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An Estimation of Economic Models with Recursive
Preferences

Abstract

This paper presents estimates of key preference parameters of the Epstein and Zin (1989,

1991) and Weil (1989) (EZW) recursive utility model, evaluates the model’s ability to fit

asset return data relative to other asset pricing models, and investigates the implications of

such estimates for the unobservable aggregate wealth return. Our empirical results indicate

that the estimated relative risk aversion parameter ranges from 17-60, with higher values

for aggregate consumption than for stockholder consumption, while the estimated elasticity

of intertemporal substitution is above one. In addition, the estimated model-implied aggre-

gate wealth return is found to be weakly correlated with the CRSP value-weighted stock

market return, suggesting that the return to human wealth is negatively correlated with the

aggregate stock market return.

JEL: G12, E21



1 Introduction

A large and growing body of theoretical work in macroeconomics and finance models the

preferences of economic agents using a recursive utility function of the type explored by

Epstein and Zin (1989, 1991) and Weil (1989).1 One reason for the growing interest in

such preferences is that they provide a potentially important generalization of the standard

power utility model first investigated in classic empirical studies by Hansen and Singleton

(1982, 1983). The salient feature of this generalization is a greater degree of flexibility

as regards attitudes towards risk and intertemporal substitution. Specifically, under the

recursive representation, the coeffi cient of relative risk aversion need not equal the inverse

of the elasticity of intertemporal substitution (EIS), as it must in time-separable expected

utility models with constant relative risk aversion. This degree of flexibility is appealing

in many applications because it is unclear why an individual’s willingness to substitute

consumption across random states of nature should be so tightly linked to her willingness to

substitute consumption deterministically over time.

Despite the growing interest in recursive utility models, there has been a relatively small

amount econometric work aimed at estimating the relevant preference parameters and assess-

ing the model’s fit with the data. As a consequence, theoretical models are often calibrated

with little econometric guidance as to the value of key preference parameters, the extent to

which the model explains the data relative to competing specifications, or the implications

of the model’s best-fitting specifications for other economic variables of interest, such as the

return to the aggregate wealth portfolio or the return to human wealth. The purpose of this

study is to help fill this gap in the literature by undertaking a semiparametric econometric

evaluation of the Epstein-Zin-Weil (EZW) recursive utility model.

The EZW recursive utility function is a constant elasticity of substitution (CES) aggre-

gator over current consumption and the expected discounted utility of future consumption.

This structure makes estimation of the general model diffi cult because the intertemporal

marginal rate of substitution is a function of the unobservable continuation value of the fu-

ture consumption plan. One approach to this problem, based on the insight of Epstein and

1See for example Attanasio and Weber (1989); Campbell (1993); Campbell (1996); Tallarini (2000);

Campbell and Viceira (2001) Bansal and Yaron (2004); Colacito and Croce (2004); Bansal, Dittmar, and

Kiku (2009); Campbell and Vuolteenaho (2004); Gomes and Michaelides (2005); Krueger and Kubler (2005);

Hansen, Heaton, and Li (2008); Kiku (2005); Malloy, Moskowitz, and Vissing-Jorgensen (2009); Campanale,

Castro, and Clementi (2006); Croce (2012); Bansal, Dittmar, and Lundblad (2005); Croce, Lettau, and

Ludvigson (2012); Hansen and Sargent (2006); Piazzesi and Schneider (2006).
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Zin (1989), is to exploit the relation between the continuation value and the return on the

aggregate wealth portfolio. To the extent that the return on the aggregate wealth portfolio

can be measured or proxied, the unobservable continuation value can be substituted out of

the marginal rate of substitution and estimation can proceed using only observable variables

(e.g., Epstein and Zin (1991), Campbell (1996), Vissing-Jorgensen and Attanasio (2003)).2

Unfortunately, the aggregate wealth portfolio represents a claim to future consumption and

is itself unobservable. Moreover, given the potential importance of human capital and other

unobservable assets in aggregate wealth, its return may not be well proxied by observable

asset market returns.

These diffi culties can be overcome in specific cases of the EZW recursive utility model.

For example, if the EIS is restricted to unity and consumption follows a loglinear vector time-

series process, the continuation value has an analytical solution and is a function of observable

consumption data ( e.g., Hansen, Heaton, and Li (2008)). Alternatively, if consumption and

asset returns are assumed to be jointly lognormally distributed and homoskedastic (e.g., At-

tanasio and Weber (1989)), or if a second-order linearization is applied to the Euler equation,

the risk premium of any asset can be expressed as a function of covariances of the asset’s

return with current consumption growth and with news about future consumption growth

(e.g., Restoy and Weil (1998), Campbell (2003)). In this case, the model’s cross-sectional

asset pricing implications can be evaluated using observable consumption data and a model

for expectations of future consumption.

