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Abstract

In this paper we study a random coe¢ cient model for a binary outcome. We allow for the

possibility that some or even all of the regressors are arbitrarily correlated with the random

coe¢ cients, thus permitting endogeneity. We assume the existence of observed instrumental

variables Z that are jointly independent with the random coe¢ cients, although we place no

structure on the joint determination of the endogenous variable X and instruments Z, as would

be required for a control function approach. The model �ts within the spectrum of generalized

instrumental variable models studied in Chesher and Rosen (2012a), and we thus apply identi-

�cation results from that and related studies to the present context, demonstrating their use.

Speci�cally, we characterize the identi�ed set for the distribution of random coe¢ cients in the

binary response model with endogeneity via a collection of conditional moment inequalities, and

we investigate the structure of these sets by way of numerical illustration.

Keywords: random coe¢ cients, instrumental variables, endogeneity, incomplete models, set

identi�cation, partial identi�cation, random sets.
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1 Introduction

In this paper we analyze a random coe¢ cients model for a binary outcome,

Y = 1 [�0 +X�1 +W�2 > 0] , (1.1)

where � �
�
�0; �

0
1; �

0
2

�0 are random coe¢ cients. While covariatesW are restricted to be exogenous,

covariates X are permitted to be endogenous in the sense that the joint distribution of X and

random coe¢ cients � is not restricted. We assume that in addition to the variables (Y;X;W ), the

researcher observes realizations of a random vector of instrumental variables Z such that (W;Z)

and � are independently distributed. Thus our goal is to use knowledge of the joint distribution

of (Y;X;W;Z) to set identify the marginal distribution of the random coe¢ cients �, denoted F�,

with the joint distribution of random vectors X and � left unrestricted. As a special case we also

allow for the possibility there are no exogenous regressors W .1 As shorthand we use the notation

~Z � (W;Z) to denote the composite vector of all exogenous variables.

In order to characterize the identi�ed set for F� we carry out our identi�cation analysis along

the lines of Chesher, Rosen, and Smolinski (forthcoming) (CRS) and Chesher and Rosen (2012a).

Like CRS we consider a single equation model for a discrete outcome, but here we restrict the

outcome to be binary. The model (1.1) used in this paper however features random coe¢ cients,

which are not present in CRS. The model is a special case of the general class of models consid-

ered in Chesher and Rosen (2012a), where we provide identi�cation analysis for a broad class of

instrumental variable models. Like those models, the random coe¢ cient model (1.1) allows for

multiple sources of unobserved heterogeneity, whereas traditionally instrumental variable methods

have been employed in models admitting a single source of unobserved heterogeneity. This paper

thus investigates and illustrates by way of example the identifying power of instrumental variable

restrictions with multivariate unobserved heterogeneity in the determination of a binary outcome.

1Similarly, the random intercept �0 can be easily removed from the analysis by restricting �0 = 0 throughout.
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The characterizations we employ rely on results from random set theory, and these and related

results have been used for identi�cation analysis in various ways and in a variety of contexts by

Beresteanu, Molchanov, and Molinari (2011), Galichon and Henry (2011), Beresteanu, Molchanov,

and Molinari (2012), CRS, and Chesher and Rosen (2012a, 2012b). As in CRS and Chesher and

Rosen (2012a, 2012b), our characterizations make use of properties of conditional distributions of

certain random sets in the space of unobserved heterogeneity.

The model also builds on the instrumental variable models for binary outcomes considered

in Chesher (2010) and Chesher (forthcoming), where a single source of unobserved heterogeneity

was permitted. There it was found that even if parametric restrictions were brought to bear,

the models were in general not point-identifying, and so with the addition of further sources of

unobserved heterogeneity, point identi�cation should not generally be expected. The paper thus

serves to illustrate in part the e¤ect of additional sources of heterogeneity from the perspective of

identi�cation. The case of a binary outcome variable is convenient for illustration, but models that

permit more variation in outcome variables may achieve greater identifying power.

Binary response speci�cations that model � in (1.1) as a random vector include e.g. those of

Quandt (1966) and McFadden (1976), and can be viewed as special cases of the discrete choice

models of Hausman and Wise (1978) and Lerman and Manski (1981). These papers focus on

speci�cations where all covariates and � are independently distributed, and where the distribution of

� is parametrically speci�ed, enabling estimation via maximum likelihood. Ichimura and Thompson

(1998) and Gautier and Kitamura (forthcoming) focus on the binary outcome model (1.1), again

with covariates and random coe¢ cients independently distributed, but with F� nonparametrically

speci�ed. Ichimura and Thompson (1998) provide su¢ cient conditions for point identi�cation of

F� in this case, and prove that F� can be consistently estimated via nonparametric maximum

likelihood. Gautier and Kitamura (forthcoming) introduce a computationally simple estimator for

the density of �, and derive its rate of convergence and pointwise asymptotic normality, while

Gautier and LePennec (2011) propose an adaptive estimation method.

In contrast, we do not require that X k � and we employ instrumental variables Z. The use

of an IV approach in a random coe¢ cients binary response model with endogeneity is new. A
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control function approach is employed by Hoderlein (2009) to provide identi�cation results for

marginal e¤ects and local average structural derivatives when a triangular structure is assumed for

the determination of X as a function of Z. He shows that the additional structure for the relation

between the potentially endogenous variable X and the instrument Z then allows estimation via a

control function approach. Our model does not require one to specify the form of the stochastic

relation between X and Z, and is thus incomplete for the endogenous variables X.2

The random coe¢ cients logit model of Berry, Levinsohn, and Pakes (1995) (BLP), now a bedrock

of the empirical IO literature, allows for endogeneity of prices using insight from Berry (1994) to

handle endogeneity. Yet the endogeneity problem in that and related models in IO is fundamentally

di¤erent from the one in this paper. Their approach deals with correlation between alternative-

speci�c unobservables with prices at the market level, both of which are assumed independent of

random coe¢ cients that allow for consumer-speci�c heterogeneity. Important identi�cation results

in such models are provided by Berry and Haile (2009, 2010), and a general treatment of the

literature on such models and their relation to other models of demand is given by Nevo (2011).

