

we refer to Imbens and Angrist (1994). Using this assumption, we present the following lemma

which follows from results of Abadie (2003) and Hong and Nekipelov (2010) that both build

upon the results of Imbens and Angrist (1994). The lemma shows that the parameters θYu and

ϑYu defined earlier have a causal interpretation under Assumption 1. Therefore, our referring to

them as structural/causal is justified under this condition.

Lemma 2.1 (Identification of Causal Effects). Under Assumption 1, for each d ∈ D,

EP [Yud | D1 > D0] = θYu(d), EP [Yud | D1 > D0,D = 1] = ϑYu(d).

Furthermore, if D is exogenous, namely D ≡ Z a.s., then

EP [Yud | D1 > D0] = EP [Yud], EP [Yud | D1 > D0,D = 1] = EP [Yud | D = 1].

3. Estimation of Reduced-Form and Structural Parameters in a Data-Rich

Environment

Recall that the key objects used in defining the structural parameters in Section 2 are the

expectations

αV (z) = EP [gV (z,X)] and γV := E[V ], (17)
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where gV (z,X) = EP [V |Z = z,X] and V denotes a variable whose identity will change with the

context. Specifically, we shall vary V over the set Vu:

V ∈ Vu := (Vuj)
5
j=1 := {Yu,1d(D)Yu,1d(D) : d ∈ D}. (18)

Given the definition of αV (z) = EP [gV (z,X)], it is clear that gV (z,X) will play an important

role in estimating αV (z). A related function that will play an important role in forming a robust

estimation strategy is the propensity score mZ : ZX → R defined by

mZ(z, x) := PP [Z = z|X = x]. (19)

We will denote other potential values for the functions gV and mZ by parameters g and m,

respectively. A first approach to estimating αV (z) is to try to recover gV and mZ directly using

high-dimensional modelling and estimation methods.

As a second approach, we can further decompose gV as

gV (z, x) =

1∑

d=0

eV (d, z, x)lD(d, z, x), (20)

where the regression functions eV and lD, mapping the support DZX of (D,Z,X) to the real

line, are defined by

eV (d, z, x) := EP [V |D = d, Z = z,X = x] and (21)

lD(d, z, x) := PP [D = d|Z = z,X = x]. (22)

We shall denote other potential values for the functions eV and lD by parameters e and l. In this

second approach, we can again use high-dimensional methods for modelling and estimating eV

and lD, and we can then use relation (20) to obtain gV . Given the resulting gV and an estimate

of mZ obtained from using high-dimensional methods to model the propensity score, we can then

recover αV (z).

This second approach may be seen as a “special” case of the first. However, this approach

could in fact be more principled than the first. For example, if we use linear or generalized linear5

models to approximate each of the elements eV , lD and mZ , then the implied approximations

can strictly nest some coherent models such as the standard dummy endogenous variable model

with normal disturbances. This strict nesting of coherent models is more awkward in the first

approach which directly approximates gV using linear or generalized linear forms. Indeed, the

“natural” functional form for gV is not of the linear or generalized linear form but rather is given

by the affine aggregation of cross-products shown in (20). While these potential differences exist,

we expect to see little quantitative difference between the estimates obtained via either approach

if sufficiently flexible functional forms are used. For example, we see little difference between the

two approaches in our empirical example.

5”Generalized linear” means “linear inside a known link function” in the context of the present paper.
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3.1. First Step: Modeling and Estimating Regression Function gV , mZ, lD, and eV in

a Data-Rich Environment. In this section, we elaborate the two strategies that we introduced

above.

Strategy 1. We first discuss direct estimation of gV and mZ , which corresponds to the first

strategy suggested in the previous subsection. Since the functions are unknown and potentially

complicated, we use generalized linear combinations of a large number of control terms

f(X) = (fj(X))pj=1, (23)

to approximate gV and mZ . Specifically, we use

gV (z, x) =: ΛV [f(x, z)
′βV ] + rV (z, x), (24)

f(z, x) := ((1 − z)f(x)′, zf(x)′)′, βV := (βV (0)
′, βV (1)

′)′, (25)

and

mZ(1, x) =: ΛZ [f(x)
′βZ ] + rZ(x), mZ(0, x) = 1− ΛZ [f(x)

′βZ ]− rZ(x). (26)

In these equations, rV (z, x) and rZ(x) are approximation errors, and the functions ΛV (f(x)
′βV (z))

and ΛZ(f(x)
′βZ) are generalized linear approximations to the target functions gV (z, x) and

mZ(1, x). The functions ΛV and ΛZ are taken to be known link functions Λ. The most common

example is the linear link Λ(u) = u. When the response variables V , Z, and D are binary, we

may also use the logistic link Λ(u) = Λ0(u) = eu/(1 + eu) and its complement 1 − Λ0(u) or the

probit link Λ(u) = Φ(u) = (2π)−1
∫ u
−∞ e

−z2/2dz and its complement 1−Φ(u). For clarity, we use

links from the finite set L = {Id,Φ, 1− Φ,Λ0, 1− Λ0} where Id is the identity (linear) link.

In order to allow for a flexible specification and incorporation of pertinent confounding factors,

we allow for the dictionary of controls, denoted f(X), to be “rich” in the sense that its dimension

p = pn may be large relative to the sample size. Specifically, our results require only that

log p = o(n1/3)

along with other technical conditions. High-dimensional regressors f(X) could arise for different

reasons. For instance, the list of available controls could be large, i.e. f(X) = X as in e.g.

Koenker (1988). It could also be that many technical controls are present; i.e. the list f(X) =

(fj(X))pj=1 could be composed of a large number of transformations of elementary regressors

X such as B-splines, dummies, polynomials, and various interactions as, e.g., in Newey (1997),

Tsybakov (2009), and Wasserman (2006). The functions fj forming the dictionary can depend

on n, but we suppress this dependence.

Having very many controls f(X) creates a challenge for estimation and inference. A useful

condition that makes it possible to perform constructive estimation and inference in such cases is

termed approximate sparsity or simply sparsity. Sparsity imposes that there exist approximations

of the form given in (24)-(26) that require only a small number of non-zero coefficients to render

the approximation errors small relative to estimation error. More formally, sparsity relies on two
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conditions. First, there must exist βV and βZ such that

‖βV ‖0 + ‖βZ‖0 6 s. (27)

That is, there are at most s = sn ≪ n elements in the union of the support of βZ with the

union of the supports of βV . Second, the sparsity condition requires that the size of the resulting

approximation errors is small compared to the conjectured size of the estimation error; namely,

for all V ∈ V,
{EP [r

2
V (Z,X)]}1/2 + {EP [r

2
Z(X)]}1/2 .

√
s/n. (28)

Note that the size of the approximating model s = sn can grow with n just as in standard series

estimation, subject to the rate condition

s2 log3(p ∨ n)/n→ 0.

This condition ensures that functions gV andmZ are estimable at the o(n−1/4) rates and are used

to derive asymptotic normality results for the structural and reduced-form parameter estimates.

This condition can be substantially relaxed if sample splitting methods are used.

The high-dimensional-sparse-model framework outlined above extends the standard framework

in the program evaluation literature which assumes both that the identities of the relevant controls

are known and that the number of such controls s is much smaller than the sample size. Instead,

we assume that there are many, p, potential controls of which at most s controls suffice to achieve

a desirable approximation to the unknown functions gV and mZ ; and we allow the identity of

these controls to be unknown. Relying on this assumed sparsity, we use selection methods to

choose approximately the right set of controls.

Current estimation methods that exploit approximate sparsity employ different types of reg-

ularization aimed at producing estimators that theoretically perform well in high-dimensional

settings while remaining computationally tractable. Many widely used method are based on

ℓ1-penalization. The Lasso method is one such commonly used approach that adds a penalty for

the weighted sum of the absolute values of model parameters to the usual objective function of

an M-estimator. A related approach is the Post-Lasso method which performs re-estimation of

the model after selection of variables by Lasso. These methods are discussed at length in recent

papers and review articles; see, for example, Belloni, Chernozhukov, and Hansen (2013). Rather

than provide specifics of these methods here, we specify detailed implementation algorithms in

the Appendix.

In the following, we outline the general features of the Lasso method focusing on estimation

of gV . Given data (Ỹi, X̃i)
n
i=1 = (Vi, f(Zi,Xi))

n
i=1, the Lasso estimator β̂V solves

β̂V ∈ arg min
β∈Rp

(
En[M(Ỹ , X̃ ′β)] +

λ

n
‖Ψ̂β‖1

)
, (29)

where Ψ̂ = diag(l̂1, . . . , l̂p) is a diagonal matrix of data-dependent penalty loadings, M(y, t) =

.5(y − t)2 in the case of linear regression, and M(y, t) = 1(y = 1) log Λ(t) + 1(y = 0) log(1 −
Λ(t)) in the case of binary regression. In the binary case, the link function Λ could be logistic

or probit. The penalty level, λ, and loadings, l̂j j = 1, ..., p, are selected to guarantee good
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theoretical properties of the method. We provide theoretical choices and further detail regarding

implementation in Section 5. A key consideration in this paper is that the penalty level needs to

be set to account for the fact that we will be simultaneously estimating potentially a continuum

of Lasso regressions since our V varies over the list Vu with u varying over the index set U .
The post-Lasso method uses β̂V solely as a model selection device. Specifically, it makes use

of the labels of the regressors with non-zero estimated coefficients,

ÎV = support(β̂V ).

The Post-Lasso estimator is then a solution to

β̃V ∈ arg min
β∈Rp

(
En[M(Ỹ , X̃ ′β)] : βj = 0, j 6∈ ÎV

)
. (30)

A main contribution of this paper is establishing that estimators ĝV (Z,X) = Λ(f(Z,X)′β̄V ) of

the regression function gV (Z,X), where β̄V = β̂V or β̄V = β̃V , achieve the near oracle rate of

convergence
√
(s log p)/n and maintain desirable theoretic properties allowing for a continuum

of response variables.

Estimation of mZ proceeds similarly. The Lasso estimator β̂Z and Post-Lasso estimators

β̃Z are defined analogously to β̂V and β̃V using the data (Ỹi, X̃i)
n
i=1= (Zi, f(Xi))

n
i=1. As with

the estimator ĝV (Z,X), the estimator m̂Z(1,X) = ΛZ(f(X)′β̄Z) of mZ(X), with β̄Z = β̂Z or

β̄Z = β̃Z , achieves the near oracle rate or convergence
√

(s log p)/n and has other good theoretic

properties. The estimator of m̂Z(0,X) is then given by 1− m̂Z(1,X).

Strategy 2. The second strategy we consider involves modeling and estimating mZ as above

via (26) while modeling gV via its disaggregation into parts eV and lD via (20). We model each

of the unknown parts6 of eV and lD using the same approach as in Strategy 1. Specifically, we

model the conditional expectation of V given D, Z, and X by

eV (d, z, x) =: ΓV [f(d, z, x)
′θV ] + ̺V (d, z, x), (31)

f(d, z, x) := ((1 − d)f(z, x)′, df(z, x)′)′, θV := (θV (0)
′, θV (1)

′)′. (32)

We model the conditional probability of D taking on 1 or 0, given Z and X by

lD(1, z, x) =: ΓD[f(z, x)
′θD] + ̺D(z, x), (33)

lD(0, z, x) = 1− ΓD[f(z, x)
′θD]− ̺D(z, x), (34)

f(z, x) := ((1 − z)f(x)′, zf(x)′)′, (35)

θD := (θV (0, 0)
′, θV (0, 1)

′, θV (1, 0)
′, θV (1, 1)

′)′. (36)

Here ̺V (d, z, x) and ̺D(z, x) are approximation errors, and the functions ΓV (f(X)′θV (d, z, x))

and ΓD(f(X)′θV (z, x)) are generalized linear approximations to the target functions eV (d, z, x)

and lD(1, z, x). The functions ΓV and ΓD are taken to be known link functions Λ ∈ L as in the

previous strategy.