While the study of these specific cases has yielded a number of important insights, there

are several reasons why it may be desirable to allow for more general representations of

the model, free from tight parametric or distributional assumptions. First, an EIS of unity

implies that the consumption-wealth ratio is constant, contradicting statistical evidence that

it varies over time.3 Moreover, even first-order expansions of the EZW model around an

2Epstein and Zin (1991) use an aggregate stock market return to proxy for the aggregate wealth return.

Campbell (1996) assumes that the aggregate wealth return is a portfolio weighted average of a human capital

return and a financial return, and obtains an estimable expression for an approximate loglinear formulation

of the model by assuming that expected returns on human wealth are equal to expected returns on financial

wealth. Vissing-Jorgensen and Attanasio (2003) follow Campbell’s approach to estimate the model using

household level consumption data.
3Lettau and Ludvigson (2001a) argue that a cointegrating residual for log consumption, log asset wealth,

and log labor income should be correlated with the unobservable log consumption-aggregate wealth ratio,

and find evidence that this residual varies considerably over time and forecasts future stock market returns.

See also recent evidence on the consumption-wealth ratio in Hansen, Heaton, Roussanov, and Lee (2007)

and Lustig, Van Nieuwerburgh, and Verdelhan (2007).
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EIS of unity may not capture the magnitude of variability of the consumption-wealth ratio

(Hansen, Heaton, Roussanov, and Lee (2007)). Second, although aggregate consumption

growth itself appears to be well described by a lognormal process, empirical evidence suggests

that the joint distribution of consumption and asset returns exhibits significant departures

from lognormality (Lettau and Ludvigson (2009)). Third, Kocherlakota (1990) points out

that joint lognormality is inconsistent with an individual maximizing a utility function that

satisfies the recursive representation used by Epstein and Zin (1989, 1991) and Weil (1989).

To overcome these issues, we employ a semiparametric technique that allows us to conduct

estimation and evaluation of the EZW recursive utility model without the need to find a proxy

for the unobservable aggregate wealth return, without linearizing the model, and without

placing tight parametric restrictions on either the law of motion or joint distribution of

consumption and asset returns, or on the value of key preference parameters such as the

EIS. We present estimates of all the preference parameters of the EZW model, evaluate

the model’s ability to fit asset return data relative to competing asset pricing models, and

investigate the implications of such estimates for the unobservable aggregate wealth return

and human wealth return.

To avoid using a proxy for the return on the aggregate wealth portfolio, we explicitly

estimate the unobservable continuation value of the future consumption plan. By assuming

that consumption growth falls within a general class of stationary, dynamic models, we may

identify the state variables over which the continuation value is defined. The continuation

value is still an unknown function of the relevant state variables, however, thus we estimate

the continuation value function nonparametrically. The resulting empirical specification for

investor utility is semiparametric in the sense that it contains both the finite dimensional

unknown parameters that are part of the CES utility function (risk aversion, EIS, and

subjective time-discount factor), as well as the infinite dimensional unknown continuation

value function.

Estimation and inference are conducted by applying a profile Sieve Minimum Distance

(SMD) procedure to a set of Euler equations corresponding to the EZW utility model we

study. The SMD method is a distribution-free minimum distance procedure, where the

conditional moments associated with the Euler equations are directly estimated nonpara-

metrically as functions of conditioning variables. The “sieve”part of the SMD procedure

requires that the unknown function embedded in the Euler equations (here the continuation

value function) be approximated by a sequence of flexible parametric functions, with the

number of parameters expanding as the sample size grows (Grenander (1981)). The un-
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known parameters of the marginal rate of substitution, including the sieve parameters of the

continuation value function and the finite-dimensional parameters that are part of the CES

utility function, may then be estimated using a profile two-step minimum distance estima-

tor. In the first step, for arbitrarily fixed candidate finite dimensional parameter values, the

sieve parameters are estimated by minimizing a weighted quadratic distance from zero of the

nonparametrically estimated conditional moments. In the second step, consistent estimates

of the finite dimensional parameters are obtained by solving a suitable sample minimum

distance problem such as GMM, with plugged in estimated continuation value function.

Motivated by the arguments of Hansen and Jagannathan (1997), our approach allows for

possible model misspecification in the sense that the Euler equation may not hold exactly.

We estimate two versions of the model. The first is a representative agent formulation,

in which the utility function is defined over per capita aggregate consumption. The second

is a representative stockholder formulation, in which utility is defined over per capita con-

sumption of stockholders. The definition of stockholder status, the consumption measure,

and the sample selection follow Vissing-Jorgensen (2002), which uses the Consumer Expen-

diture Survey (CEX). Since CEX data are limited to the period 1982 to 2002, and since

household-level consumption data are known to contain significant measurement error, we

follow Malloy, Moskowitz, and Vissing-Jorgensen (2009) and generate a longer time-series of

data by constructing consumption mimicking factors for aggregate stockholder consumption

growth.