Here we focus on binary response models at a micro-level, rather than across separate markets,

absent alternative-speci�c unobservables, and we allow random coe¢ cients to be correlated with

regressors.3 Recent papers that give identi�cation results for micro-level discrete choice models with

exogenous covariates and high-dimensional unobserved heterogeneity include Briesch, Chintagunta,

and Matzkin (2010), Bajari, Fox, Kim, and Ryan (2012), and Fox and Gandhi (2012). The latter

also allows for endogeneity with alternative-speci�c special regressors and further structure on the

determination of endogenous regressors as a function of the instruments.

Outline of the Paper: In Section 2 we formally present our model and key restrictions, and we

introduce a simple example in which there is one endogenous regressor and no exogenous regressors.

In Section 3 we characterize the identi�ed set for the distribution of random coe¢ cients in the

general model set out in Section 2 and we provide two further examples. In Section 4 we provide

2The model is incomplete because there is no speci�cation for the determination of X given exogenous variables
Z and unobserved heterogeneity �. Thus, for any realization of (Z; �), each x on the support of X is a feasible
realization of X. On the other hand, the triangular structure used in the control function approach implies a unique
value of X for any realization of exogenous variables and unobservables.

3 In a binary choice model the presence of unobserved, additively-separable, alternative-speci�c utility shifters
may be subsumed into the threshold-crossing speci�cation, and so is unnecessary.
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numerical illustrations of identi�ed sets for subsets of parameters in a parametric version of our

model for four di¤erent data generation processes. Section 5 concludes. The proof of the main

identi�cation result, which adapts theorems from CRS, is provided in Appendix A. Appendix B

provides computational details absent from the main text, and Appendix C veri�es that there

would be point identi�cation in the example considered in the numerical illustrations of Section 4

if exogeneity restrictions were imposed.

Notation: We use capital Roman letters A to denote random variables and lower case letters a to

denote particular realizations. For probability measure P, P (�ja) is used to denote the conditional

probability measure given A = a. Calligraphic font A is used to denote the support of A for any

well-de�ned random variable A in our model. B denotes the support of the random coe¢ cient

vector �, and S denotes a random closed set on B. For any pair of random vectors A1; A2, A1 k A2

denotes stochastic independence, Supp(A1; A2; :::; An) denotes the joint support of the collection of

random vectors A1; A2; :::; An, and Supp(A1; A2; :::; Anjb1; :::; bm) denotes the conditional support of

(A1; A2; :::; An) given realizations random vectors (B1; :::; Bm) = (b1; :::; bm). ; denotes the empty

set. We use F� to denote the probability distribution of �, mapping from Borel sets on B to the

unit interval. F is used to denote the admissible �parameter�space for F�, F is used to denote a

generic element of F , and F� denotes the identi�ed set for F� . We use cl(A) to denote the closure of

a set A. Finally, ~Z � (W;Z) is used to denote the vector of all exogenous variables, and ~z = (w; z)

for particular realizations.

2 The Model

We now formally set out the restrictions of our model.

Restriction A1: Y 2 f0; 1g, X 2 X � Rkx , and W 2 W � Rkw obey (1.1) for some unobserved

� 2 B � Rk with k = kx + kw + 1, and Z 2 Z � Rkz . (�;W;X; Y; Z) belong to a probability space

(
;=;P) endowed with the Borel sets on 
 and the joint distribution of (X;W; Y; Z), denoted

F 0XWY Z , is identi�ed. For all (x;w; z)2Supp(X;W;Z), 0 < P [Y = 1jx;w; z] < 1.

Restriction A2: For any (w; x; z) on the support of (W;X;Z), the conditional distribution of
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random vector � given W = w, X = x, and Z = z is absolutely continuous with respect to

Lebesgue measure on B. � is marginally distributed according to the probability measure F�

mapping from the Borel sets on B to the unit interval, with associated density f�. F� is known to

belong to some class of probability measures F .4

Restriction A3: (W;Z) and � are independently distributed.

Restriction A1 invokes the random coe¢ cient model for the binary outcome Y and de�nes

the support of random vectors X;W and Z. The restriction further requires that for all (x;w; z)

both Y = 1 and Y = 0 have positive probability P (�jx;w; z). This simpli�es the exposition

of some of the developments that follow, but is not essential. We do not otherwise restrict the

joint support of (W;X; Y; Z). We require that the joint distribution of (W;X; Y; Z) is identi�ed, as

would be the case under random sampling, for instance. Restriction A3 is our instrumental variable

restriction, requiring independence of (W;Z) and �. Restriction A2 restricts F� to some known

class of distribution functions. In principle, this class could be parametrically, semiparametrically,

or nonparametrically speci�ed. Of course greater identifying power will be a¤orded when F is

parametrically speci�ed, as is the case in our illustrations in Section 4, where � is restricted to be

normally distributed, a common restriction in random coe¢ cient models.

As is always the case in models of binary response, it will be prudent to impose a scale nor-

malization since x� > 0 holds if and only if c � x� > 0 for all scalars c > 0.5 This may be imposed

by imposing for example that B =
�
b 2 Rk : kbk = 1

	
if F is nonparametrically-speci�ed, or by

imposing that the �rst component of � has unit variance, e.g. when F is parametrically-speci�ed

as in the following example, also employed in the numerical illustrations of Section 4.

Example 1 (One endogenous variable, no exogenous variables): Suppose X 2 R and that

there are no exogenous covariates W . Then we can write (1.1) as

Y = 1 [�0 + �1X > 0] ,

4 If B is bounded the absolute continuity condition should be understood to be required to hold with respect to
the uniform measure on B.