6Upon conditioning onD = d some parts become known; e.g., e1d(D)Y (d′, x, z) = 0 if d 6= d′ and e1d(D)(d
′, x, z) =

1 if d = d′.
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As in the first strategy, we maintain approximate sparsity in the modelling framework. We

assume that there exist βZ , θV and θD such that

‖θV ‖0 + ‖θD‖0 + ‖βZ‖0 6 s. (37)

That is, we assume that there are at most s = sn ≪ n elements in the union of the support of

βZ , the support of θD, and the union of the supports of θV where the union is over variables

V ∈ V = (Vu, u ∈ U). The sparsity condition also requires the size of the approximation errors to

be small compared to the conjectured size of the estimation error: For all V ∈ V = (Vu, u ∈ U),
we assume

{EP [r
2
Z(X)]}1/2 + {EP [̺

2
V (D,Z,X)]}1/2 + {EP [̺

2
D(X)]}1/2 .

√
s/n. (38)

Note that the size of the approximating model s = sn can grow with n just as in standard series

estimation as long as s2 log3(p ∨ n)/n→ 0.

We proceed with estimation of eV and lD analogously to the approach outlined in Strategy

1. The Lasso estimator θ̂V and Post-Lasso estimators θ̃V are defined analogously to β̂V and

β̃V using the data (Ỹi, X̃i)
n
i=1= (Vi, f(Di, Zi,Xi))

n
i=1 and the link function Λ = ΛV . The esti-

mators êV (D,Z,X) = Λ(f(D,Z,X)′θ̄V ), with θ̄V = θ̂V or θ̄V = θ̂V , have near oracle rates or

convergence,
√

(s log p)/n, and other desirable properties. The Lasso estimator θ̂D and Post-

Lasso estimators θ̃D are also defined analogously to β̂V and β̃V using the data (Ỹi, X̃i)
n
i=1=

(Di, f(Zi,Xi))
n
i=1 and the link function Λ = ΛD. Again, the estimators l̂D(Z,X) = Λ(f(Z,X)′θ̄D)

of lD(Z,X), where θ̄D = θ̂D or θ̄D = θ̃D, have good theoretical properties including the near

oracle rate of convergence,
√
(s log p)/n. The resulting estimator for gV (z,X) is then given by

ĝV (z, x) =

1∑

d=0

êV (d, z, x)l̂D(d, z, x). (39)

3.2. Second Step: Robust Estimation of Reduced-Form Parameters αV (z). Estimation

of the key quantities αV (z) will make heavy use of “low-bias” moment functions as defined in

(2). These moment functions are closely tied to efficient influence functions, where efficiency is

in the sense of locally minimax semi-parametric efficiency. The use of these functions will deliver

robustness with respect to the irregularity of the post-selection and penalized estimators needed

to manage high-dimensional data. The use of these functions also automatically delivers semi-

parametric efficiency for estimating and performing inference on the reduced-form parameters

and their smooth transformations – the structural parameters.

The efficient influence function and low-bias moment function for αV (z) for z ∈ Z = {0, 1}
are given respectively by

ψα
V,z(W ) := ψα

V,z,gV ,mZ
(W,αV (z)) and (40)

ψα
V,z,g,m(W,α) :=

1(Z = z)(V − g(z,X))

m(z,X)
+ g(z,X) − α. (41)

The efficient influence function was derived by Hahn (1998); they were also used by (Cattaneo,

2010) in the series context (with p ≪ n) and (Rothe and Firpo, 2013) in the kernel contexts.
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The efficient influence function and the moment function for γV are trivially given by

ψγ
V (W ) := ψγ

V (W,γV ), and ψ
γ
V (W,γ) := V − γ. (42)

We then define the estimator of the reduced-form parameters αV (z) and γV (z) as solutions

α = α̂V (z) and γ = γ̂V to the equations

En[ψ
α
V,z,ĝV ,m̂Z

(W,α)] = 0, En[ψ
γ
V (W,γ)] = 0, (43)

where ĝV (z, x) and m̂Z(z, x) are constructed as in the previous section. Note that ĝV (z, x) may

be constructed via either Strategy 1 or Strategy 2. We apply this procedure to each variable

name V ∈ Vu and obtain the estimator7

ρ̂u :=
(
{α̂V (0), α̂V (1), γ̂V }

)
V ∈Vu

of ρu :=
(
{αV (0), αV (1), γV }

)
V ∈Vu

. (44)

The estimator and the estimand are vectors in R
dρ with dimension dρ = 15.

In the next section, we formally establish a principal result which shows that
√
n(ρ̂u − ρu) N(0,VarP (ψ

ρ
u)), ψρ

u := ({ψα
V,0, ψ

α
V,1, ψ

γ
V })V ∈Vu , (45)

uniformly in P ∈ Pn,

where Pn is a rich set of data generating processes P . The notation “ uniformly in P ∈ Pn”
is defined formally in the Appendix and can be read as “approximately distributed as uniformly

in P ∈ Pn.” This usage corresponds to the usual notion of asymptotic distribution extended to

handle uniformity in P . Here Pn is a “rich” set of data generating processes P which includes

cases where perfect model selection is impossible theoretically.

We then denote all the reduced form estimators and the estimands as

ρ̂ = (ρ̂u)u∈U and ρ = (ρu)u∈U ,

giving rise to the empirical reduced-form process ρ̂ and a reduced form functional ρ. We establish

that
√
n(ρ̂− ρ) is asymptotically Gaussian: In ℓ∞(U)dρ , we have

√
n(ρ̂− ρ) ZP := (GPψ

ρ
u)u∈U , uniformly in P ∈ Pn (46)

where GP denotes the P-Brownian bridge (van der Vaart and Wellner, 1996). This result contains

(45) as a special case and again allows Pn to be a “rich” set of data generating processes P that

includes cases where perfect model selection is impossible theoretically. Importantly, this result

verifes the functional central limit theorem applies for the reduced-form estimators in the presence

of possible model selection mistakes.

Since some of our objects of interest are complicated, inference can be facilitated by the

multiplier bootstrap. We define a bootstrap draw of ρ̂∗ = (ρ̂∗u)u∈U via

√
n(ρ̂∗u − ρ̂u) = n−1/2

n∑

i=1

ξiψ̂
ρ
u(Wi). (47)

7By default notation, (aj)j∈J returns a column vector produced by stacking components together in some

consistent order.
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Here (ξi)
n
i=1 are i.i.d. copies of ξ which are independently distributed from the data (Wi)

n
i=1 and

whose distribution does not depend on P . We also impose that

E[ξ] = 0, E[ξ2] = 1, E[exp(|ξ|)] <∞.

Examples of ξ include (a) ξ = E − 1, where E is standard exponential random variable, (b)

ξ = N , where N is standard normal random variable, and (c) ξ = N/
√
2 + (N 2 − 1)/2, where

N is standard normal random variable.8 Method (a), (b), and (c) correspond respectively to a

Bayesian bootstrap (e.g., Chamberlain and Imbens (2003)), a Gaussian multiplier method (e.g,

van der Vaart and Wellner (1996)), and a wild bootstrap method (Mammen, 1993).9 ψ̂ρ
u in (47)

are estimates of the influence function ψρ
u defined via the plug-in rule:

ψ̂ρ
u = (ψ̂ρ

V )V ∈Vu, ψ̂ρ
V (W ) := {ψα

V,0,ĝV ,m̂Z
(W, α̂V (0)), ψ

α
V,1,ĝV ,m̂Z

(W, α̂V (1)), ψ
γ
V (W, γ̂V )}. (48)

Note that this bootstrapping is computationally efficient since it does not involve recomputing

the influence functions ψ̂u. Each new draw of (ξi)
n
i=1 generates a new draw of ρ̂∗ holding the

data and the estimates of the influence functions fixed. Note that this method simply amounts

to resampling the first-order approximations to the estimators.

We establish that that the bootstrap law
√
n(ρ̂∗ − ρ̂u) is uniformly asymptotically valid: In

the metric space ℓ∞(U)dρ , both unconditionally and conditionally on the data,

√
n(ρ̂∗ − ρ̂) B ZP , uniformly in P ∈ Pn,

where  B denotes the convergence of the bootstrap law conditional on the data, as defined in

the Appendix.

3.3. Step 3: Robust Estimates of the Structural Parameters. All structural parameters

we consider take the form of smooth transformations of reduced form parameters:

∆ = (∆q)q∈Q, where ∆q := φ(ρ)(q), q ∈ Q. (49)

The structural parameters may themselves carry an index q ∈ Q; for example, the structural

quantile treatment effects are indexed by the quantile index. This formulation includes as special

cases all the structural functions we previously mentioned. We estimate these quantities by the

plug-in rule. We establish the good asymptotic behavior of these estimators and the validity

of the bootstrap as a corollary from the results outlined in Section 3.2 and the functional delta

method.

For application of the functional delta method, we require that the functionals be Hadamard

differentiable – tangential to a subset that contains realizations of ZP for all P ∈ Pn – with

8We do not consider the nonparametric bootstrap, which corresponds to using multinomial weights, to reduce

the length of the paper; but we note that it is possible to show that it is also valid in the present setting.
9 The motivation for method (c) is that it is able to match 3 moments since E[ξ2] = E[ξ3] = 1. Methods (a)

and (b) do not satisfy this property since E[ξ2] = 1 but E[ξ3] 6= 1 for these approaches.
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derivative map h 7→ φ′ρ(h) = (φ′ρ,q(h))q∈Q. We define the estimators and their bootstrap versions

as

∆̂q := φ (ρ̂) (q), ∆̂∗q := φ (ρ∗u) (q). (50)

We establish that these estimators are asymptotically Gaussian
√
n(∆̂ −∆) φ′ρ(ZP ), uniformly in P ∈ Pn, (51)

and that the bootstrap consistently estimates their large sample distribution uniformly in P ∈ Pn:
√
n(∆̂∗ −∆∗) B φ′ρ(ZP ), uniformly in P ∈ Pn. (52)

These results can be used as an ingredient to standard construction of simultaneous confidence

bands on ∆.

4. Theory of Estimation and Inference on Local Treatment Effects Functionals

Consider fixed sequences of positive numbers δn ց 0, ǫn ց 0, ∆n ց 0, ℓn → ∞, and

1 6 Kn <∞ and positive constants c, C, and c′ < 1/2 which will not vary with P . P is allowed

to vary in the set Pn of probability measures, termed “data-generating processes”, where Pn is

typically a weakly increasing in n set.

Assumption 2. (Basic Assumptions) (i) For each n > 1, our data will consist of i.i.d. copies

(Wi)
n
i=1 of the stochastic process W = ((Yu)u∈U ,X,Z,D) defined on the probability space

(S,S, P ), where P ∈ Pn, and the collection (Yu)u∈U is suitably measurable, namely image-

admissible Suslin. Let

Vu := (Vuj)j∈J := {Yu,1d(D)Yu,1d(D) : d ∈ D}

where J = {1, ..., 5} and V = (Vu)u∈U . (ii) For P := ∪nPn, the map u 7→ Yu obeys the uniform

continuity property:

lim
ǫց0

sup
P∈P

sup
dU (u,ū)6ǫ

‖Yu − Yū‖P,2 = 0, sup
P∈P

EP sup
u∈U
|Yu|2+c 6∞,

for each j ∈ J , where the supremum is taken over u, ū ∈ U , and U is a totally bounded metric

space equipped with the metric dU . The uniform ǫ covering entropy of (Yu, u ∈ U) is bounded

by C log(e/ǫ) ∨ 0. (iii) For each P ∈ P, the conditional probability of Z = 1 given X is bounded

away from zero or one: P (c′ 6 mZ(z,X) 6 1−c′) = 1; the instrument Z has a non-trivial impact

on D, namely P (c′ 6 lD(1, 1,X) − lD(1, 0,X)) = 1; and the regression function gV is bounded

‖gV ‖P,∞ <∞ for all V ∈ V. �

This assumption implies that the set of functions (ψu)u∈U , where ψ
ρ
u := ({ψα

V,0, ψ
α
V,1, ψ

γ
V })V ∈Vu ,

is P -Donsker uniformly in P. That is, it implies

Zn,P  ZP in ℓ∞(U)dρ , uniformly in P ∈ P , (53)

where

Zn,P := (Gnψ
ρ
u)u∈U and ZP := (GPψ

ρ
u)u∈U , (54)
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with GP denoting the P-Brownian bridge (van der Vaart and Wellner, 1996), and ZP having

bounded, uniformly continuous paths uniformly in P ∈ P:

sup
P∈P

EP sup
u∈U
‖ZP (u)‖ <∞, lim

εց0
sup
P∈P

EP sup
dU (u,ũ)6ε

‖ZP (u)− ZP (ũ)‖ = 0. (55)

Other assumptions will be specific to the strategy taken.