Once estimates of the continuation value function have been obtained, it is possible to

investigate the model’s implications for the aggregate wealth return. This return is in general

unobservable but can be inferred from the model by equating the estimated marginal rate of

substitution with its theoretical representation based on consumption growth and the return

to aggregate wealth. If, in addition, we follow Campbell (1996) and assume that the return

to aggregate wealth is a portfolio weighted average of the unobservable return to human

wealth and the return to financial wealth, the estimated model also delivers implications for

the return to human wealth.

Using quarterly data on consumption growth, assets returns and instruments, our empir-

ical results indicate that the estimated relative risk aversion parameter is high, ranging from

17-60, with higher values for the representative agent version of the model than the represen-

tative stockholder version. The estimated elasticity of intertemporal substitution is above

one, and differs considerably from the inverse of the coeffi cient of relative risk aversion. This

estimate is of particular interest because the value of the EIS has important consequences
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for the asset pricing implications of models with EZW recursive utility. For example, if

consumption growth is normally distributed, it is straight forward to show that the price-

consumption ratio implied by EZW recursive utility is increasing in expected consumption

growth only if the EIS is greater than one. In addition, when relative risk aversion exceeds

unity, the price-consumption ratio will be decreasing in the volatility of consumption growth

only if the EIS exceeds one.

We find that the estimated aggregate wealth return is weakly correlated with the CRSP

value-weighted stock market return and much less volatile, implying that the return to human

capital is negatively correlated with the aggregate stock market return. This later finding is

consistent with results in Lustig and Van Nieuwerburgh (2008), discussed further below. In

data from 1952 to 2005, we find that an SMD estimated EZW recursive utility model can

explain a cross-section of size and book-market sorted portfolio equity returns better than

the time-separable, constant relative risk aversion power utility model and better than the

Lettau and Ludvigson (2001b) cay-scaled consumption CAPM model, but not as well as the

Fama and French (1993) three-factor model.

Our study is related to recent work estimating specific asset pricing models in which

the EZW recursive utility function is embedded. Bansal, Gallant, and Tauchen (2007) and

Bansal, Kiku, and Yaron (2007) estimate models of long-run consumption risk, where the

data generating processes for consumption and dividend growth are explicitly modeled as

linear functions of a small but very persistent long-run risk component and normally distrib-

uted shocks. These papers focus on the representative agent formulation of the model, in

which utility is defined over per capita aggregate consumption. In such long-run risk models,

the continuation value can be expressed as a function of innovations in the explicitly im-

posed driving processes for consumption and dividend growth, and inferred either by direct

simulation or by specifying a vector autoregression to capture the predictable component.

Our work differs from these studies in that our estimation procedure does not restrict the

law of motion for consumption or dividend growth. As such, our estimates apply generally

to the EZW recursive preference representation, not to specific asset pricing models of cash

flow dynamics.

The rest of this paper is organized as follows. The next section describes the model we

estimate. Section 3 discusses our main idea, which is to estimate the latent continuation

value function nonparametrically using observable data. Section 4 describes the empirical

procedure; Section 5 describes the data. Empirical results are discussed in Section 6. Section

7 investigates the implications of our estimates for the return to aggregate wealth, and the
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return to human wealth. Section 8 concludes. The Appendix to this paper is provided

on-line.4

2 The Model

Let {Ft}∞t=0 denote the sequence of increasing conditioning information sets available to
a representative agent at dates t = 0, 1, .... Adapted to this sequence are consumption

sequence {Ct}∞t=0 and a corresponding sequence of continuation values {Vt}∞t=0. The date
t consumption Ct and continuation value Vt are in the date t information set Ft (but are
typically not in the date t − 1 information set Ft−1). Sometimes we use Et[·] to denote
E[·|Ft], the conditional expectation with respect to information set at date t.
The Epstein-Zin-Weil objective function is defined recursively by

Vt =
[
(1− β)C1−ρt + β{Rt (Vt+1)}1−ρ

] 1
1−ρ (1)

Rt (Vt+1) =
(
E
[
V 1−θ
t+1 |Ft

]) 1
1−θ , (2)

where Vt+1 is the continuation value of the future consumption plan. The parameter θ

governs relative risk aversion and 1/ρ is the elasticity of intertemporal substitution over

consumption (EIS). When θ = ρ, the utility function can be solved forward to yield the

familiar time-separable, constant relative risk aversion (CRRA) power utility model

Ut = E

[ ∞∑
j=0

βj
C1−θt+j

1− θ |Ft

]
, (3)

where Ut ≡ V 1−θ
t / (1− β) .