5Such normalizations are not strictly required when allowing for set identi�cation, but are wise to impose in order
to enable comparison of set and point-identifying models.
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with � =
�
�0; �

0
1

�0. Suppose that F is the class of bivariate normal distributions whose �rst

component has unit variance. Then de�ning �0, �1 as the means of �0, �1, respectively, we have

the representation

Y = 1 [�0 + �1X > �U0 � U1X] ,

where U0 � �0 � �0 and U1 � �1 � �1 are mean-zero bivariate normally distributed with the same

variance as � = (�0; �1). We then have from Restriction A3 that U k Z, and we can parameterize

the distribution U � (U0; U1) as

U0 � N(0; 1) U1jU0 = u0 � N(
0u0; 
1),

equivalently:

U � N

0B@
0B@ 0

0

1CA ;
0B@ 1 
0


0 
1 + 

2
0

1CA
1CA :

Knowledge of the parameter vector (�0; �1; 
0; 
1) would then su¢ ce for the determination of F�,

so the identi�ed set for F� can be succinctly expressed as the identi�ed set for (�0; �1; 
0; 
1). �

3 Identi�cation

For identi�cation analysis it will be useful to consider the correspondence

T (w; x; y) � cl
n�
b0; b

0
1; b

0
2

�0 2 B : y = 1 [b0 + xb1 + wb2 > 0]o , (3.1)

which is the closure of the halfspace of B on which 2y � 1 and b0 + xb1 + wb2 have the same

sign. Application of this correspondence to random elements (W;X; Y ) yields a random closed

set T (W;X; Y ). For any realization of the exogenous variables ~z 2 ~Z �Supp(W;Z), the condi-

tional distribution of this random set given ~Z = ~z is completely determined by the distribution of

(W;X; Y ) given ~Z = ~z, which is identi�ed given knowledge of F 0WXY Z under Restriction A1. The

identi�ed set for F�, denoted F�, is then the set of measures F 2 F that are selectionable from

the conditional distribution of T (W;X; Y ) given ~Z = ~z for almost every ~z 2 ~Z. That is, F 2 F�
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if and only if F 2 F and there exists a random variable ~� realized on (
;=;P) and distributed F

such that P
�
~� 2 T (W;X; Y ) j~z

�
= 1, a.e. ~z 2 ~Z.6

As done in CRS for utility-maximizing discrete choice models without random coe¢ cients and

in Chesher and Rosen (2012a) for single equation IV models more generally, we can characterize

the identi�ed set through the use of conditional containment functional inequalities. By the same

steps taken in Theorem 1 of CRS, a distribution F is selectionable from the conditional distribution

of T (W;X; Y ) given ~Z = ~z, if and only if for all closed sets S � B,

F (S) � P [T (W;X; Y ) � Sj~z] . (3.2)

Using the conditional containment inequality (3.2) reduces the problem of determining which

F are selectionable from T (W;X; Y ) to the veri�cation of a collection of conditional moment

inequalities. In Chesher, Rosen, and Smolinski (forthcoming), Chesher and Rosen (2012a), and

Chesher and Rosen (2012b) we devised algorithms to determine which test sets S are su¢ cient in

the contexts of the models in those papers to imply (3.2) for all possible test sets S. The collection

of such sets, referred to as core-determining sets, is crucially dependent on the support of the

random set under consideration. By the same reasoning as in those papers, it is su¢ cient to focus

on test sets that are unions of sets that belong to the support of T (W;X; Y ) conditional on the

realization of exogenous variables ~Z. For any realization (w; z) this is given by the collection of

test sets

T (w; z) � fT (w; x; y) : y 2 f0; 1g ^ x 2 Supp (Xjw; z)g . (3.3)

We do not require that the conditional support of X given (w; z) coincide with its unconditional

support, but in that case Supp(Xjw; z) in (3.3) can be replaced with X , and the collection of sets

T (w; z) does not vary with (w; z). The larger the conditional support Supp(Xjw; z), the larger will

be the core-determining collection of test sets.

Given any (w; z), each element of T (w; z) is a half-space in B, so the required test sets S take
6The requirement that ~� lives on (
;=;P) is innocuous. If this were not the case, then one could simply rede�ne

the initial probability space as the product of (
;=;P) and the space on which ~� lives.
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the form of unions of these halfspaces:

S = T1 [ � � � [ TJ ,

where each Tj 2 T (w; z), j = 1; :::; J . Alternatively, we can write

S = (T c1 \ � � � \ T cJ )
c ,

where for any set A � B, Ac denotes the complement of A in B. This is convenient because

the complement of each Tj , T cj , is also a halfspace, and the intersection of halfspaces is a convex

polytope. Thus the collection of core-determining test sets S are all complements of intersections

of halfspaces, equivalently complements of convex polytopes. The formal result follows.

Theorem 1 Let Restrictions A1-A3 hold. Then the identi�ed set for F� is

F� =
�
F 2 F : 8S 2 T[ (w; z) , F (S) � P [T (W;X; Y ) � Sjw; z] , a.e. (W;Z)

	
(3.4)

where T[ (w; z) denotes the collection of sets that are unions of members of T (w; z). Equivalently,

F� =
�
F 2 F : 8S 2 T\ (w; z) , F (S) � P [T (W;X; Y ) \ S 6= ;jw; z] , a.e. (W;Z)

	
, (3.5)

where T\ (w; z) denotes the collection of sets that are intersections of members of Tc (w; z), where

Tc (w; z) � fT c (w; x; y) : y 2 f0; 1g ^ x 2 Supp (Xjw; z)g ,

which is the collection of sets that are complements of those in T (w; z).

The theorem follows from consideration of Theorems 1 and 2 of CRS, adapted to the random

set T (W;X; Y ) de�ned in (3.1), which make use of Artstein�s inequality (Artstein (1983)) to prove

sharpness.7 The characterization of test sets for the containment functional characterization (3.4)

7See also Norberg (1992) and Molchanov (2005) Section 1.4.8.
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of CRS Theorem 2 stipulates that a core determining collection of test sets S is given by those

which are (i) unions of elements of T (w; z) (ii) such that the union of the interiors of component

sets is a connected set. In this paper condition (ii) may be ignored because the sets T (w; x; y)

and T (w0; x0; y0) are all halfspaces through the origin, ensuring that T (w; x; y) \ T (w0; x0; y0) has

open interior except in the special case (x;w) = (x0; w0) and y0 = 1� y, in which case T (w; x; y) [

T (w0; x0; y0) = B. The test set B can indeed be safely discarded from consideration because from

F (B) = 1, (3.4) is trivially satis�ed. The containment functional characterization (3.4) and capacity

functional characterization (3.5) are equivalent, although the latter form may prove convenient from

a computational standpoint since the collection of associated test sets T\ are convex polytopes.

In general Theorem 1 delivers a collection of conditional moment inequalities characterizing

the identi�ed set, with one such inequality conditional on the realization of exogenous variables

(w; z) for each element of T[ (w; z) in (3.4), equivalently one conditional moment inequality for

each element of T\ (w; z) in (3.5). In some important special cases, considered in the examples

below, characterization of the identi�ed set can be further simpli�ed.