Assumption 3 (Approximate Sparsity for Strategy 1). Under each P ∈ Pn and for each n > n0,

uniformly for all V ∈ V the following hold: (i) approximations (24)-(26) hold with the link

functions ΛV and ΛZ belonging to the set L, the sparsity condition holding, ‖βV ‖0 + ‖βZ‖0 6 s,
approximation errors satisfying ‖rV ‖P,2 + ‖rZ‖P,2 6 δnn

−1/4, ‖rV ‖P,∞ + ‖rZ‖P,∞ 6 ǫn, and the

sparsity index and the number of terms p in vector f(X) obeying s2 log3(p ∨ n)/n 6 δn. (ii)

There are estimators β̄V and β̄Z such that, with probability no less than 1 − ∆n, estimation

errors satisfy ‖f(Z,X)′(β̄V − βV )‖Pn,2 + ‖f(X)′(β̄Z − βZ)‖Pn,2 6 δnn
−1/4, Kn‖β̄Z − βZ‖1 +

Kn‖β̄Z −βZ‖1 6 δn; the estimators are sparse such that ‖β̄V ‖0 + ‖β̄Z‖0 6 Cs; and the empirical

and populations norms induced by the Gram matrix formed by (f(Xi))
n
i=1 are equivalent on

sparse subsets, sup‖δ‖06ℓns |‖f(X)′δ‖Pn,2/‖f(X)′δ‖P,2 − 1| 6 δn. (iii) The following boundedness

conditions hold: ‖‖f(X)‖∞||P,∞ 6 Kn and ‖V ‖P,∞ 6 C. �

Comment 4.1. These conditions are simple intermediate-level conditions which encode both the

approximate sparsity of the models as well as some reasonable behavior on the sparse estimators

of mZ and gV . Sufficient conditions for the equivalence between empirical and population norms

are given in Belloni, Chernozhukov, and Hansen (2011). The boundedness conditions are made

to simplify arguments, and they could be removed at the cost of more complicated proofs and

more stringent side conditions. �

Assumption 4 (Approximate Sparsity for Strategy 2). Under each P ∈ Pn and for all n >

n0, uniformly for all V ∈ V the following hold: (i) Approximations (31)-(33) and (26) apply

with the link functions ΓV , ΓD and ΛZ belonging to the set L, the sparsity condition ‖θV ‖0 +
‖θD‖0 + ‖βZ‖0 6 s holding, approximation errors satisfying ‖̺D‖P,2 + ‖̺V ‖P,2 + ‖rZ‖P,2 6
δnn

−1/4 and ‖̺D‖P,∞ + ‖̺V ‖P,∞ + ‖rZ‖P,∞ 6 ǫn, and the sparsity index s and the number of

terms p obeying s2 log3(p ∨ n)/n 6 δn. (ii) There are estimators θ̄V , θ̄D, and β̄Z such that,

with probability no less than 1 − ∆n, estimation errors satisfy ‖f(D,Z,X)′(θ̄V − θV )‖Pn,2 +

‖f(Z,X)′(θ̄D − θD)‖Pn,2 + ‖f(X)′(β̄Z − βZ)‖Pn,2 6 δnn
−1/4 and Kn‖θ̄V − θV ‖1 + Kn‖θ̄D −

θD‖1 +Kn‖β̄Z − βZ‖1 6 ǫn; the estimators are sparse such that ‖θ̄V ‖0 + ‖θ̄D‖0 + ‖β̄Z‖0 6 Cs;

and the empirical and populations norms induced by the Gram matrix formed by (f(Xi))
n
i=1 are

equivalent on sparse subsets, sup‖δ‖06ℓns |‖f(X)′δ‖Pn,2/‖f(X)′δ‖P,2 − 1| 6 δn. (iii) The following
boundedness conditions hold: ‖‖f(X)‖∞||P,∞ 6 Kn and ‖V ‖P,∞ 6 C. �

Under the stated assumptions, the empirical reduced form process Ẑn,P :=
√
n(ρ̂− ρ) defined

by (44) obeys the following laws.
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Theorem 4.1 (Uniform Gaussianity of the Reduced-Form Parameter Process). Under

Assumptions 2 and 3 or 2 and 4 holding, the reduced-form empirical process admits a lineariza-

tion, namely

Ẑn,P :=
√
n(ρ̂− ρ) = Zn,P + oP (1) in ℓ∞(U)dρ , uniformly in P ∈ Pn. (56)

The process is also asymptotically Gaussian, namely

Ẑn,P  ZP in ℓ∞(U)dρ , uniformly in P ∈ Pn, (57)

where ZP is defined in (54) and its paths obey the property (55) .

Another main result of this section shows that the bootstrap law

Ẑ∗n,P =
√
n(ρ̂∗ − ρ̂)

provides a valid approximation to the large sample law of
√
n(ρ̂− ρ).

Theorem 4.2 (Validity of Weighted Bootsrap for Inference on Reduced-Form Param-

eters). Under Assumptions 2 and 3 or 2 and 4, the weighted bootstrap consistently approximates

the large sample laws ZP of Zn,p uniformly in P ∈ Pn, namely,

Ẑ∗n,P  B ZP in ℓ∞(U)dρ , uniformly in P ∈ Pn. (58)

The notation  B is defined in the Appendix and just means the usual notion of convergence

the bootstrap law.

We derive the large sample distributions and validity of the weighted bootstrap for structural

functionals via the functional delta method, which we modify to handle uniformity with respect

to the underlying dgp P . We shall need the following assumption on the structural functionals.

Assumption 5 (Uniformly Continuous Hadamard Differentiability of Structural Functionals).

Suppose that for each P ∈ P, ρ = ρP is an element of a compact subset Dρ ⊂ D = ℓ∞(U)dρ .
Suppose ̺ 7→ φ(̺), a functional of interest, mapping Dρ to ℓ∞(W), is Hadamard differentiable

in ̺ with with derivative φ′ρ, tangentially to D0 = UC(U)dρ , uniformly in ρ ∈ Dρ, and that the

mapping (̺, h) 7→ φ′̺(h) from Dρ ×D0 into ℓ∞(W) is defined and continuous. �

This assumption holds for all examples of structural parameters we listed in Section 2.

The following result gives asymptotic Gaussian laws for
√
n(∆̂−∆), the properly normalized

structural estimates
√
n(∆̂−∆). It also show that the bootstrap law of

√
n(∆̂∗ − ∆̂),

computed conditionally on the data, approaches the asymptotic Gaussian law for
√
n(∆̂−∆).

Theorem 4.3 (Limit theory and Validity of Weighted Bootstrap For Smooth Struc-

tural Functionals). Under Assumptions 2, 3 or 4, and 5,
√
n(∆̂ −∆) TP := φ′ρ(ZP ), in ℓ∞(W)dρ , uniformly in P ∈ Pn, (59)
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where TP is a zero mean tight Gaussian process, for each P ∈ P. Moreover,
√
n(∆̂∗ − ∆̂) B TP := φ′ρ(ZP ), in ℓ∞(W)dρ , uniformly in P ∈ Pn. (60)

5. Generic Lasso and Post-Lasso Methods for Functional Response Data

In this section, we provide estimation and inference results for Lasso and Post-Lasso estimators

with function-valued outcomes and linear or logistic links. These results are of interest beyond

the context of treatment effects estimation, and thus we present this section in a way that leaves

it autonomous with respect to the rest of the paper.

5.1. The generic setting with function-valued outcomes. Consider a data generating pro-

cess with a functional response variable (Yu)u∈U and observable covariates X satisfying for each

u ∈ U
E[Yu | X] = Λ(f(X)′θu) + ru(X), (61)

where f : X → R
p is a set of p measurable transformations of the initial controls X, θu is a

p-dimensional vector, ru is an approximation error, and Λ is a fixed link function. We note

that the notation in this section differs from the rest of the paper with Yu and X denoting

a generic response and generic covariates to facilitate the application of these results in other

contexts. We only consider the cases of linear link function, Λ(t) = t, and the logistic link

function Λ(t) = exp(t)/{1 + exp(t)},10 in detail; but we note that the principles discussed here

apply to any M -estimator. In the remainder of the section, we discuss and establish results for

ℓ1-penalized and post-model selection estimators for θu, u ∈ U , that hold uniformly over u ∈ U .
Throughout the section, we assume that u ∈ U ⊂ [0, 1]du and that i.i.d. observations from a

dgp where (61) holds, {(Yui, u ∈ U ,Xi, f(Xi)) : i = 1, . . . , n}, are available to estimate (θu)u∈U .

For u ∈ U , a penalty level λ, and a diagonal matrix of penalty loadings Ψ̂u, we define the Lasso

estimator as

θ̂u ∈ argmin
θ

En[M(Yu, f(X)′θ)] +
λ

n
‖Ψ̂uθ‖1 (62)

where M(y, t) = 1
2(y − Λ(t))2 for the case of linear regression, and M(y, t) = 1(y = 1) log Λ(t) +

1(y = 0) log(1 − Λ(t)) in the case of the logistic link function for binary response data. The

corresponding Post-Lasso estimator is then defined as

θ̃u ∈ argmin
θ

En[M(Yu, f(X)′θ)] : supp(θ) ⊆ supp(θ̂u). (63)

The chief departure between analysis of Lasso and Post-Lasso when U is a singleton and the

functional response case is that the penalty parameter needs to be set to control selection errors

uniformly over u ∈ U . To uniformly control these errors, we will set the penalty parameter λ so

that with high probability

λ

n
> c sup

u∈U
‖Ψ̂−1u En[∇M(Yu, f(X)′θu)]‖∞. (64)

10Considering the logistic link is useful for binary response data where Yu ∈ {0, 1} for each u ∈ U , though the

linear link can be used in this case as well.
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Similarly to Bickel, Ritov, and Tsybakov (2009); Belloni and Chernozhukov (2013); and Belloni,

Chernozhukov, and Wang (2011) who use an analog of (64) appropriate for when U is a singleton

in deriving properties Lasso and Post-Lasso estimators, guaranteeing that the “regularization

event” (64) holds with high probability plays a key role in establishing desirable properties of

Lasso and Post-Lasso estimators in the functional outcome case.

To implement (64), we propose setting the penalty level as

λ = c
√
nΦ−1(1− γ/{2pndu}), (65)

where d is the dimension of U , 1 − γ with γ = o(1) is a confidence level associated with the

probability of event (64), and c > 1 is a slack constant similar to that of Bickel, Ritov, and

Tsybakov (2009). In practice, we set c = 1.1 and γ = .1/ log(n) though other choices are

theoretically valid.

In addition to the penalty parameter λ, we also need to construct a penalty loading matrix

Ψ̂u = diag({l̂uj,k, j = 1, . . . , p}). This loading matrix can be formed according to the following

iterative algorithm.