As in Hansen, Heaton, and Li (2008), the utility function may be rescaled and expressed

as a function of stationary variables:

Vt
Ct

=

[
(1− β) + β

{
Rt

(
Vt+1
Ct+1

Ct+1
Ct

)}1−ρ] 1
1−ρ

(4)

=

(1− β) + β

{
Et

[(
Vt+1
Ct+1

)1−θ (
Ct+1
Ct

)1−θ]} 1−ρ
1−θ


1
1−ρ

.

4It can be found on the authors’web pages here: www.econ.nyu/user/ludvigsons/Appendix_recurs.pdf
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The intertemporal marginal rate of substitution (MRS) in consumption is given by

Mt+1 = β

(
Ct+1
Ct

)−ρ Vt+1
Ct+1

Ct+1
Ct

Rt

(
Vt+1
Ct+1

Ct+1
Ct

)
ρ−θ

. (5)

The MRS is a function of Rt (·), itself a function of the continuation value-to-consumption
ratio, Vt+1

Ct+1
, where the latter is referred to hereafter as the continuation value ratio.

Epstein and Zin (1989, 1991) show that the MRS can be expressed in an alternate form

as

Mt+1 =

{
β

(
Ct+1
Ct

)−ρ} 1−θ
1−ρ {

1

Rw,t+1

} θ−ρ
1−ρ

, (6)

where Rw,t+1 is the return to aggregate wealth, where aggregate wealth represents a claim

to future consumption. This return is in general unobservable, but some researchers have

undertaken empirical work using an aggregate stock market return as a proxy, as in Epstein

and Zin (1991). A diffi culty with this approach is that Rw,t+1 may not be well proxied by

observable asset market returns, especially if human wealth and other nontradable assets are

quantitatively important fractions of aggregate wealth. Alternatively, approximate loglinear

formulations of the model can be obtained by making specific assumptions regarding the

relation between the return to human wealth and the return to some observable form of asset

wealth. For example, Campbell (1996) assumes that expected returns on human wealth

are equal to expected returns on financial wealth. Since the return to human wealth is

unobservable, however, such assumptions are diffi cult to verify in the data.

Instead, we work with the formulation of the MRS given in (5), with its explicit depen-

dence on the continuation value of the future consumption plan. The first-order conditions

for optimal consumption choice imply that Et [Mt+1Ri,t+1] = 1, for any traded asset indexed

by i, with a gross return at time t+ 1 of Ri,t+1. Using (5), the first-order conditions take the

form

Et

β (Ct+1
Ct

)−ρ Vt+1
Ct+1

Ct+1
Ct

Rt

(
Vt+1
Ct+1

Ct+1
Ct

)
ρ−θ

Ri,t+1 − 1

 = 0. (7)

Since the expected product of any traded asset return with Mt+1 equals one, the model

implies that Mt+1 is the stochastic discount factor (SDF), or pricing kernel, for valuing any

traded asset return.

Equation (7) is a cross-sectional asset pricing model; it states that the risk premium

on any traded asset return Ri,t+1 is determined in equilibrium by the covariance between
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returns and the stochastic discount factorMt+1. Notice that, compared to the CRRA model

where consumption growth is the single risk factor, the EZW model adds a second risk

factor for explaining the cross-section of asset returns, given by the multiplicative term(
Vt+1
Ct+1

Ct+1
Ct
/Rt

(
Vt+1
Ct+1

Ct+1
Ct

))ρ−θ
.

The moment restrictions (7) are complicated by the fact that the conditional mean is

taken over a highly nonlinear function of the conditionally expected value of discounted

continuation utility, Rt

(
Vt+1
Ct+1

Ct+1
Ct

)
. However, both the rescaled utility function (4) and the

Euler equations (7) depend on Rt. Thus, equation (4) can be solved for Rt, and the solution

plugged into (7). The resulting expression, for any observed sequence of traded asset returns

{Ri,t+1}Ni=1, takes the form

Et

β
(
Ct+1
Ct

)−ρ
Vt+1
Ct+1

Ct+1
Ct{

1
β

[(
Vt
Ct

)1−ρ
− (1− β)

]} 1
1−ρ


ρ−θ

Ri,t+1 − 1

 = 0 i = 1, ..., N. (8)

The moment restrictions (8) form the basis of our empirical investigation.

By estimating the fully non-linear Euler equations (8), we obviate the need to linearize

the model or to place parametric restrictions on preference parameters β, θ, and ρ. We

also use a distribution-free estimation procedure, thereby obviating the need to place tight

restrictions on the law of motion for, or joint distribution of, consumption and asset return

data. Finally, the moment restrictions (8) make no reference to Rw,t+1, thus we obviate the

need to find an observable proxy for the unobservable aggregate wealth return. Of course,

the continuation value-consumption ratio Vt+1
Ct+1

is itself a latent variable. In the next section

we show how it can be estimated non-parametrically from observable data, as a function of

state variables.