Example 2 (No endogenous covariates): A leading and well-studied example is the case where

there are no endogenous variables X. Then for each (w; z) we have that

T (w; z) = ffb 2 B : b0 + wb2 � 0g ; fb 2 B : b0 + wb2 � 0gg ,

where b is of the form b = (b0; b
0
2)
0. The intersection of these sets is fb 2 B : b0 + wb2 = 0g, which

has zero measure F� under restriction A2, and their union is B, which has measure 1. It follows

from similar reasoning as in Theorem 6 of Chesher and Rosen (2012b) that for any (w; z) the

inequalities of the characterizations of Theorem 1 produce moment equalities. Consider for example

the containment functional inequalities of (3.4) delivered by S 2 T[ (w; z):

F (fb 2 B : b0 + wb2 � 0g) � P [T (W;Y ) � fb 2 B : b0 + wb2 � 0g jw; z] = P [Y = 1jw; z] ,

F (fb 2 B : b0 + wb2 � 0g) � P [T (W;Y ) � fb 2 B : b0 + wb2 � 0g jw; z] = P [Y = 0jw; z] ,

F (B) � P [T (W;Y ) � Bjw; z] = 1.
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The last inequality is trivially satis�ed for all F 2 F . Both the right-hand sides and the left-hand

sides of the �rst two inequalities clearly sum to one, implying that these inequalities must in fact

hold with equality, giving

F (fb 2 B : b0 + wb2 � 0g) = P [Y = 1jw; z] , (3.6)

F (fb 2 B : b0 + wb2 � 0g) = P [Y = 0jw; z] .

When there are no excluded exogenous variables z and F� is not restricted to a parametric fam-

ily, these equations coincide with the identifying equations in Ichimura and Thompson (1998) and

Gautier and Kitamura (forthcoming), and Ichimura and Thompson (1998) provide su¢ cient con-

ditions for point identi�cation.8 When F is parametrically restricted these equalities are likelihood

contributions, e.g. integrals with respect to the normal density in Hausman and Wise (1978) or

Lerman and Manski (1981), and less stringent conditions are required for point identi�cation. In

the absence of su¢ cient conditions for point identi�cation, the moment equalities (3.6) a.e. (W;Z)

nonetheless fully characterize the identi�ed set. �

Example 3 (One endogenous covariate with arbitrary exogenous covariates): Consider

the common setting where there is a single endogenous regressor, X 2 R, as well as some exogenous

regressors W , a random kw-vector. Then given any (w; z) the collection of sets T (w; z) is given by

T (w; z) �
[

x2Supp(Xjw;z)

nn�
b0; b1; b

0
2

�0 2 B : b0 + xb1 + wb2 � 0o ;n�b0; b1; b02�0 2 B : b0 + xb1 + wb2 � 0oo .
Consider now a test set S which is one of the core-determining sets in T[ (w; z) and hence an

arbitrary union of sets in T (w; z). Any such S can be written as the set of (b0; b1; b02)
0 2 B that

8The restrictions used to ensure point identi�cation include the requirements that for some �xed c 2 Rkw ,
F� (fb : c0b > 0g = 1), and that the distribution of W has an absolutely continuous component with everywhere
positive density. Our characterizations of the identi�ed set, given by (3.6) in the case of only exogenous covariates,
do not require these restrictions.
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satisfy one of the inequalities

b0 + wb2 +max
j
fx1jb1g � 0,

b0 + wb2 +min
m
fx0mb1g � 0,

for some collections of values for X, X1�fx11; :::; x1Jg and X0�fx01; :::; x0Mg, with the maxima

and minima taken over j = 1; :::; J and m = 1; :::;M . If b1 � 0 this simpli�es to

max
j
x1jb1 � �b0 � wb2 � min

m
x0mb1,

while if b1 < 0 the inequalities can be written

min
j
x1jb1 � �b0 � wb2 � max

m
x0mb1.

Without loss of generality, assume that the components of X0 and X1 are ordered from smallest to

largest. It follows that we can write any S 2 T[ (w; z) as a union of no more than 4 elements of

T (w; z) since by the above reasoning for any such X0 and X1 we have

S = ([jT (w; xj ; 1))[([mT (w; xm; 0)) = T (w; x11; 1)[T (w; x1J ; 1)[T (w; x01; 0)[T (w; x0M ; 0) .

From this it follows that we need only consider for each (w; z) test sets S of the form

S = T (w; x1; 1) [ T (w; x2; 1) [ T
�
w; x01; 0

�
[
�
w; x02; 0

�
,

where x2 � x1 and x02 � x01
Example 1, continued: If we restrict attention to cases with no exogenous covariates W , there

is in fact further simpli�cation of the list of core-determining sets. To see why, note that in this
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case the collection T (w; z) = T (z) for any z reduces to

T (z) �
[

x2Supp(Xjz)

��
(b0; b1)

0 2 B : b0 + xb1 � 0
	
;
�
(b0; b1)

0 2 B : b0 + xb1 � 0
		
.

Each element of T (z) is thus a halfspace in R2 de�ned by a separating hyperplane through the origin

intersected with B. The union of an arbitrary number of such halfspaces can be equivalently written

as the union of no more than two such halfspaces. Therefore the collection of core-determining sets

T[ (w; z) = T[ (z) is given by the collection of test sets that can be written as either elements of

T (z) or unions of a pair of elements in T (z),

T[ (z) =
[

x1;x22Supp(Xjz)
y1;y22f0;1g

fT (x1; y1) [ T (x2; y2)g , (3.7)

where for any x 2 X and y 2 f0; 1g,

T (x; y) = cl
�
(b0; b1)

0 2 B : y = 1 [b0 + xb1 > 0]
	
.