Algorithm 1 (Estimation of Penalty Loadings). Choose γ ∈ (1/n, 1/ log n) can c > 1 to form

λ as defined in (65), and choose a constant K > 1 as an upper bound on the number of iter-

ations. (0) Set k = 0, and initialize l̂uj,0 for each j = 1, . . . , p. For the linear link function,

set l̂uj,0 = {En[f
2
j (X)(Yu − Ȳu)

2]}1/2 with Ȳu = En[Yu]. For the logistic link function, set

l̂uj,0 = 1
2{En[f

2
j (X)]}1/2. (1) Compute the Lasso and Post-Lasso estimators, θ̂u and θ̃u, based

on Ψ̂u = diag({l̂uj,k, j = 1, . . . , p}). (2) Set l̂uj,k+1 := {En[f
2
j (X)(Yu − Λ(f(X)′θ̃u))

2]}1/2. (3) If

k > K, stop; otherwise set k ← k + 1 and go to step (1).

5.2. Asymptotic Properties of a Continuum of Lasso and Post-Lasso Estimators for

Functional Responses: Linear Case. In the following, we provide sufficient conditions for

establishing good performance of the estimators discussed in Section 5.1 when the linear link

function is used. In the statement of the following assumption, δn ց 0, ℓn ր ∞, and ∆n ց 0

are fixed sequences; and c, C, κ′, κ′′ and ν ∈ (0, 1] are positive finite constants.

Assumption 6. For each n > 1, our data consist of i.i.d. copies (Wi)
n
i=1 of the stochastic process

W = ((Yu)u∈U ,X) defined on the probability space (S,S, P ) such that model (61) holds with

U ⊂ [0, 1]du . Consider Λ(t) = t and ζu = Yu − E[Yu | X]. Suppose the following conditions hold

uniformly for all P ∈ Pn: (i) the model (61) is approximately sparse with sparsity index obeying

supu∈U ‖θu‖0 6 s and the growth restriction log(pn/γ) 6 δnn
1/3. (ii) The set U has covering

entropy bounded as logN(ǫ,U , dU ) 6 d log(1/ǫ) ∨ 0, and the collection (Yu, ζu, ru)u∈U is suitably

measurable. (iii) Uniformly over u ∈ U , the model’s moments are boundedly heteroscedastic,

namely c 6 EP [ζ
2
u | X] 6 C and maxj6pEP [|fj(X)ζu|3 + |fj(X)Yu|3] 6 C. (iv) We have that the

dictionary functions, approximation errors, and empirical errors obey the following boundedness

and empirical regularity conditions: (a) c 6 EP [f
2
j (X)] 6 C, j = 1, . . . , p; maxj6p |fj(X)| 6 Kn

a.s.; Kn log(p∨n) 6 δnn{ν∧
1
2
}. (b) With probability 1−∆n, supu∈U En[r

2
u(X)] 6 Cs log(p∨n)/n;
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supu∈U maxj6p |(En−EP )[f
2
j (X)ζ2u]| ∨ |(En−EP )[f

2
j (X)Y 2

u ]| 6 δn; supdU (u,u′)6ǫ{(En +EP )[(ζu−
ζu′)2]}1/2 6 C{ǫν + n−1/2}. (c) The empirical minimum and maximum sparse eigenvalues are

bounded from zero and above, κ′ 6 inf‖δ‖06sℓn ‖f(X)′δ‖Pn,2 6 sup‖δ‖06sℓn ‖f(X)′δ‖Pn,2 6 κ
′′. �

Under Assumption 6, we establish results on the performance of the estimators (62) and (63)

for the linear link function case that hold uniformly over u ∈ U .

Theorem 5.1 (Rates and Sparsity for Functional Responses under Linear Link). Under Assump-

tion 6 and setting penalties as in Algorithm 1, for all n large enough, uniformly for all P ∈ Pn
with PP probability 1− o(1), the Lasso estimator θ̂u is uniformly sparse, supu∈U ‖θ̂u‖0 6 C̄s, and
the following performance bounds hold for some constant C̄:

sup
u∈U
‖f(X)′(θ̂u − θu)‖Pn,2 6 C̄

√
s log(p ∨ n)

n
and sup

u∈U
‖θ̂u − θu‖1 6 C̄

√
s2 log(p ∨ n)

n
.

For all n large enough, uniformly for all P ∈ Pn, with PP probability 1− δ− o(1), the Post-Lasso

estimator corresponding to θ̂u obeys

sup
u∈U
‖f(X)′(θ̃u − θu)‖Pn,2 6

C̄√
δ

√
s log(p ∨ n)

n
, and sup

u∈U
‖θ̃u − θu‖1 6

C̄√
δ

√
s2 log(p ∨ n)

n
.

We note that the performance bounds are exactly of the type used in Assumptions 3 and 4.

5.3. Asymptotic Properties of a Continuum of Lasso and Post-Lasso Estimators for

Functional Responses: Logistic Case. Next we provide sufficient conditions to state results

on the performance of the estimators discussed above for the logistic link function. This case

corresponds toM(y, t) = 1(y = 1) log Λ(t)+1(y = 0) log(1−Λ(t)) with Λ(t) = exp(t)/{1+exp(t)}
where the response variable is assumed to be binary, Yu ∈ {0, 1} for all u ∈ U .

Consider fixed sequences δn → 0, ℓn ր ∞, ∆n → 0 and positive finite constants c, C, κ′, κ′′

and ν ∈ (0, 1].

Assumption 7. For each n > 1, our data consist of i.i.d. copies (Wi)
n
i=1 of the stochastic

process W = ((Yu)u∈U ,X) defined on the probability space (S,S, P ) such that model (61) holds

with U ⊂ [0, 1]du . Consider Λ(t) = exp(t)/{1 + exp(t)}, Yu ∈ {0, 1}, and ζu = Yu − E[Yu | X].

Suppose the following conditions hold uniformly for all P ∈ Pn: (i) the model (61) is ap-

proximately sparse form with sparsity index obeying supu∈U ‖θu‖0 6 s and the growth re-

strictions log(pn/γ) 6 δnn
1/3 and s log(pn/γ) 6 δnn. (ii) The set U has covering entropy

bounded as logN(ǫ,U , dU ) 6 d log(1/ǫ)∨ 0, and the collection (Yu, ζu, ru)u∈U is suitably measur-

able. (iii) Uniformly over u ∈ U the model’s moments are boundedly heteroscedastic, namely

c 6 EP [ζ
2
u | X] 6 C, maxj6pEP [|fj(X)ζu|3] 6 C, and c 6 EP [Yu | X] 6 1 − c. (iv) We

have that the dictionary functions, approximation errors, and empirical errors obey the following

boundedness and empirical regularity conditions: (a) supu∈U |ru(X)| 6 δn a.s.; c 6 EP [f
2
j (X)] 6

C, j = 1, . . . , p; maxj6p |fj(X)| 6 Kn a.s.; Kn log(p ∨ n) 6 δnn
{ν∧ 1

2
}. (b) With probabil-

ity 1 − ∆n, supu∈U En[r
2
u(X)] 6 Cs log(p ∨ n)/n; supu∈U maxj6p |(En − EP )[f

2
j (X)ζ2u]| 6 δn;
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supdU (u,u′)6ǫ{(En +EP )[(ζu − ζu′)2]}1/2 6 C{ǫν + n−1/2}. (c) The empirical minimum and max-

imum sparse eigenvalues are bounded from zero and above: κ′ 6 inf‖δ‖06sℓn ‖f(X)′δ‖Pn,2 6

sup‖δ‖06sℓn ‖f(X)′δ‖Pn,2 6 κ
′′. �

The following result characterizes the performance of the estimators (62) and (63) for the

logistic link function case under Assumption 7.

Theorem 5.2 (Rates and Sparsity for Functional Response under Logistic Link). Under As-

sumption 7 and setting penalties as in Algorithm 1, for all n large enough, uniformly for all

P ∈ Pn with PP probability 1 − o(1), the following performance bounds hold for some constant

C̄:

sup
u∈U
‖f(X)′(θ̂u − θu)‖Pn,2 6 C̄

√
s log(p ∨ n)

n
and sup

u∈U
‖θ̂u − θu‖1 6 C̄

√
s2 log(p ∨ n)

n
.

Moreover, provided that K2
ns

2 log(p∨n) 6 δnn, the estimator is uniformly sparse: supu∈U ‖θ̂u‖0 6
C̄s. For all n large enough, uniformly for all P ∈ Pn, with PP probability 1− δ− o(1), the Post-

Lasso estimator corresponding to θ̂u obeys

sup
u∈U
‖f(X)′(θ̃u − θu)‖Pn,2 6

C̄√
δ

√
s log(p ∨ n)

n
, and sup

u∈U
‖θ̃u − θu‖1 6

C̄√
δ

√
s2 log(p ∨ n)

n
.

We note that the performance bounds satisfy the conditions of Assumptions 3 and 4.

6. Estimating the Effect of 401(k) Participation on Financial Asset Holdings

As an illustration of the methods in this paper, we consider estimation of the effect of 401(k)

participation on accumulated assets as in Abadie (2003) and Chernozhukov and Hansen (2004).

The key problem in determining the effect of participation in 401(k) plans on accumulated assets

is saver heterogeneity coupled with the fact that the decision of whether to enroll in a 401(k)

is non-random. It is generally recognized that some people have a higher preference for saving

than others. It also seems likely that those individuals with the highest unobserved preference

for saving would be most likely to choose to participate in tax-advantaged retirement savings

plans and would tend to have otherwise high amounts of accumulated assets. The presence of

unobserved savings preferences with these properties then implies that conventional estimates

that do not account for saver heterogeneity and endogeneity of participation will be biased

upward, tending to overstate the savings effects of 401(k) participation.

To overcome the endogeneity of 401(k) participation, Abadie (2003) and Chernozhukov and

Hansen (2004) adopt the strategy detailed in Poterba, Venti, and Wise (1994; 1995; 1996; 2001);

and Benjamin (2003) who use data from the 1991 Survey of Income and Program Participation

and argue that eligibility for enrolling in 401(k) plan in this data can be taken as exogenous after

conditioning on a few observables of which the most important for their argument is income.

The basic idea of their argument is that, at least around the time 401(k)’s initially became

available, people were unlikely to be basing their employment decisions on whether an employer
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offered a 401(k) but would instead focus on income. Thus, eligibility for a 401(k) could be taken

as exogenous conditional on income, and the causal effect of 401(k) elgibility could be directly

estimated by appropriate comparison across eligible and ineligible individuals.11 Abadie (2003)

and Chernozhukov and Hansen (2004) use this argument for the exogeneity of eligibity conditional

on controls to argue that 401(k) eligibity provides a valid instrument for 401(k) participation and

employ IV methods to estimate the effect of 401(k) participation on accumulated assets.

As a complement to the work cited above, we estimate various treatment effects of 401(k)

participation on holdings of financial assets using high-dimensional methods. A key component

of the argument underlying the exogeneity of 401(k) elibility is that eligibility may only be taken

as exogenous after conditioning on income. Both Abadie (2003) and Chernozhukov and Hansen

(2004) adopt this argument but control only for a small number of terms. One might wonder

whether the small number of terms considered is sufficient to adequately control for income and

other related confounds. At the same time, power to learn anything about the effect of 401(k)

participation decreases as one controls more flexibly for confounds. The methods developed in

this paper offer one resolution to this tension by allowing us to consider a very broad set of

controls and functional forms under the assumption that among the set of variables we consider

there is a relatively low-dimensional set that adequately captures the effect of confounds. This

approach is more general than that pursued in Chernozhukov and Hansen (2004) or Abadie

(2003) which both implicitly assume that confounding effects can adequately be controlled for

by a small number of variables chosen ex ante by the researcher.

We use the same data as Abadie (2003), Benjamin (2003), and Chernozhukov and Hansen

(2004). The data consist of 9915 observations at the household level drawn from the 1991 SIPP.