3 A nonparametric specification of Vt+1
Ct+1

This section discusses the main idea of our study, which is to non-parametrically estimate

the latent component Vt+1
Ct+1

of the added risk factor
(
Vt+1
Ct+1

Ct+1
Ct
/Rt

(
Vt+1
Ct+1

Ct+1
Ct

))ρ−θ
in the EZW

stochastic discount factor. To do so, we proceed in two steps. First, because Vt+1
Ct+1

is a function

of state variables governing the evolution of the distribution of consumption growth, we begin

with assumptions on the dynamic behavior of consumption growth that allow us to identify

the state variables over which the continuation value ratio is defined. Several examples of this

approach are given in Hansen, Heaton, and Li (2008). Here we assume that consumption
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growth is a function of a hidden univariate first-order Markov process xt, a specification

that encompasses a range of stationary, dynamic models for consumption growth. Second,

because the state variable xt is latent, it must be replaced in empirical work with either an

estimate, x̂t, or with other variables that subsume the information in x̂t. We discuss this in

the next subsections.

3.1 The Dynamics of Consumption Growth

Let lower case letters denote log variables, e.g., ln (Ct+1) ≡ ct+1. We assume that consump-

tion growth is a linear function of a hidden first-order univariate Markov process xt that

summarizes information about future consumption growth

ct+1 − ct = µ+Hxt +Cεt+1, (9)

xt+1 = φxt +Dεt+1, (10)

where εt+1 is a (2× 1) i.i.d. vector with mean zero and identity covariance matrix I and

C and D are (1× 2) vectors. Notice that this allows shocks in the observation equation

(9) to have arbitrary correlation with those in the state equation (10). The specification

(9)-(10) nests a number of stationary univariate representations for consumption growth,

including a first-order autoregression, first-order moving average representation, a first-order

autoregressive-moving average process, or ARMA (1, 1), and i.i.d. The asset pricing lit-

erature on long-run consumption risk restricts to a special case of the above, where the

innovations in (9) and (10) are uncorrelated and φ is close to unity (e.g., Bansal and Yaron

(2004)).

Given the first-order Markov structure, expected future consumption growth is summa-

rized by the single state variable xt, implying that xt also summarizes the state space over

which the function Vt
Ct
is defined. Notice that while we use the first-order Markov assump-

tion as a motivation for specifying the state space over which continuation utility is defined,

the econometric methodology, discussed in the next section, leaves the law of motion of the

consumption process unspecified.

3.2 Forming an Estimate of the Latent xt

The state variable xt that is taken as the input of the unknown function Vt
Ct
is unobservable to

the econometrician and must be inferred from observable data. One way to do this is to filter

the consumption data in order to obtain an estimate of xt. Given (9)-(10), optimal forecasts
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of future consumption growth are formed from estimate of the hidden factor xt, obtained

by filtering the observable consumption data. Given the linearity of the system (9)-(10),

the Kalman filter is a natural filtering algorithm. Applying the Kalman filter to (9)-(10),

the dynamic system converges asymptotically to time-invariant innovations representation

taking the form

∆ct+1 = µ+Hx̂t + εt+1 (11)

x̂t+1 = φx̂t +Kεt+1, (12)

where the scalar variable εt+1 ≡ ∆ct+1−∆ĉt+1 = H (xt − x̂t)+Cεt+1, x̂t denotes a linear least
squares projection of xt onto ∆ct,∆ct−1, ...∆c−∞, and K is a scalar “Kalman gain”defined

recursively from the Kalman updating equations as a function of the primitive parameters

of the dynamic system (9) and (10). The Appendix gives the precise recursive function

defining K. Unlike the dynamic system (9)-(10), the representation (11)-(12) is a function

of an observable (from filtered consumption data) state variable, x̂t. The econometrician

could therefore replace the latent state variable xt as the argument over which Vt
Ct
is defined

with the observable Kalman filter estimate x̂t, implying Vt
Ct

= f (x̂t) for some function f.

Rather than using x̂t directly in our estimation—a cumbersome approach that would

require embedding the Kalman filter algorithm into our outer semiparametric estimation

procedure—we assume that Vt
Ct
is an invertible function f (x̂t) . As shown in the Appendix,

under this assumption and given (9)-(12), the information contained in x̂t is fully summarized

by two other variables: the lagged continuation value ratio Vt−1
Ct−1

, and current consumption

growth Ct
Ct−1

. Thus rather than modeling Vt
Ct
as an unknown function f (x̂t) , we work with

an equivalent specification in which Vt
Ct
is modeled as an unknown function F : R2 → R, of

Vt−1
Ct−1

, and Ct
Ct−1

:
Vt
Ct

= F

(
Vt−1
Ct−1

,
Ct
Ct−1

)
. (13)

The Appendix also shows that the function F
(
Vt−1
Ct−1

, Ct
Ct−1

)
may display negative serial

dependence under a variety of plausible parameter-value combinations governing the dynamic

system (9)-(10), implying ∂F
∂(Vt−1/Ct−1)

< 0. For example, if f ′ (x̂t) > 0, then ∂F
∂(Vt−1/Ct−1)

< 0 if

φ is not too large, and/or if the innovations in (9) and (10) are positively correlated. As we

show below, all of our estimated functions Vt
Ct

= F
(
Vt−1
Ct−1

, Ct
Ct−1

)
display such negative serial

dependence.