The characterization applies for either continuous or discrete X, but if X is discrete with K points

of support there are no more than 2K2 sets in T[ (z) for any z 2 Z. This follows from noting there

are 2K unique (x; y) pairs and the number of all pairwise unions (including the union of each set

with itself) is (2K)2 =2, with division by two from the observation that for any (x1; y1) and (x2; y2),

T (x1; y1) [ T (x2; y2) = T (x2; y2) [ T (x1; y1). �

In the numerical illustrations that follow we consider various instances of Example 1, where there

are no exogenous covariates W and where F is restricted to a parametric (speci�cally Gaussian)

family. In the illustration we investigate identi�ed sets for averages of (�0; �1), and we show that

this a¤ords further computational simpli�cation, in the sense that for any �xed candidate values of

(E�0; E�1), we need only consider test sets S that are unions of two elements of T (w; z) in order

to check whether any (E�0; E�1) belongs to the identi�ed set.
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4 Numerical Illustrations

To investigate the identifying power of our binary outcome random coe¢ cient model with instru-

ments, we consider Example 1, where

Y = 1 [�0 + �1X > 0] .

with X a univariate random variable and (�0; �1)
0 bivariate normally distributed with mean

(�0; �1), cov (�0; �1) = 
0, var (�0) = 1, and var (�1) = 
1 + 

2
0. We can then equivalently

write the model as

Y = 1 [U0 + U1X > ��0 � �1X] ,

where U = (U0; U1) are bivariate normal with zero mean and the same variance as (�0; �1). We

then de�ne

GU (U ; �) � F� (f(u0 + �0; u1 + �1) : u 2 Ug)

as the probability that U belongs the the set U where � = (�0; �1; 
0; 
1) and when � is distributed

F� with mean � and variance governed by parameters (
0; 
1). Given the restriction that � =

(�0; �1)
0 is bivariate normally distributed, knowledge of � implies knowledge of F� . We thus consider

the identi�ed set for �, denoted ��, and focus our attention in particular on the identi�ed set for

(�0; �1), the projection of the �rst two elements of �� on R2.

4.1 Data-Generating Processes

Our examples employ data-generating processes with a triangular structure for X as a function of

instrument Z, as follows.

X = xk i¤ ck�1 < X
� � ck, k 2 f1; : : : ;Kg,

X� = �1Z + �2U0 + �3U1 + �4V ,

14



where 266664
U0

U1

V

377775 � N
0BBBB@
0BBBB@
0

0

0

1CCCCA ;
0BBBB@

1 
0 0


0 
1 + 

2
0 0

0 0 1

1CCCCA
1CCCCA .

We do four calculations. In the �rst two calculations parameters are set such that X is endogenous,

with the instrument having varying degrees of strength in terms of predictive ability for X. In both

cases parameter values are set as follows:

�0 = 0; �1 = �1, 
0 = �1 
1 = 1,

K = 4; (x1; x2; x3; x4) = (�1; 0; 1; 2); (c0; c1; c2; c3; c4) = (�1;�1; 0; 1;1).

The support of the instrument Z is speci�ed as

Z = f�2;�1; 1; 2g.

In the stronger instrument case there is:

� � (�1; �2; �3; �4) = (1; 0:577;�0:577; 0:577) ,

and in the weaker instrument case:

� � (�1; �2; �3; �4) = (1:5; 0:577;�0:577; 0:462) .

In the stronger instrument case the coe¢ cient on the instrumental variable in the ordered probit

equation for X is larger and the variance of the unobservable variable V is slightly smaller. The

result is that in the stronger instrument case the instrumental variable is a signi�cantly better

predictor of the value of the endogenous explanatory variable X. Table 1 shows the probability

that X takes its four values conditional on the value of the instrumental variable at the two settings

for the instrumental variable.
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z = �2 z = �1 z = +1 z = +2

x = �1 :760 :500 :079 :017
weaker x = 0 :161 :260 :161 :062
instrument x = 1 :062 :161 :260 :161

x = 2 :017 :079 :500 :760

x = �1 :928 :642 :034 :002
stronger x = 0 :058 :221 :103 :013
instrument x = 1 :013 :103 :221 :058

x = 2 :002 :034 :642 :928

Table 1: Conditional probabilities P[X = xjz].

For the third and fourth cases we calculate the identi�ed set for probabilities generated by a

structure in which X is exogenous. The identi�ed sets are for (�0; �1) when this restriction is not

imposed. We show in Appendix C that with X k � known, there is point-identi�cation of the full

parameter vector �. The identi�ed sets obtained without this restriction thus help to illustrate the

identifying power of the exogeneity restriction for a pair of DGPs in which it does hold.

Everything is as in the �rst two DGPs whereX is endogenous except for the following parameter

settings.

� � (�1; �2; �3; �4) =
�
1; 0; 0; 21=2

�
.

The variance of the unobserved element in the equation for X is 2, which is the same as in the

�rst two cases considered, but where the independence restriction X k � is false. The probabilities

P [X = xkjz] of Table 1 hold in both endogenous and exogenous X designs.

4.2 Calculation of Probabilities

There is

P [X = xkjz] = �
�
ck � �1z
�1=2

�
� �

�
ck�1 � �1z
�1=2

�
,

where �(�) is the standard normal distribution function and � is de�ned as

� � �22 + 2�2�3
0 + �23(
1 + 
20) + �24. (4.1)
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Now consider P[Y = 0 ^X = xkjz]. There is given Z = z:

fY = 0 ^X = xkg , f�0 + U0 + xk (�1 + U1) � 0g ^
n
ck�1 � �1z < ~V � ck � �1z

o
,

where

~V � �2U0 + �3U1 + �4V .

It then follows that

(Y = 0 ^X = xk), (Qk � ��0 � �1xk) ^
�
ck�1 � �1z < ~V � ck � �1z

�
,

where

Qk � U0 + xkU1.

Since0B@ ~V

Qk

1CA � N

0B@
264 0
0

375 ;
264 � �2 + 
0 (�3 + �2xk)� �3xk(
1 + 
20)

�2 + 
0 (�3 + �2xk)� �3xk(
1 + 
20) (1 + xk
0)
2 + x2k
1

375
1CA ,

P [Y = 0 ^X = xkjz] can be calculated as the di¤erence between two normal orthant probabilities.

We then have

P[Y = 1 ^X = xkjz] = P[X = xkjz]� P[Y = 0 ^X = xkjz].