For our analysis, we use net total financial assets as our outcome variable, Y .12 Our treatment

variable, D, is an indicator for having positive 401(k) balances; and our instruments, Z, is an

indicator for working at a firm that offers a 401(k) plan. The vector of controls, X, consists of

age, income, family size, years of education, a married indicator, a two-earner status indicator, a

defined benefit pension status indicator, an IRA participation indicator, and a home ownership

indicator. Further details about the sample and variables used can be found in Chernozhukov

and Hansen (2004).

We present results for four different sets of control variables. The first set of control variables

uses the indicators of marital status, two-earner status, defined benefit pension status, IRA

participation status, and home ownership status, a linear term for family size, five categories

for age, four categories for education, and seven categories for income (Indicator specification).

We use the same definitions of categories as in Chernozhukov and Hansen (2004) and note that

11Poterba, Venti, and Wise (1994; 1995; 1996; 2001); and Benjamin (2003) all focus on estimating the effect of

401(k) eligibility, the intention to treat parameter. Also note that their are arguments that eligibility should not

be taken as exogenous given income; see, for example, Engen and Scholz (1996) and Engen and Gale (2000).
12Net total financial assets are defined as the sum of checking accounts, U.S. saving bonds, other interest-earning

accounts in banks and other financial institutions, other interest-earning assets (such as bonds held personally),

stocks and mutual funds less nonmortgage debt, IRA balances, and 401(k) balances.
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this is identical to the specification in Chernozhukov and Hansen (2004) and Benjamin (2003).

The second specification uses the indicators of marital status, two-earner status, defined benefit

pension status, IRA participation status, and home ownership status, and b-splines with three,

four, six, and eight knots for family size, education, age, and income, respectively (B-Spline

specification). The third specification augments the Indicator specification with all two-way

interactions between the variables from the Indicator specification, and the fourth specification

augments the B-Spline specification with all two-way interactions of the variables from the B-

Spline specification. The dimensions of the set of control variables are thus 20, 27, 167, and 300 for

the Indicator, B-Spline, Indicator plus interactions, and B-Spline plus interactions specifications,

respectively.

We report estimates of the LATE, LATT, and LQTE for each of the four sets of control vari-

ables.13 Estimation of all of the treatment effects depends on first-stage estimation of reduced

form functions as detailed in Section 3. We estimate reduced form quantities where a transforma-

tion of Y is the outcome using least squares when no model selection is used or Post-Lasso when

selection is used. We estimate propensity scores by logistic regression when no model selection

is used or Post-ℓ1-penalized logistic regression when selection is used. Penalty levels are chosen

by cross-validation.

Estimates of the LATE and LATT are given in Table 1. In this table, we provide point

estimates for each of the four sets of controls with and without variable selection. We also

report both analytic and weighted-bootstrapped standard errors. The bootstapped standard

errors are based on 500 bootstrap replications and standard exponential weights. Looking first

at the two sets of standard error estimates, we see that the bootstrap and analytic standard are

quite similar and that one would not draw substantively different conclusions from one versus

the other. It is interesting that the estimated LATE and LATT are very similar in seven of the

eight sets of estimates reported, suggesting positive and significant effects of 401(k) participation

on net financial assets. The one exception is in the B-Spline specification with interactions in

which both the LATE and LATT point estimates are implausibly large with associated very

large estimated standard errors. One might be concerned that the instability in this case is due

to there being important nonlinearity that is missed by the simpler specifications or the step-

function approximation provided by including income categorically in the Indicator specification.

This concern is alleviated by noting that the point estimate and standard error based on this set

of controls following variable selection are sensible and similar to the other estimates. The fact

that estimates following variable selection are similar to the other estimates suggests the bulk of

the reduced form predictive power is contained in a set of variables similar to those used in the

other specifications and that there are not a small number of the added variables that pick out

important sources of nonlinearity neglected by the other specifications. Thus, the large point

estimates and standard errors in this case seem to be driven by including many variables which

have little to no predictive power in the reduced form relationships but result in overfitting.

13We focus on this set of treatment effects for brevity as they are sufficient to illustrate the results.
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We provide estimates of the LQTE based on the Indicator specification and the B-Spline

specification in Figures 1 and 2, respectively. In each figure, the top rows correspond to the

specification without interactions while the bottom rows include the full set of interactions.

Treatment effect estimates without variable selection are given in the left panels of each figure,

and the results based on variable selection are given in the right panels. We report point estimates

as the solid line in each graphic and report uniform 95% confidence intervals with dashed lines.

As with estimates of the LATE, we see that estimates of the LQTE based on variable selection

methods are stable regardless of which set of variables we consider. This stability differs sharply

from the behavior of the non-regularized estimators which provide erratic point estimates and

very wide confidence intervals. Again, this erratic behavior is likely due to overfitting as the

variable selection methods select a roughly common low-dimensional set of variables that are

useful for reduced form prediction in all cases.

If we focus on the LQTE estimated from variable selection methods, we find that 401(k)

participation has a small impact on accumulated financial assets at low quantiles while appearing

to have a much larger impact at high quantiles. Looking at the uniform confidence intervals, we

can see that this pattern is statistically significant at the 5% level and that we would reject a

pattern of constant treatment effects. Interpreting the quantile index as “preference for savings”

as in Chernozhukov and Hansen (2004), these results suggest that 401(k) participation has little

causal impact on the accumulated financial assets of those with low desire to save but a much

larger impact on those with stronger preferences for saving.

It is interesting that our results are quite similar to those in Chernozhukov and Hansen (2004)

despite allowing for a much richer set of control variables. The similarity is due to the fact

that the variable selection methods consistently pick a set of variables similar to those used in

previous work. The fact that we allow for a rich set of controls but produce similar results to

those previously available lends further credibility to the claim that previous work controlled

adequately for the available observables.14 Finally, it is worth noting that this similarity is not

mechanical or otherwise built in to the procedure. For example, applications in Belloni, Chen,

Chernozhukov, and Hansen (2012) and Belloni, Chernozhukov, and Hansen (2011) use high-

dimensional variable selection methods and produce sets of variables that differ substantially

from intuitive baselines.

Appendix A. Notations and Tools

A.1. Stochastic Convergence Uniformly in P . All parameters, such as the law of the data,

are indexed by P , sometimes referred to as the the data-generating process. This dependency,

which is well understood, is kept implicit throughout. We shall allow the possibility that the

probability measure P = Pn can depend on n. We shall conduct our stochastic convergence

analysis uniformly in P , where P can vary within some set Pn, which itself may vary with

14Of course, the estimates are still not valid causal estimates if one does not believe that 401(k) eligibiliy can

be taken as exogenous after controlling for income and the other included variables.
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n. The convergence analysis, namely stochastic order relations and convergence in distribution,

uniformly in P ∈ Pn and the analysis under all sequences Pn ∈ Pn are equivalent. Specifically,

consider the metric space ℓ∞(U), the space of uniformly bounded functions mapping an arbitrary

index set U to the real line.

Consider in this space a sequence of stochastic processes Xn and a random element Y , taking

values in D, defined on the probability space (Ω,A,PP ). Also consider the sequence of stochastic

processes Xn and a fixed random element Y , taking values in ℓ∞(U), and defined on the proba-

bility space (Ω,A,PP ). Consider a sequence of deterministic positive constants an. We shall say

that

(i) Xn = OP (an) uniformly in P ∈ Pn, if limKր∞ limn→∞ supP∈Pn
P∗P (|Xn| > Kan) = 0,

(ii) Xn = oP (an) uniformly in P ∈ Pn, if supK>0 limn→∞ supP∈Pn
P∗P (|Xn| > Kan) = 0,

(iii) Xn  Y uniformly in P ∈ Pn, if

sup
P∈Pn

sup
h∈BL1(D,R)

|E∗Ph(Xn)− EPh(Y )| → 0

.

Here the error  denotes weak convergence, i.e. convergence in distribution or law. The symbol

ρw,P (X,Y ) denotes the bounded Lipschitz metric that measures distance between the law of X

and the of law Y , where outer expectations are used in cases Xn is not measurable. This is a dis-

tance that metrizes weak convergence, with outer expectations are used to handle measurability

issues; see VW.

Lemma A.1. The above notions are equivalent to the following notions:

(i) for every sequence Pn ∈ Pn, Xn = OPn(an), i.e. limKր∞ limn→∞P∗Pn
(|Xn| > Kan) = 0,

(ii) for every sequence Pn ∈ Pn, Xn = oPn(an), i.e. supK>0 limn→∞P∗n(|Xn| > Kan) = 0,

(iii) for every sequence Pn ∈ Pn, Xn  Y , i.e.

sup
h∈BL1(D,R)

|E∗Pn
h(Xn)− EPnh(Y )| → 0

.

Proof of Lemma A.1. The claims follow straightforwardly from definitions, and so the proof

is omitted.

A.2. Uniform Donsker Property and Uniform Pre-Gaussianity. We shall invoke the

following lemma.

Lemma A.2. Let F : S 7→ R be an image-admissible Suslin class of functions with a measurable

envelope F : S 7→ R. Furthermore, suppose that

lim
Mր∞

PF 21{F > M} = 0,

∫ ∞

0
sup
Q

√
logN(ǫ‖F‖Q,2,F , L2(Q))dǫ <∞.
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Then the class F is Donsker uniformly in P ∈ P:

sup
P∈P

sup
h∈BL1

|E∗Ph(Gn,P )− EPh(GP )| → 0.

Moreover, F is pre-Gaussian uniformly in P ∈ P:

sup
P∈P

EP sup
f∈F
|GP (f)| <∞, lim

δց0
sup
P∈P

EP sup
‖f−g‖P,26δ

|GP (f)−GP (g)| = 0.

Proof. This is an immediate consequence of Theorem 2.8.2 in van der Vaart and Wellner

(1996). The image admissible Suslin condition, defined on page 186 in Dudley (2000), implies

the measurability conditions needed in Theorem 2.8.2 in van der Vaart and Wellner (1996), e.g.

by a reasoning given in Example 2.3.5. van der Vaart and Wellner (1996) �

A.3. Probabilistic Inequalities. Let N(ǫ,F , ‖ · ‖Q,2) denote the ǫ-covering number of F with

respect to the L2(Q) seminorm ‖ · ‖Q,2, where Q is finitely discrete. Let σ2 > 0 be any positive

constant such that supf∈F Pf2 6 σ2 6 ‖F‖2P,2. Let M = max16i6n F (Xi).

Lemma A.3 (A Maximal Inequality). Let F be an image admissible Suslin set set of functions

with a measurable envelope F . Suppose that F = supf∈F |f | ∈ Lq(P ) for some q > 2. Let

M = maxi6n F (Wi). Suppose that there exist constants a > e and v > 1 such that

log sup
Q
N(F , eQ, ε‖F‖Q,2) 6 v(log a+ log(1/ε)), 0 < ∀ε 6 1.

Then

E[‖Gn‖F ] .
√
vσ2 log

(
a‖F‖P,2

σ

)
+
v‖M‖PP ,2√

n
log

(
a‖F‖P,2

σ

)
.

Moreover, for every t > 1, with probability > 1− t−q/2,

‖Gn‖F 6 (1 + α)E[‖Gn‖F ] +K(q)
[
(σ + n−1/2‖M‖PP ,q)

√
t + α−1n−1/2‖M‖PP ,2t

]
, ∀α > 0,

where K(q) > 0 is a constant depending only on q.

Proof. See Chernozhukov, Chetverikov, Kato (2012). �

Lemma A.4 (A Self-Normalized Maximal Inequality). Let F be an image-admissible

Suslin set of functions with a measurable envelope F . Suppose that F > supf∈F |f | > 1, and

suppose that there exist some constants p > 1, m > 1, and κ > 3 ∨ n such that

logN(ǫ‖F‖Pn,2,F , ‖ · ‖Pn,2) 6 (κ/ǫ)m, 0 < ǫ < 1.