An alternative motivation for the specification (13) may be obtained if consumption
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dynamics evolve as
Ct+1
Ct

= h(Xt+1, Xt) (14)

where {Xt} is a first-order hidden, stationary Markov process characterizing the time t
information set Ft. In a recent paper, Hansen and Scheinkman (2012) establish the existence
and uniqueness of a solution of the form

Vt
Ct

= f(Xt) (15)

to the recursive continuation utility forward equation (4), under the assumption (14). If the

latent state variable Xt is a scalar and the function f(·) is one-to-one, then we obtain

Ct+1
Ct

= h

(
f−1

(
Vt+1
Ct+1

)
, f−1

(
Vt
Ct

))
If further, h(·, ·) is one-to-one in its first argument, then we obtain our specification (13):

Vt+1
Ct+1

= F

(
Vt
Ct
,
Ct+1
Ct

)
.

Note that (14) is more general than the specification (9) plus (10) in that it allows for general

non-linearities in consumption growth as a function of the first-order Markov process, but it

is less general in that it does not allow consumption dynamics to additionally depend on an

independent shock εt+1.

To summarize, the asset pricing model we entertain in this paper consists of the con-

ditional moment restrictions (8), subject to the specification (13). Without placing tight

parametric restrictions on the model, the continuation value ratio is an unknown function
Vt
Ct

= F
(
Vt−1
Ct−1

, Ct
Ct−1

)
. We therefore estimate Vt

Ct
nonparametrically, as described below. Our

overall model is semiparametric in the sense that it contains both finite dimensional pa-

rameters (β, θ, ρ) and infinite dimensional unknown parameters in the unknown function

F
(
Vt−1
Ct−1

, Ct
Ct−1

)
.

3.3 Information Structure

It is important to emphasize that the procedure just described when consumption dynamics

evolve according to (11) and (12) recovers the information in the Kalman filter estimate

x̂t of xt. This is not the same as recovering the information contained in xt, which from

the econometrician’s perspective is latent. It follows that, in this case, we cannot recover
Vt
Ct

= f (xt) with some function F
(
Vt−1
Ct−1

, Ct
Ct−1

)
, we can only recover f (x̂t), where x̂t is the

Kalman filter estimate, with some function F
(
Vt−1
Ct−1

, Ct
Ct−1

)
.
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The Kalman filter estimate x̂t of xt uses information contained only in the history of

consumption growth, and in particular it does not use information in asset prices. Might

there be additional information about future consumption growth in asset prices? The answer

to this question depends not only on whether (9)-(10) is good description of the dynamics

of consumption growth, but also on what information the representative agent in the asset

pricing model we seek to evaluate actually has about xt. Suppose the true data generating

process for consumption is given by (9)-(10) but the representative agent—whose behavior

determines asset prices—cannot observe the latent variable xt or the separate innovations in

(9) and (10). The agent could employ historical consumption data to form an estimate x̂t
of xt to be used in making the optimal consumption and portfolio decisions that determine

equilibrium asset prices. The representative agent’s continuation value function would then

be a function of x̂t, implying that once x̂t is included as an argument over which the function

is defined, asset price information (also a function of x̂t) would be redundant. On the

other hand, if the true data generating process is (9)-(10) but the representative agent

can observe xt while the econometrician cannot, asset prices as equilibrium outcomes could

contain additional information about future consumption growth that is not contained in

x̂t. Thus, our approach is justified when we assume both that (9)-(10) is good description

of the dynamics of consumption growth, and that agents in the model, like econometricians,

cannot observe xt. Croce, Lettau, and Ludvigson (2012) investigate the equilibrium asset

pricing implications of this sort of “incomplete information,”whereby investors must form

an estimate x̂t of xt based on information in the history of consumption growth when making

optimal decisions. Since xt is in fact a latent conditional moment, we view this information

structure as more plausible than one in which agents are presumed to directly observe xt.

But even if we allowed for reasons that the econometrician might benefit from using asset

price information (e.g., the price-dividend ratio) in place of, or in addition to, the information

in x̂t (e.g., optimizing agents really can observe xt, so asset prices reveal the information in

xt), there would be a diffi culty with specifying Vt
Ct
to be a function of such information in terms

of the interpretation of results: By doing so, we would in effect specify a stochastic discount

factor that is a function of the very return data that the model is being asked to explain.