In our R programs the required bivariate normal orthant probabilities are calculated using the

pmvnorm program provided in the mvtnorm package, Genz, Bretz, Miwa, Mi, Leisch, Scheipl, and

Hothor (2012), which implements computation of multivariate normal and t probabilities from Genz

and Bretz (2009).9

9R: A Language and Environment for Statistical Computing R Core Team (2012).
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4.3 Calculation of projections

In this model with F� bivariate normal, the distribution of random coe¢ cients is fully conveyed by

the value of the parameter �0 = (�0; �1; 
0; 
1). We calculate two dimensional projections of the

four dimensional identi�ed set for �0, giving results here for the projection onto the plane on which

lie (�0; �1), which is equivalently the identi�ed set for the mean of the random coe¢ cients (�0; �1).

We calculate the projections of the identi�ed set as follows. Let � denote a conjectured value

of the parameter vector (�0; �1; 
0; 
1).

The full 4D identi�ed set is

�� =

�
� 2 � : 8S 2 S; GU (S; �) � max

z2Z
P[T (W;X; Y ) � Sjz]

�

where S = T[ (z) is a collection of 32 core determining sets of the form described for Example 1 in

Section 3, speci�cally (3.7), in the present case where X has four points of support. GU (S; �) is

the probability mass placed on the set S by a bivariate normal distribution with parameters � and

the probabilities P[T (W;X; Y ) � SjZ = z]; z 2 Z, which are identi�ed under Restriction A1.

For computational purposes we make use of the following discrepancy measure:

D(�) � max
z2Z;S2S

(P[T (W;X; Y ) � Sjz]�GU (S; �)) . (4.2)

For values of � in the identi�ed set D(�) � 0. For values of � outside the identi�ed set we have

that for at least one set S 2 S and for some z 2 Z,

GU (S; �)� P[T (W;X; Y ) � Sjz] < 0,

and so for such values D(�) > 0. The full four dimensional identi�ed set can therefore be charac-

terized as follows.

�� = f� 2 � : D(�) � 0g .

To compute identi�ed sets for sub-vectors of parameters, let �c denote a sub-vector of �, that
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is one or more elements of �, and let ��c denote that vector containing the remaining elements of

�. The projection of the identi�ed set onto the space in which �c resides is the set of values of �c

for which there exists ��c such that � = (�c; ��c) lies in the identi�ed set ��. We calculate this set

as the set of values �c for which the value of min��c D(�c; ��c) is nonpositive:

��c =

�
�c : min

��c
D(�c; ��c) � 0

�
, (4.3)

where D(�c; ��c) is to be understood as the function de�ned in (4.2) applied to that value of � with

sub-vectors equal to �c and ��c. We perform this minimization using the optim function in base R.

Figure 1 shows the projections of the identi�ed set in the two cases where X is endogenously

determined. The data generating value (�0; �1) = (0;�1) is plotted as well. In the stronger

instrument case (drawn in red) the projection is smaller in area. Most values in the projection

for the stronger instrument case lie inside the projection for the weaker instrument case, but at

high values of �0 there is a very small region of the stronger instrument projection which is not

contained within the weaker instrument projection. Figure 2 similarly illustrates projections of the

identi�ed set for the exogenous X process. In this case the projection of the identi�ed set for the

stronger instrument case is a strict subset of that in the weaker instrument case.

In all cases, both with endogenous and exogenous X, the projections do not contain any positive

values of �1. That is, the model allows one to sign �1, so that the hypothesis H0 : �1 � 0 is

falsi�able.

5 Conclusion

In this paper we have provided set identi�cation analysis for a model of binary response featur-

ing random coe¢ cients and potentially endogenous regressors. The regressors in question are not

restricted to be distributed independently of the random coe¢ cients. We showed that with an

instrumental variable restriction we can apply analysis along the lines of that in CRS and Chesher

and Rosen (2012a) to characterize the identi�ed set as the those distributions satisfying a collec-

tion of conditional moment inequalities. In our examples of Section 4 there are 32 conditional
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moment inequalities, one for each core-determining set, which hold conditional on any value of the

instrument. While our focus was on identi�cation, recently developed approaches for estimation

and inference based on such characterizations, such as those of Andrews and Shi (forthcoming)

and Chernozhukov, Lee, and Rosen (forthcoming), are applicable. In some settings the number

of core-determining sets in the full characterization may be quite large, necessitating some care in

choosing the number to employ in small samples. Issues that arise due to many moment inequal-

ities have been investigated in an asymptotic paradigm by Menzel (2009). Here the number of

conditional moment inequalities may be quite large, but is necessarily �nite, and future research

on �nite sample approximations for inference and computational issues is warranted.

We have further provided some numerical illustrations of identi�ed sets under particular data

generation processes. We gave an overview of the computational approach we used for computing

these identi�ed sets, and details of these approaches are described in Appendix B.

Although our computational approaches were adequate for the examples considered, we have

little doubt that these approaches may be improved, either by developing more e¢ cient implemen-

tations, or by devising new computational approaches altogether. Nonetheless, the illustrations

serve to illustrate the feasibility of computing identi�ed sets in one particular setting in the general

class of instrumental variable models studied in Chesher and Rosen (2012a). These instrumen-

tal variable models can admit high-dimensional unobserved heterogeneity, for example through a

random-coe¢ cients speci�cation such as the one studied in this paper.

References

Andrews, D. W. K., and X. Shi (forthcoming): �Inference for Parameters De�ned by Condi-

tional Moment Inequalities,�Econometrica.

Artstein, Z. (1983): �Distributions of Random Sets and Random Selections,� Israel Journal of

Mathematics, 46(4), 313�324.

Bajari, P., J. Fox, K.-i. Kim, and S. P. Ryan (2012): �The Random Coe¢ cients Logit Model

is Identi�ed,�Journal of Econometrics, 166(2), 204�212.

20



Beresteanu, A., I. Molchanov, and F. Molinari (2011): �Sharp Identi�cation Regions in

Models with Convex Moment Predictions,�Econometrica, 79(6), 1785�1821.

(2012): �Partial Identi�cation Using Random Set Theory,� Journal of Econometrics,

166(1), 17�32.

Berry, S., and P. Haile (2009): �Nonparametric Identi�cation of Multiple Choice Demand

Models with Heterogeneous Consumers,�NBER working paper w15276.

(2010): �Identi�cation in Di¤erentiated Markets Using Market Level Data,�NBER work-

ing paper w15641.

Berry, S., J. Levinsohn, and A. Pakes (1995): �Automobile Prices in Market Equilibrium,�

Econometrica, 63(4), 841�890.