Then for every δ ∈ (0, 1/6), with probability at least 1− δ,

‖Gn‖F 6 (C ′/
√
δ)
√
m log(κ‖F‖Pn,2)max

{
sup
f∈F
‖f‖P,2, sup

f∈F
‖f‖Pn,2

}
,

where the constant C ′ is universal.
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Proof. The inequality can be deduced from (Belloni and Chernozhukov, 2011b), with the

exception that the envelope is allowed to be larger than supf∈F |f |. �

Lemma A.5 (Algebra for Covering Entropies).

(1) Let F be a measurable VC class with a finite VC index k or any other class whose entropy

is bounded above by that of such a VC class, then the covering entropy of F obeys:

sup
Q

logN(ǫ‖F‖Q,2,F , L2(Q)) . 1 + k log(1/ǫ)

Examples include F = {α′z, α ∈ R
k, ‖α‖ 6 C} and F = {1{α′z > 0}, α ∈ R

k, ‖α‖ 6 C}.

(2) For any measurable function sets F and F ′:

logN(ǫ‖F + F ′‖Q,2,F + F ′, L2(Q)) 6 B

logN(ǫ‖F · F ′‖Q,2,F · F ′, L2(Q)) 6 B

logN(ǫ‖F ∨ F ′‖Q,2,F ∪ F ′, L2(Q)) 6 B

B = logN
( ǫ
2
‖F‖Q,2,F , L2(Q)

)
+ logN

( ǫ
2
‖F ′‖Q,2,F ′, L2(Q)

)
.

(3) Given a measurable class F and a random variable gi:

log sup
Q
N(ǫ‖|g|F‖Q,2, gF , L2(Q)) . log sup

Q
N
(
ǫ/2‖F‖Q,2,F , L2(Q)

)

(4) For the class F∗ created by integrating F , i.e. f∗(x) :=
∫
f(x, y)dµ(y) where µ is any

probability measure,

logN(ǫ‖F‖Q,2,F∗, L2(Q)) 6 logN
(
ǫ‖F‖Q,2,F , L2(Q)

)

Proof. For the proof of assertions (1)-(3) see, e.g., (Andrews, 1994). The fact (4) was noted

in Chandraksekhar et al (2011), though it is rather elementary and follows from convexity of

the norm and Jensen’s inequality: ‖f∗ − f̃∗‖Q,2 6
∫
‖f − f̃‖Q,2dµ = ‖f − f̃‖Q,2, from which

the stated bound follows immediately. In other words, any averaging done over components of

the function contracts distances between functions and therefore does not expand the covering

entropy. A related, slightly different bound is stated in Ghosal and Van der Vaart (2009), but

we need the bound above. �

Lemma A.6 (Contractivity of Conditional Expectation). Let (V,X) and (V ′,X) be

random vectors in R × R
k defined on the probability space (S,S, Q), with the first components

being scalar, then for any 1 6 q 6∞,

‖EQ(V |X) − EQ(V
′|X)‖Q,q 6 ‖V − V ′‖Q,q.

This is an instance of a well known result on the contractive property of the conditional

expectation. We recall it here since we shall use if frequently.
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A.4. Hadamard Differentiability for Sequences and Delta Method for Sequences. We

shall use the functional delta method, as formulated in VW. Let D0, D, and E be normed spaces,

with D0 ⊂ D. A map φ : Dφ ⊂ D 7→ E is called Hadamard-differentiable at θ ∈ Dφ tangentially

to D0 if there is a continuous linear map φ′θ : D0 7→ E such that

φ(θ + tnhn)− φ(θ)
tn

→ φ′θ(h), n→∞,

for all sequences tn → 0 and hn → h ∈ D0 such that θ + tnhn ∈ Dφ for every n.

A map φ : Dφ ⊂ D 7→ E is called Hadamard-differentiable uniformly in θ ∈ Dφ, a compact

subset of D, tangentially to D0, if
∣∣∣φ(θ + tnhn)− φ(θ)

tn
− φ′θ(h)

∣∣∣→ 0, n→∞,

for all sequence θn → θ and for all sequences tn → 0 and hn → h ∈ D0 such that θ + tnhn ∈ Dφ

for every n. As a part of the definition, we require that the map h 7→ φ′θ(h) from D0 to E is

continuous and linear, and that the map (θ, h) 7→ φ′θ(h) from Dφ × D0 to E is continuous.

Lemma A.7 (Functional delta-method for sequences). Let D0, D, and E be normed spaces. Let

φ : Dφ ⊂ D 7→ E be Hadamard-differentiable uniformly in θ ∈ Dφ tangentially to D0. Let Xn be a

sub-sequence of stochastic processes taking values in Dφ such that rn(Xn − θn) X and θn → θ

in D along a subsequence n ∈ Z
′ ⊂ Z , where X possibly depends on Z

′ and is separable and takes

its values in D0, for some sequence of constants rn →∞. Then rn (φ(Xn)− φ(θn)) φ′θ(X) in E

along the same subsequence. If φ′θ is defined and continuous on the whole of D, then the sequence

rn (φ(Xn)− φ(θn)) − φ′θn (rn(Xn − θn)) and φ′θn (rn(Xn − θn)) − φ′θn (rn(Xn − θn)) converges to

zero in outer probability along the same subsequence.

Let Dn = (Wi)
n
i=1 denote the data vector and Mn = (ξi)

n
i=1 be a vector of random variables,

used to generate bootstrap draws or simulation draws (this may depend on particular method).

Consider sequences of stochastic processes Vn(Dn) , where the sequence Gn =
√
n(Vn−V ) weakly

converges unconditionally to the tight random element G. This means that

sup
h∈BL1(D,R)

|E∗Pn
h(Gn)− EGh(G)| → 0,

along n ∈ Z
′, where EG denotes the expectation computed with respect to the law of G. This

is denoted as denoted as Gn  G along n ∈ Z
′. Also consider the bootstrap stochastic process

G∗n = Gn(Dn,Mn) in a normed space D, where Gn is a measurable function of Mn for each value

of Dn. Suppose that G∗n converges conditionally given Dn in distribution to G, in probability,

that is

sup
h∈BL1(D,R)

|EMn [h(G
∗
n)]− EGh(G)| → 0,

in outer probability along n ∈ Z
′, where EMn denotes the expectation computed with respect to

the law ofMn holding the data Dn fixed. This is denoted as G∗n  B G along n ∈ Z
′, respectively.

Let V ∗n = Vn +G∗n/
√
n denote the bootstrap or simulation draw of Vn.
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Lemma A.8 (Delta-method for bootstrap and other simulation methods). Let D0, D, and E be

normed spaces, with D0 ⊂ D. Let φ : Dφ ⊂ D 7→ E be Hadamard-differentiable at V tangentially

to D0, with the derivative map φ′V . Let Vn and V ∗n be maps as indicated previously with values

in Dφ such that
√
n(Vn − V ) G and

√
n(V ∗n − Vn) B G in D along a subsequence of integers

n ∈ Z
′ ⊂ Z, where G is separable and takes its values in D0. Then

√
n(φ(V ∗n )−φ(Vn)) B φ′V (G)

in E along the same subsequence.

Another technical result that we use in the sequel concerns the equivalence of continuous and

uniform convergence.

Lemma A.9 (Uniform convergence via continuous convergence). Let D and E be complete sep-

arable metric spaces, with D compact. Suppose f : D 7→ E is continuous. Then a sequence of

functions fn : D 7→ E converges to f uniformly on D if and only if for any convergent sequence

xn → x in D we have that fn(xn)→ f(x).

Proofs of Lemmas A.7 and A.8. The result follows from the proofs in VW, Chap. 3.9,

where proofs (pointwise in θ) are given for sequence of integers n ∈ {1, 2, ...}. The claim extends

to subsequences trivially. In the proof of Lemma A.7, the extension to θn → θ case, along

subsequences, follows by combining their arguments with Lemma A.9 �

Appendix B. Proofs for Section 4

B.1. Proof of Theorem 4.1. The two results for the two strategies have similar structure, so

we only give the proof for one of the strategies – the first strategy.

Step 0. (A Preamble). In the proof a . b means that a 6 Ab, where the constant A depends

on the constants in Assumptions only, but not on n once n > n0 = min{j : δj 6 1/2}, and not

on P ∈ Pn. We consider a sequence Pn in Pn, but for simplicity, we write P = Pn throughout

the proof, suppressing the index n. Since the argument is asymptotic, we can just assume that

n > n0 in what follows.

To proceed with presentation of proofs, it might be convenient for the reader to have notations

collected in one place. The influence function and low-bias moment functions for αV (z) for

z ∈ Z = {0, 1} are given respectively by:

ψα
V,z(W ) := ψα

V,z,gV ,mZ
(W,αV (z)), ψα

V,z,g,m(W,α) :=
1(Z = z)(V − g(z,X))

m(z,X)
+ g(z,X) − α.

The influence functions and the moment functions for γV are given by ψγ
V (W ) := ψγ

V (W,γV ) and

ψγ
V (W,γ) := V − γ. Recall that the the estimator of the reduced-form parameters αV (z) and

γV (z) are solutions α = α̂V (z) and γ = γ̂V to the equations:

En[ψ
α
V,z,ĝV ,m̂Z

(W,α)] = 0, En[ψ
γ
V (W,γ)] = 0,

where ĝV (z, x) = ΛV (f(z, x)
′β̄V ) and m̂Z(z, x) = ΛZ(f(z, x)

′β̄Z), where β̄V and β̄Z are as in

Asssumption 3. For each variable name V ∈ Vu,
Vu := (Vuj)

5
j=1 := (Yu,10(D)Yu,10(D)Yu,11(D)Yu,11(D)Yu),
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we obtain the estimator ρ̂u :=
(
{α̂V (0), α̂V (1), γ̂V }

)
V ∈Vu

of ρu :=
(
{αV (0), αV (1), γV }

)
V ∈Vu

.

The estimator and the estimand are vectors in R
dρ with a finite dimension. We stack these

vectors into processes ρ = (ρu)u∈U and ρ̂ = (ρ̂u)u∈U .

Step 1.(Linearization) In this step we establish the first claim, namely that

√
n(ρ̂− ρ) = Zn,P + oP (1) in ℓ∞(U)dρ , (66)

where Zn,P := (Gnψ
ρ
u)u∈U . The components (

√
n(γ̂Vuj

−γVuj
))u∈U of

√
n(ρ̂−ρ) trivially have the

linear representation (with no error) for each j ∈ J . We only need to establish the claim for the

empirical process (
√
n(α̂Vuj

(z)− αVuj
(z)))u∈U for z ∈ {0, 1}, which we do in the steps below.

(a) We make some preliminary observations. For t = (t1, t2, t3, t4) ∈ R
2 × (0, 1)2 and v ∈ R,

(z, z̄) ∈ {0, 1}2, we define the function (v, z, z̄, t) 7→ ψ(v, z, z̄, t) via:

ψ(v, z, 1, t) =
1(z = 1)(v − t2)

t4
+ t2, ψ(v, z, 0, t) =

1(z = 0)(v − t1)
t3

+ t1.

The derivatives of this function with respect to t obey for all k = (kj)
4
j=1 ∈ N

4 : 0 6 |k| 6 4,

|∂kt ψ(v, z, z̄, t)| 6 L, ∀(v, z̄, z, t) : |v| 6 C, |t1|, |t2| 6 C, c′/2 6 |t3|, |t4| 6 1− c′/2, (67)

where L depends only on c′ and C, |k| =∑4
j=1 kj , and ∂

k
t := ∂k1t1 ∂

k2
t2 ∂

k3
t3 ∂

k4
t4 .