While there is nothing invalid about this approach (conditional on the assumption that agents

can directly observe xt), estimates obtained this way would tell us nothing about whether the

empirical consumption dynamics alone– which are exogenous inputs into the asset pricing

model– are consistent with what would be required to explain the return behavior observed.

This situation would muddle the interpretation of results. For example, if an EZW model

12



with the value function defined over asset price data performed well, this could be because a

varient of the model in which agents directly observe xt really is true, or it could be because

the consumption-based model is fundamentally wrong and the approach merely delivers

a back-door means of explaining asset returns with other asset returns. Moreover, while

such an empirical model for the SDF might provide a good description of asset returns,

it can’t provide a satisfactory explanation for asset return behavior in terms of primitive

macroeconomic risk. For these reasons, we focus on evaluating the extent to which the EZW

asset pricing model can explain asset return data, without reference to return data as part

of the stochastic discount factor that explains returns.

4 Empirical Implementation

This section presents the details of our empirical procedure. Let δ ≡ (β, ρ, θ)′ denote any

vector of finite dimensional parameters in D, a compact subset in R3, and F : R2 → R denote
any real-valued Lipschitz continuous functions in V, a compact subset in the space of square
integrable functions (with respect to some sigma-finite measure). For each i = 1, ..., N ,

denote

γi(zt+1, δ, F ) ≡ β

(
Ct+1
Ct

)−ρ F
(
Vt
Ct
, Ct+1
Ct

)
Ct+1
Ct{

1
β

[{
F
(
Vt−1
Ct−1

, Ct
Ct−1

)}1−ρ
− (1− β)

]} 1
1−ρ


ρ−θ

Ri,t+1 − 1,

where zt+1 is a vector containing all the strictly stationary observations, including consump-

tion growth rate and return data. We let Fo (·; δ) denote the minimizer of

inf
F∈V

E

[
N∑
i=1

(E {γi(zt+1, δ, F )|Ft})2
]
, (16)

and δo ≡ (βo, ρo, θo)
′ ∈ D as the minimizer of

min
δ∈D

E

[
N∑
i=1

(E {γi(zt+1, δ, Fo (·; δ))|Ft})2
]
. (17)

Let Fo ≡ Fo (zt; δo) ≡ Fo (·; δo) ∈ V. We say that the model consisting of (8) plus (13) is
correctly specified if

E {γi(zt+1, δo, Fo (·, δo))|Ft} = 0, i = 1, ..., N. (18)
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Equation (18) implies that the N -vector of conditional means E {γ (·) |Ft} should be zero
in every time period, t. It follows that the true values Fo (·; δ) and δo should be those that

minimize the squared distance from zero (quadratic norm) of the conditional means for each

t. But since we have more time periods t = 1, ..., T than parameters to be estimated, we

weight each time period equally, as indicated by the unconditional expectation operator in

(16)-(17).

The general estimation methodology is based on estimation of the conditional moment

restrictions (18), except that we allow for the possibility that the model could be misspeci-

fied. The potential role of model misspecification in the evaluation of empirical asset pricing

models has been previously emphasized by Hansen and Jagannathan (1997). As Hansen

and Jagannathan stress, all models are approximations of reality and therefore potentially

misspecified. The estimation procedure used here explicitly takes this possibility into ac-

count in the empirical implementation. In the application of this paper, there are several

possible reasons for misspecification, including possible misspecification of the arguments in

the continuation value-consumption ratio function F , which could in principal include more

lags, and misspecification of the arguments of the CES utility function, which could in prin-

cipal include a broader measure of durable consumption or leisure. More generally, when we

conduct model comparison in Section 5, we follow the advice of Hansen and Jagannathan

(1997) and assume that all models are potentially misspecified.

Let wt be a dw × 1 observable subset of Ft.5 Equation (18) implies

E {γi(zt+1, δo, Fo (·, δo))|wt} = 0, i = 1, ..., N. (19)

Denote

m(wt, δ, F ) ≡ E{γ(zt+1, δ, F )|wt}, γ(zt+1, δ, F ) = (γ1(zt+1, δ, F ), ..., γN(zt+1, δ, F ))′ . (20)

5If the model of consumption dynamics specified above were literally true, the state variables Vt−1
Ct−1

and
Ct
Ct−1

(and all measurable transformations of these) are suffi cient statistics for the agents information set

Ft. However, the fundamental asset pricing relation Et [Mt+1Ri,t+1 − 1] , which includes individual asset
returns, is likely to be a highly nonlinear function of the state variables. In addition, one of these state

variables is the unknown function, Vt−1Ct−1
, and as such it embeds the unknown sieve parameters. These facts

make the estimation procedure computationally intractable if the subset wt, over which the conditional

mean m(wt, δ, F ) is taken, includes
Vt−1
Ct−1

. Fortunately, the procedure can be carried out on an observable

measurable function wt of Ft, which need not contain Vt−1
Ct−1

. A consistent estimate of the conditional

mean m(wt, δ, F ) can be obtained using known basis functions of observed conditioning variables in wt.