Berry, S. T. (1994): �Estimating Discrete Choice Models of Product Di¤erentiation,� Rand

Journal of Economics, 25(2), 242�262.

Briesch, R. A., P. K. Chintagunta, and R. L. Matzkin (2010): �Nonparametric Discrete

Choice Models with Unobserved Heterogeneity,� Journal of Business and Economic Statistics,

28(2), 291�307.

Chernozhukov, V., S. Lee, and A. Rosen (forthcoming): �Intersection Bounds, Estimation

and Inference,�Econometrica.

Chesher, A. (2010): �Instrumental Variable Models for Discrete Outcomes,�Econometrica, 78(2),

575�601.

(forthcoming): �Semiparametric Structural Models of Binary Response: Shape Restric-

tions and Partial Identi�cation,�Econometric Theory.

Chesher, A., and A. Rosen (2012a): �Generalized Instrumental Variable Models,� in prepara-

tion.

21



(2012b): �Simultaneous Equations Models for Discrete Outcomes: Coherence, Complete-

ness, and Identi�cation,�CeMMAP working paper CWP21/12.

Chesher, A., A. Rosen, and K. Smolinski (forthcoming): �An Instrumental Variable Model

of Multiple Discrete Choice,�Quantitative Economics.

Fox, J. T., and A. Gandhi (2012): �Nonparametric Identi�cation and Estimation of Random

Coe¢ cients in Multinomial Choice Models,�working paper, University of Michigan.

Galichon, A., and M. Henry (2011): �Set Identi�cation in Models with Multiple Equilibria,�

Review of Economic Studies, 78(4), 1264�1298.

Gautier, E., and Y. Kitamura (forthcoming): �Nonparametric Estimation in Random Coe¢ -

cients Binary Choice Models,�Econometrica.

Gautier, E., and E. LePennec (2011): �Adaptive Estimation in the Nonparametric Random

Coe¢ cients Binary Choice Model by Needlet Thresholding,�working paper, CREST/ENSAE.

Genz, A., and F. Bretz (2009): Computation of Multivariate Normal and t Probabilities.

Springer-Verlag, Heidelberg, Germany, Lecture Notes in Statistics, Vol. 195.

Genz, A., F. Bretz, T. Miwa, X. Mi, F. Leisch, F. Scheipl, and T. Hothor (2012):

mvtnorm: Multivariate Normal and t Distributions. R package version 0.9-9992.

Hausman, J., and D. Wise (1978): �A Conditional Probit Model for Qualitative Choice: Discrete

Decisions Recognizing Interdependence and Heterogeneous Preferences,� Econometrica, 46(2),

403�426.

Hoderlein, S. (2009): �Endogenous Semiparametric Binary Choice Models with Heteroscedas-

ticity,�CeMMAP working paper CWP34/09.

Ichimura, H., and T. S. Thompson (1998): �Maximum Likelihood Estimation of a Binary

Choice Model with Random Coe¢ cients of Unknown Distribution,� Journal of Econometrics,

86, 269�295.

22



Johnson, S. G. (2011): Package �cubature�, R package version 1.1-1.

Lerman, S. R., and C. F. Manski (1981): �On the Use of Simulated Fequencies to Approximat

Choice Probabilities,�in Structural Analysis of Discrete Data and Econometric Applications, ed.

by C. F. Manski, and D. L. McFadden, pp. 305�319. MIT Press.

McFadden, D. L. (1976): �Quantal Choice Analysis: A Survey.,�Annals of Economic and Social

Measurement, 5, 363�390.

Menzel, K. (2009): �Estimation and Inference with Many Weak Moment Inequalities,�working

paper, MIT.

Molchanov, I. S. (2005): Theory of Random Sets. Springer Verlag, London.

Nevo, A. (2011): �Empirical Models of Consumer Behavior,�Annual Review of Economics, 3,

51�75.

Norberg, T. (1992): �On the Existence of Ordered Couplings of Random Sets �with Applica-

tions,�Israel Journal of Mathematics, 77, 241�264.

Pateiro-Lopez, B., and A. Rodriguez-Casal (2009): alphahull: Generalization of the Convex

Hull of a Sample of Points in the Plane. R package version 0.2-0.

Quandt, R. E. (1966): �A Probabilistic Theory of Consumer Behavior,�Quarterly Journal of

Economics, 70, 507�536.

R Core Team (2012): R: A Language and Environment for Statistical ComputingR Foundation

for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0.

Appendix A: Proof of Theorem 1

Following the same steps as in the proof of Theorem 1 of Chesher, Rosen, and Smolinski (forth-

coming) applied to the random set T (W;X; Y ) and exogenous variables ~Z = (W;Z) in place of
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Tv (Y;X;u) and instruments Z in the notation of that paper delivers

F� = fF 2 F : 8S 2 F (B) , F (S) � P [T (W;X; Y ) � Sjw; z] , a.e. (W;Z)g ,

where F (B) denotes all closed subsets of B. Application of Theorem 2 of Chesher, Rosen, and

Smolinski (forthcoming), speci�cally part (i), then further gives that F (B) above may be replaced

with unions of members of the support of T (W;X; Y ). Then, using the same reasoning as in

Lemma 1 of Chesher and Rosen (2012b), it follows that when considering probabilities conditional

on (W;Z) = (w; z), F (B) can be replaced by unions of elements of the conditional support of

T (W;X; Y ) given the realization of the exogenous variables, namely T[ (w; z). The representation

F� =
�
F 2 F : 8S 2 T\ (w; z) , F (S) � P [T (W;X; Y ) \ S 6= ;jw; z] , a.e. (W;Z)

	
,

follows from the equivalence

T1 [ � � � [ TJ = (T c1 \ � � � \ T cJ )
c ,

and that for all S � B, F (Sc) = 1� F (S) and for all z 2 Z,

P [T (W;X; Y ) � SjZ = z] = 1� P [T (W;X; Y ) \ S 6= ;jZ = z] .

Appendix B: Computational Details

In this Section we provide computational details for the numerical illustrations of Section 4 not

provided in the main text.