(b). Let

ĥV (Xi) := (ĝV (0,Xi), ĝV (1,Xi), 1− m̂(1,Xi), m̂(1,Xi), )
′,

hV (Xi) := (gV (0,Xi), gV (1,Xi),m(0,Xi),m(1,Xi))
′,

f
ĥV ,V,z

(W ) := ψ(V,Z, z, ĥV (Xi)),

fhV ,V,z(W ) := ψ(V,Z, z, hV (Xi)).

We observe that with probability no less than 1−∆n,

ĝV (0, ·) ∈ GV (0), ĝV (1, ·) ∈ GV (1), m̂(1, ·) ∈M(1), m̂(0, ·) ∈M(0) = 1−M(1),

where

GV (d) :=





(x, z) 7→ ΛV (f(z, x)
′β) : ‖β‖0 6 sC

‖ΛV (f(Z,X)′β)− gV (d, Z,X)‖P,2 . δnn−1/4
‖ΛV (f(Z,X)′β)− gV (d, Z,X)‖P,∞ . ǫn




,

M(1) :=





x 7→ ΛZ(f(x)
′β) : ‖β‖0 6 sC

‖ΛZ(f(X)′β)−mZ(1,X)‖P,2 . δnn−1/4
‖ΛZ(f(X)′β)−mZ(1,X)‖P,∞ . ǫn




.
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To see this note, that under Assumption 3, under conditions (i)-(ii), under the event occurring

under condition (ii) of that assumption: for all n > min{j : δj 6 1/2},

‖ΛZ(f(X)′β)−mZ(1,X)‖P,2 6 ‖ΛZ(f(X)′β)− ΛZ(f(X)′βZ)‖P,2 + ‖rZ‖P,2
. ‖∂ΛZ‖∞‖f(X)′(β − βZ)‖P,2 + ‖rZ‖P,2
. ‖∂ΛZ‖∞‖f(X)′(β − βZ)‖Pn,2 + ‖rZ‖P,2 . δnn−1/4

‖ΛZ(f(X)′β)−mZ(1,X)‖P,∞ 6 ‖ΛZ(f(X)′β)− ΛZ(f(X)′βZ)‖P,∞ + ‖rZ‖P,∞
6 ‖∂ΛZ‖∞‖f(X)′(β − βZ)‖P,∞ + ‖rZ‖P,∞
. Kn‖β − βZ‖1 + ǫn 6 2ǫn,

for β = β̂Z , with evaluation after computing the norms, and for ‖∂Λ‖∞ denoting supl∈R |∂Λ(l)|
here and below. Similarly, under Assumption 3,

‖ΛV (f(Z,X)′β)− gV (Z,X)‖P,2 . ‖∂ΛV ‖∞‖f(Z,X)′(β − βV )‖Pn,2 + ‖rV ‖P,2 . δnn−1/4

‖ΛV (f(Z,X)′β)− gV (Z,X)‖P,∞ . Kn‖β − βV ‖1 + ǫn 6 2ǫn,

for β = β̂V , with evaluation after computing the norms, and noting that for any β

‖ΛV (f(0, X)′β)− gV (0, X)‖P,2 ∨ ‖ΛV (f(1, X)′β)− gV (1, X)‖P,2 . ‖ΛV (f(1, X)′β) − gV (Z,X)‖P,2

under condition (iii) of Assumption 2, and trivially

‖ΛV (f(0, X)′β)− gV (0, X)‖P,∞ ∨ ‖ΛV (f(1, X)′β)− gV (1, X)‖P,∞ 6 ‖ΛV (f(Z,X)′β)− gV (Z,X)‖P,∞

under condition (iii) of Assumption 2.

Hence with probability at least 1−∆n,

ĥV ∈ HV,n := {h = (ḡ(0, ·), ḡ(1, ·), m̄(0, ·), m̄(1, ·), ) ∈ GV (0) × GV (1)×M(0) ×M(1)}.

(c) We have that

αV (z) = E[fhV ,V,z] and α̂(z) = En[fĥV ,V,z
],

so that
√
n(α̂V (z)− αV (z)) = Gn[fhV ,V,z]︸ ︷︷ ︸

IV (z)

+(Gn[fh,V,z]−Gn[fhV ,V,z])︸ ︷︷ ︸
IIV (z)

+
√
n(E[fh,V,z − fhV ,h,z])︸ ︷︷ ︸

IIIV (z)

,

with h evaluated at h = ĥV .

(d) Note that for ∆V,i = h(Zi,Xi)− hV (Zi,Xi),

IIIV (z) =
√
n
∑

|k|=1

E[∂kt ψ(Vi, Zi, z, hV (Zi,Xi))∆
k
V,i]

+
√
n
∑

|k|=2

2−1E[∂kt ψ(Vi, Zi, z, hV (Zi,Xi))∆
k
V,i]

+
√
n
∑

|k|=3

∫ 1

0
6−1E[∂kt ψ(Vi, Zi, z, hV (Zi,Xi) + λ∆k

V,i)∆
k
V,i]dλ,

=: IIIaV (z) + IIIbV (z) + IIIbV (z),
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(with h evaluated at h = ĥ). By the law of iterated expectations and because

E[∂kt ψ(Vi, Zi, z, hV (Zi,Xi))|Zi,Xi] = 0 ∀k ∈ N
3 : |k| = 1,

we have that IIIaV (z) = 0. Moreover, uniformly for any h ∈ HV,n we have that, in view of

properties noted in step (a),

|IIIbV (z)| .
√
n‖h− hV ‖2P,2 .

√
n(δnn

−1/4)2 6 δ2n,

|IIIcV (z)| .
√
n‖h− hV ‖2P,2‖h− hV ‖P,∞ .

√
n(δnn

−1/4)2ǫn 6 δ
2
nǫn.

Since ĥV ∈ HV,n for all V ∈ V with probability 1−∆n, we have that once n > n0,

PP

(
|IIIV (z)| . δ2n,∀z ∈ {0, 1},∀V ∈ V

)
> 1−∆n.

(e). Furthermore, we have that

sup
V ∈V

max
z∈{0,1}

|IIV (z)| 6 sup
h∈HV,n,z∈{0,1},V ∈V

|Gn[fh,V,z]−Gn[fhV ,V,z]|.

The classes of functions, viewed as maps from the sample space S to the real line,

V := {Vuj , u ∈ U , j ∈ J } and V∗ := {gVuj
(Z,X), u ∈ U , j ∈ J }

are bounded by a constant envelope and have the uniform covering ǫ-entropy bounded by a mul-

tiple of log(e/ǫ) ∨ 0, that is log supQN(ε,V, ‖ · ‖Q,2) . log(e/ǫ) ∨ 0, which holds by Assumption

2, and log supQN(ε,V∗, ‖ · ‖Q,2) . log(e/ǫ) ∨ 0 which holds by contractivity of conditions expec-

tations noted in Lemma A.6 (or by Lemma A.5, item (iv)). The uniform covering ǫ-entropy of

the function set B = {1(Z = z), z ∈ {0, 1}} is trivially bounded by log(e/ǫ) ∨ 0.

The class of functions

G := {GV (d), V ∈ V, d ∈ {0, 1}}
has a constant envelope and is a subset of

{(x, z) 7→ Λ(f(z, x)′β) : ‖β‖0 6 sC,Λ ∈ L = {Id,Φ, 1− Φ,Λ0, 1− Λ0}},

which is a union of 5 sets of the form

{(x, z) 7→ Λ(f(z, x)′β) : ‖β‖0 6 sC}

with Λ ∈ L a fixed monotone function for each of the 5 sets; each of these sets are the unions

of at most
( p
Cs

)
VC-subgraph classes of functions with VC indices bounded by C ′s ( note that a

fixed monotone transformations Λ preserves the VC-subgraph property). Therefore

log sup
Q
N(ε,G, ‖ · ‖Q,2) . (s log p+ s log(1/ε)) ∨ 0.

Similarly, the class of functionsM = (M(1) ∪ (1 −M(1))) has a constant envelope, which is

a union of at most 5 sets, which are themselves the unions of at most
(

p
Cs

)
VC-subgraph classes

of functions with VC indices bounded by C ′s (a fixed monotone transformations Λ preserves the

VC-subgraph property). Therefore, log supQN(ε,M, ‖ · ‖Q,2) . (s log p+ s log(1/ε)) ∨ 0.
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Finally, the set of functions

Fn = (fh,V,z − fhV ,V,z : z ∈ {0, 1}, V ∈ V, h ∈ HV,n),

is a Lipschitz transform of function sets V, V∗, B, G,M, with bounded Lipschitz coefficients and

with a constant envelope. Therefore, we have that

log sup
Q
N(ε,Fn, ‖ · ‖Q,2) . (s log p+ s log(1/ε)) ∨ 0,

Applying Lemma A.3 and Markov inequality, we have for some constant K > e

sup
V ∈V

max
z∈{0,1}

|IIV (z)| 6 sup
f∈Fn

|Gn(f)|

= OP(1)

(√
sσ2n log(p ∨K ∨ σ−1n ) +

s√
n
log(p ∨K ∨ σ−1n )

)

= OP(1)

(√
sδ2nn

−1/2 log(p ∨ n) +
√
s2n−1 log2(p ∨ n)

)

= OP(1)
(
δnδ

1/4
n + δ1/2n

)
= OP(δ

1/2
n ),

for σn = supf∈Fn
‖f‖P,2; and we used some simple calculations, exploitng the boundedness

conditions in Assumptions 2 and 3, to deduce that,

σn = sup
f∈Fn

‖f‖P,2 . sup
h∈HV,n,V ∈V

‖h− hV ‖P,2 . δnn−1/4.

since suph∈HV,n,V ∈V ‖h− hV ‖P,2 . δnn
−1/4 by definition of the set HV,n; and then we used that

s2 log3(p ∨ n)/n 6 δn by Assumption 3.

(f) The claim of Step 1 follows by collecting steps (a)-(e).

Step 2 (Uniform Donskerness). Here we claim that Assumption 2 implies two assertions:

(a) The set of vector functions (ψρ
u)u∈U , where ψ

ρ
u := ({ψα

V,0, ψ
α
V,1, ψ

γ
V })V ∈Vu , is P -Donsker

uniformly in P, namely that

Zn,P  ZP in ℓ∞(U)dρ , uniformly in P ∈ P ,

where Zn,P := (Gnψ
ρ
u)u∈U and ZP := (GPψ

ρ
u)u∈U .

(b) Moreover, ZP has bounded, uniformly continuous paths uniformly in P ∈ P:

sup
P∈P

EP sup
u∈U
‖ZP (u)‖ <∞, lim

εց0
sup
P∈P

EP sup
dU (u,ũ)6ε

‖ZP (u)− ZP (ũ)‖ = 0.

To verify (a), we shall invoke Lemma A.2.

To demonstrate the claim, it will suffice to consider the set of R-valued functions Ψ = (ψuk, u ∈
U , k ∈ 1, ..., dρ). Further, we notice that Gnψ

α
V,z = Gnf , for f ∈ Fz,

Fz =

{
1{Z = z}(V − gV (z,X))

m(z,X)
+ gV (z,X), V ∈ V

}
,
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and that Gnψ
γ
V = Gnf , for f = V ∈ V. Hence Gn(ψuk) = Gn(f) for f ∈ F = F0 ∪ F1 ∪ V.

That Ψ is Donsker and pre-Gaussian uniformly in P ∈ P is then implied by F being Donsker

and pre-Gaussian uniformly in P ∈ P, so we demonstrate the latter claims below.