Calculation of probabilities GU(S; �)

Each set S in the collection T[(z) = T[ is the union of one or more contiguous cones centered

at the point (�0; �1), which we refer to as elementary cones. The slopes of the rays de�ning the

cones are determined entirely by the values of the points of support of X. In the case K = 4 there

are 8 such cones. For each value of � = (�0; �1; 
0; 
1) encountered we calculate the probability
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mass supported on each of the 8 cones by a bivariate normal density function with mean (0; 0) and

variance matrix entirely determined by (
0; 
1). The probability mass supported by a particular

set S at the value of � is obtained by adding the masses on the appropriate cones. Thus we are

able to compute the probability mass GU (S; �) allocated to each of the 32 core-determining sets by

summing probabilities obtained for the 8 elementary cones.

The probability masses on each elementary cone are obtained by numerical integration after

re-expressing the integrand in polar coordinates. In our R code the numerical integrations are done

using the adaptIntegrate function provided in the cubature package, Johnson (2011). We have

also programmed this calculation in Mathematica using the NIntegrate function and an integrand

which is the appropriate bivariate normal density function with values outside the cone of interest

set to zero using the Boole function. We obtained very close agreement.

The numerical integrations are necessarily computationally burdensome and some inaccuracy

is inevitable which has a knock-on e¤ect on the determination of membership of projections.

Calculation of Projections

First approximations to the (�0; �1)- projections of identi�ed sets were obtained by evaluating over

a coarse grid of values of (�0; �1). Re�nements were then obtained by using a bisection procedure to

search down a sequence of rays de�ned by angles 
 2 [0; 2�], each passing through the probability-

generating value (�0; �1) = (0;�1) which is known to lie in the projection. Each ray was stepped

along until a value of (�0; �1) outside the projection was found. A value midway between this value

and the last value found in the projection was then evaluated for membership of the projection and

by repeated bisection a good approximation to the position of the boundary of the identi�ed set

along the ray under consideration was obtained. Sweeps were also made in directions parallel to the

�0 and �1 axes to re�ne the boundary approximations in areas where it was relatively nonlinear.

These were helpful in con�rming the near convexity of the projections which is su¢ cient for our

bisection-along-rays procedure to give a good view of the entire boundary.

The objective function minimized in (4.3) when determining membership of the identi�ed set

is not very well behaved. There are certainly points at which it is not di¤erentiable and there
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appeared to be some places in which there were small jump discontinuities. One di¢ culty is that

the terms GU (S; �) depend upon eight numerical integrals of bivariate normal density functions

and inaccuracy in calculating these a¤ects the computation of the minimum in (4.3). The e¤ect is

likely dependent on the parameter value (�0; �1) being considered.

There is plenty of scope for improvement in the numerical procedures employed here. In partic-

ular a very small further investment would deliver a much more e¢ cient method of searching down

a ray for an initial point outside the identi�ed set. The method we use relies on the near convexity

of the projection

There were a few cases in which isolated points appeared to be in the projections. These were

examined individually and in most cases by choosing di¤erent starting points for the parameters

��c of the minimization the points were found on recalculation not to be in the projection. The

remaining isolated points had a minimized value of the objective function in (4.3) that was very

close to zero. The graphs of the identi�ed set shown here were produced by assigning points with

values of the minimized objective function less than 0:001 to the projection.

Graphics

The projections as calculated using our approximations are not convex although the departures

from convexity are quite small. We do not know whether the projections are in fact convex with

the non-convexity arising because of approximation errors. In this circumstance it seems unwise to

draw boundaries of projections as the convex hulls of the points calculated to lie in the projections

although in fact there is not so great an error produced by proceeding in this way. The projections

drawn in Figures 1 and 2 are alpha-convex hulls calculated using the ahull function provided in the

R package alphahull, Pateiro-Lopez and Rodriguez-Casal (2009), with the alphahull parameter set

equal to 5. We experimented with di¤erent values of this parameter and found that the di¤erences

in the illustrations were minute.
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Appendix C: Identi�cation in Example 1 With Exogenous X

Consider the setting of Example 1, but where in addition X is restricted to be exogenous. Here we

show that the Gaussian random coe¢ cients probit model is point identifying in this case.

The model stipulates that

Y = 0, U0 + U1X � ��0 � �1X

and with X k U :

(U0 + U1X) jX = x � N(0; 1 + 2
0x+ �x2),

where � � 
20 + 
1 is the variance of U1.

It follows that

P [Y = 0jX = x] = �

 
��0 � �1x

(1 + 2
0x+ �x
2)1=2

!

and thus

g(x)
�
1 + 2
0x+ �x

2
�1=2

= ��0 � �1x (5.1)

where

g(x) � ��1 (P [Y = 0jX = x]) ,

is point identi�ed under Restriction A1.

The Gaussian random coe¢ cients probit model with exogenous X is point identifying if there

is a unique admissible solution for � = (�0; �1; 
0; 
1) to the system of equations generated by (5.1)

as x takes all values in the support of X. Admissible solutions are real-valued with 
1 + 

2
0 � 0.

In our numerical illustrations X = f�1; 0; 1; 2g and the parameter values employed are

(�0; �1; 
0; 
1) = (0;�1;�1; 1) .

Thus � = 2 and

g(�1) = �1=
p
5; g(0) = 0; g(1) = 1; g(2) = 2=

p
5. (5.2)
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Setting x = 0 in (5.1) delivers

�0 = g(0) = 0.

Using this and (5.2) and setting x = �1 in (5.1) delivers

�1 = �
1p
5
(1� 2
0 + �)1=2 . (5.3)

Setting x = 1 and then x = 2 in (5.1) gives the following pair of equations in (
0; �):

(1 + 2
0 + �)
1=2 = ��1, (5.4)

2p
5
(1 + 4
0 + 4�)

1=2 = �2�1. (5.5)

Solving (5.3), (5.4), and (5.5) we have the unique solution (�1; 
0; �) = (�1;�1; 2), from which it

follows that 
1 = 1, and thus � = (�0; �1; 
0; 
1) is point identi�ed.
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Figure 1: Projections of identi�ed sets for (�0; �1) using weaker and stronger instruments for a
process in which X is endogenous. The illustration is computed as described in Appendix B, with
alphahull parameter set to 5.
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Figure 2: Projections of identi�ed sets for (�0; �1) using weaker and stronger instruments for a
process in which X is exogenous. The illustration is computed as described in Appendix B, with
alphahull parameter set to 5.
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