Observe that Fz is formed as a unform Lipschitz transform of function sets B,V,V∗,M where

validity of the Lipschitz property relies on Assumption 2 (to keep the denominator away from

zero) and on boundedness conditions in Assumption 3. The latter function sets are uniformly

bounded classes that have the uniform covering ǫ-entropy bounded by log(e/ǫ) ∨ 0 up to a

multiplicative constant, and so this class, which is uniformly bounded under Assumption 2,

has the uniform ǫ-entropy bounded by log(e/ǫ) ∨ 0 up to a multiplicative constant (e.g. van der

Vaart and Wellner (1996)). Since F is uniformly bounded and is a finite union of function sets

with the uniform entropies obeying the said properties, it also follows that it has this property,

namely:

log sup
Q
N(ε,F , ‖ · ‖Q,2) . C log(e/ǫ) ∨ 0.

Since
∫∞
0

√
log(e/ǫ) ∨ 0dǫ = e

√
π/2 < ∞ and F is uniformly bounded, application of Lemma

A.2 then establishes that F is Donsker and pre-Gaussian uniformly in P ∈ P.15

To demonstrate claim (b), we need to translate pre-Gaussianity of F uniformly in P ∈ P into

the continuity property stated above. One implication is simple:

sup
P∈P

EP sup
u∈U
‖ZP (u)‖ 6 sup

P∈P
EP sup

f∈F
‖GP (f)‖ <∞.

Consider a sequence of positive constants ε approaching zero, and note that

EP sup
dU (u,ũ)6ε

‖ZP (u)− ZP (ũ)‖ . EP sup
dU (u,ũ)6ε

max
k6dρ
|GP (ψuk − ψūk)| . EP sup

dU (u,ũ)6ε
|GP (fu − fū)|

where fu and fū must be of the form:

1{Z = z}(Uu − gUu(z,X))

m(z,X)
+ gUu(z,X),

1{Z = z}(Uū − gUū(z,X))

m(z,X)
+ gUū(z,X),

with (Uu, Uū) equal to either (Yu, Yū) or (1d(D)Yu, 1d(D)Yū), for d = 0 or 1, and z = 0 or 1.

Then

sup
P∈P
‖fu − fū‖P,2 . sup

P∈P
‖Yu − Yū‖P,2 → 0,

as dU (u, ū)→ 0 by Assumption 2, which together with F being uniformly pre-Gaussian implies

that:

sup
P∈P

EP sup
dU (u,ũ)6ε

|GP (fu − fū)| → 0,

which implies

sup
P∈P

EP sup
dU (u,ũ)6ε

‖ZP (u)− ZP (ũ)‖ → 0.

15The set of functions F is image-admissible Suslin, since it is formed by a continuous transformation of

(Yu, u ∈ U), which is image-admissible Suslin and a finite set of random variables (which are trivially image-

admissible Suslin).
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Lastly, supP∈P ‖fu − fū‖P,2 . supP∈P ‖Yu − Yū‖P,2 follows from the fact that ‖fu − fū‖P,2 .
‖Yu − Yū‖P,2 for each P ∈ P, which follows from a sequence of inequalities holding for each

P ∈ P: (1)
‖fu − fū‖P,2 . ‖Uu − Uū‖P,2 + ‖gUu(z,X) − gUū(z,X)‖P,2,

which we deduced using triangle inequality and the fact that m(z,X) is bounded away from zero,

(2) ‖Uu − Uū‖P,2 6 ‖Yu − Yū‖P,2, which we deduced using a Holder inequality, (3)

‖gUu(z,X) − gUū(z,X)‖P,2 6 ‖Uu − Uū‖P,2,

which we deduced by the definition of gV (z,X) = EP (V |X,Z = z) and the contraction property

of conditional expectation recalled in Lemma A.6. �

B.2. Proof of Theorem 4.2. The proof will be similar to the previous proof, and as in that

proof we only focus the presentation on the first strategy.

Step 0. (A Preamble). In the proof a . b means that a 6 Ab, where the constant A depends

on the constants in Assumptions only, but not on n once n > n0 = min{j : δj 6 1/2}, and not

on P ∈ Pn. We consider a sequence Pn in Pn, but for simplicity, we write P = Pn throughout

the proof, suppressing the index n. Since the argument is asymptotic, we can just assume that

n > n0 in what follows.

Let Pn denote the measure that puts mass n−1 on points (ξi,Wi) for i = 1, ..., n. Let En denote

the expectation with respect to this measure, so that Enf = n−1
∑n

i=1 f(ξi,Wi).

Recall the we define the bootstrap draw as:

√
n(ρ̂∗ − ρ̂) =

(
1√
n

n∑

i=1

ξiψ̂
ρ
u(Wi)

)

u∈U

= Gn(ξψ̂
ρ).

Step 1.(Linearization) In this step we establish the first claim, namely that

√
n(ρ̂∗ − ρ̂) = Z∗n,P + oP (1) in ℓ∞(U)dρ , (68)

where Z∗n,P := (Gnξψ
ρ
u)u∈U . The components (

√
n(γ̂∗Vuj

− γ̂Vuj
))u∈U of

√
n(ρ̂∗ − ρ̂) trivially have

the linear representation (with no error) for each j ∈ J . We only need to establish the claim for

the empirical process (
√
n(α̂∗Vuj

(z)− α̂Vuj
(z)))u∈U for z ∈ {0, 1}, which we do in the steps below.

(a) As in the previous proof, we have that with probability at least 1−∆n,

ĥV ∈ HV,n := {h = (ḡ(0, ·), ḡ(1, ·), m̄(0, ·), m̄(1, ·), ) ∈ GV (0) × GV (1)×M(0) ×M(1)}.

(b) We have that

√
n(α̂V (z)− αV (z)) = Gn[ξfhV ,V,z]︸ ︷︷ ︸

I∗
V
(z)

+(Gn[ξfh,V,z]−Gn[ξfhV ,V,z])︸ ︷︷ ︸
II∗

V
(z)

+
√
n(E[ξfh,V,z − ξfhV ,h,z])︸ ︷︷ ︸

III∗
V
(z)

,

with h evaluated at h = ĥV .



38

(c) Note that III∗V (z) = IIIV (z) since ξ is independent of W , so by the previous proof since

ĥV ∈ HV,n for all V ∈ V with probability 1−∆n, we have that once n > n0,

PP

(
|III∗V (z)| . δ2n,∀z ∈ {0, 1},∀V ∈ V

)
> 1−∆n.

(d). Furthermore, we have that

sup
V ∈V

max
z∈{0,1}

|IIV (z)| 6 sup
h∈HV,n,z∈{0,1},V ∈V

|Gn[ξfh,V,z]−Gn[ξfhV ,V,z]|.

By the previous proof the class of functions, Fn = (fh,V,z− fhV ,V,z : z ∈ {0, 1}, V ∈ V, h ∈ HV,n),

obeys log supQN(ε,Fn, ‖ · ‖Q,2) . (s log p+ s log(1/ε))∨0. By Lemma A.5, multiplication of this

class with ξ does not change the entropy bound modulo an absolute constant, namely

log sup
Q
N(ε, ξFn, ‖ · ‖Q,2) . (s log p+ s log(1/ε)) ∨ 0,

since the envelope for ξFn this class is |ξ| times a constant, and E[ξ2] = 1. We also have that,

by standard calculations,

(E[max
i6n
|ξ|2])1/2 . log n.

Applying Lemma A.3 and Markov inequality, we have for some constant K > e

sup
V ∈V

max
z∈{0,1}

|IIV (z)| 6 sup
f∈Fn

|Gn(f)|

= OP(1)

(√
sσ2n log(p ∨K ∨ σ−1n ) +

s log n√
n

log(p ∨K ∨ σ−1n )

)

= OP(1)

(√
sδ2nn

−1/2 log(p ∨ n) +
√
s2n−1 log3(p ∨ n)

)

= OP(1)
(
δnδ

1/4
n + δ1/2n

)
= OP(δ

1/2
n ),

for σn = supf∈ξFn
‖f‖P,2 = supf∈Fn

‖f‖P,2; where the details of calculations are the same as in

the previous proof.

(e) The claim of Step 1 follows by collecting steps (a)-(d).

Step 2 (Unconditional Uniform Donskerness). Here we claim that Assumption 2 implies: The

set of vector functions (ξψρ
u)u∈U , where ψ

ρ
u := ({ψα

V,0, ψ
α
V,1, ψ

γ
V })V ∈Vu , is P -Donsker uniformly in

P, namely that

Z∗n,P  Z∗P in ℓ∞(U)dρ , uniformly in P ∈ P ,
where Z∗n,P := (Gnξψ

ρ
u)u∈U and Z∗P := (GP ξψ

ρ
u)u∈U is equal in distribution to ZP := (GP ξψ

ρ
u)u∈U ,

in particular, Z∗P and ZP share the identical covariance function.

To verify (a), we shall invoke Lemma A.2. To demonstrate the claim, it will suffice to consider

the set of R-valued functions ξΨ, where Ψ = (ψuk, u ∈ U , k ∈ 1, ..., dρ). As in the previous proof,

we notice that Gn(ξψuk) = Gn(ξf) for f ∈ F = F0∪F1∪V. That ξΨ is Donsker and pre-Gaussian

uniformly in P ∈ P is then implied by ξF being Donsker and pre-Gaussian uniformly in P ∈ P, so
we demonstrate the latter claim. From the previous proof, log supQN(ε,F , ‖·‖Q,2) . log(e/ǫ)∨0.
By Lemma A.5 multiplication by ξ does not change the entropy bound, modulo a multiplicative
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constant, hence log supQN(ε, ξF , ‖·‖Q,2) . log(e/ǫ)∨0. This establishes that ξF is Donsker and

pre-Gaussian uniformly in P ∈ P. Since multiplication by ξ to create GP (ξf) does not change

the covariance function of GP (f), the P-Gaussian processes indexed by ξF and by F are equal

in distribution. The claim that Z∗n,P  ZP then follows as in the previous proof.

Step 3 (Uniform Donskerness Conditional on Data). The previous argument implies uncon-

ditional convergence in distribution under any sequence P = Pn ∈ Pn. Using the same argument

as in the first part of the proof of Theorem 2.9.6 in van der Vaart and Wellner (1996), we can

claim that the conditional convergence takes place under any sequence P = Pn ∈ Pn, using the

unconditional convergence to establish stochastic equicontinuity for the conditional convergence.

Moreover, linearization error in Step 1 converges to zero in unconditional probability. It is known

that this is stronger than the conditional convergence. The final claim follows by combining the

steps. �

B.3. Proof of Theorem 4.3. We have that under the sequence Pn

ZPn,n  ZPn ,

which means that limn→∞ suph∈BL1
|E∗Pn

h(ZPn,n) − EPnh(ZPn)| = 0. By the uniform in P ∈ P
pre-Gaussianity of ZPn and compactness of Dρ we can split Z into a collection of subsequences

{Z′}, along each of which

ZPn  Z ′, ρPn → ρ′,

meaning that limn∈Z′ suph∈BL1
|EPnh(ZPn)−EPnh(Z

′)| = 0, where Z ′ is a tight Gaussian process,

which depends on a subsequence Z′ with paths that are continuous on U , with covariance function

equal to the limit of the covariance function ZPn along the subsequence, which may depend on

Z
′, and ρ′ is some value that also depends on the subsequence. We can conclude by the triangle

inequality that along that same subsequence,

ZPn,n  Z ′.

Application of the functional delta method for subsequences, Lemma A.7, yields

√
n(∆̂−∆) TP := φ′ρ′(Z

′)

and, furthermore, by Assumption 5 and the extended continuous mapping theorem,

φ′ρPn (ZPn) φ′ρ′(Z
′).

Since the argument above works for all subsequences as defined above, we conclude that

√
n(∆̂−∆) φ′ρ(ZP ), in ℓ∞(W)dρ , uniformly in P ∈ Pn.

The conclusion for bootstrap follows similarly, except now we apply Lemma A.8. �
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Figure 1. LQTE estimates based on indicator specification.
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Figure 2. LQTE estimates based on b-spline specification.
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Figure 3. LQTE-T estimates based on indicator specification.
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Figure 4. LQTE-T estimates based on b-spline specification.
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