We take this approach here, using Ct
Ct−1

and several other observable conditioning variables as part of the

econometrician’s information wt.
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For any candidate value δ ≡ (β, ρ, θ)′ ∈ D, we define F ∗ ≡ F ∗ (zt, δ) ≡ F ∗ (·, δ) ∈ V as the
solution to

inf
F∈V

E [m(wt, δ, F )′m(wt, δ, F )] . (21)

It is clear that Fo (zt, δo) = F ∗ (zt, δo) when the model (19) is correctly specified. We say

the model (19) is misspecified if

min
δ∈D

inf
F∈V

E [m(wt, δ, F )′m(wt, δ, F )] > 0.

We estimate the possibly misspecified model (19) using a profile semiparametric minimum

distance procedure, which consists of two steps; see e.g., Newey (1994), Chen, Linton, and van

Keilegom (2003) and Chen (2007). In the first step, for any candidate value δ ≡ (β, ρ, θ)′ ∈
D, the unknown function F ∗ (·, δ) is estimated using the sieve minimum distance (SMD)

procedure developed in Newey and Powell (2003) and Ai and Chen (2003) (for correctly

specified model) and Ai and Chen (2007) (for possibly misspecified model). In the second

step, we estimate the finite dimensional parameters δ by solving a suitable sample GMM

problem. Notice that the estimation procedure itself leaves the law of motion of the data

unspecified.6

4.1 First-Step Profile SMD Estimation of F ∗ (·, δ)

For any candidate value δ = (β, ρ, θ)′ ∈ D, an initial estimate of the unknown function
F ∗ (·, δ) is obtained using the profile sieve minimum distance (SMD) estimator, described

below. In practice, this is achieved by applying the SMD estimator at each point in a 3-

dimensional grid for δ ∈ D. The idea behind the SMD estimator is to choose a flexible

approximation to the value function F ∗ (·, δ) to minimize the sample analog of the minimum

distance criterion function (21). The procedure has two essential parts. First, we replace the

conditional expectation m(wt, δ, F ) with a consistent nonparametric estimator (to be speci-

fied later). Second, although the value function F ∗ (·, δ) is an infinite-dimensional unknown

function, we approximate it by a sequence of finite-dimensional unknown parameters (sieves)

FKT (·, δ), where the approximation error decreases as the dimension KT increases with the

sample size T . For each δ ∈D, the function FKT (·, δ) is estimated by minimizing a sam-

ple (weighted) quadratic norm of the nonparametrically estimated conditional expectation

functions.
6The estimation procedure requires stationary ergodic observations but does not restrict to linear time

series specifications or specific parametric laws of motion of the data.
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Estimation in the first profile SMD step is carried out by implementing the following

algorithm. First, the ratio Vt
Ct
is treated as unknown function Vt

Ct
= F ∗

(
Vt−1
Ct−1

, Ct
Ct−1

; δ
)
, with

the initial value for Vt
Ct
at time t = 0, denoted V0

C0
, taken as a unknown scalar parameter to be

estimated. Second, the unknown function F ∗
(
Vt−1
Ct−1

, Ct
Ct−1

; δ
)
is approximated by a bivariate

sieve function

F ∗
(
Vt−1
Ct−1

,
Ct
Ct−1

; δ

)
≈ FKT (·, δ) = a0(δ) +

KT∑
j=1

aj(δ)Bj

(
Vt−1
Ct−1

,
Ct
Ct−1

)
,

where the sieve coeffi cients {a0, a1, ..., aKT } depend on δ, but the sieve basis functions
{Bj(·, ·) : j = 1, ..., KT} have known functional forms that are independent of δ; see the
Appendix for a discussion of the sieve basis functions Bj(·, ·). To provide a nonparamet-
ric estimate of the unknown function F ∗

(
Vt−1
Ct−1

, Ct
Ct−1

; δ
)
, KT must grow with the sample

size to insure consistency of the method.7 We are not interested in the sieve parameters

(a0, a1, ..., aKT )′ per se, but rather in the finite dimensional parameters δ, and in the dy-

namic behavior of the continuation value and the marginal rate of substitution, all of which

depend on those parameters. For the empirical application below, we set KT = 9 (see the

Appendix for further discussion), leaving 10 sieve parameters to be estimated in F ∗, plus the

initial value V0
C0
. The total number of parameters to be estimated, including the three finite

dimensional parameters in δ, is therefore 14.

Given values V0
C0
, {aj}KTj=1, {Bj(·)}KTj=1 and data on consumption

{
Ct
Ct−1

}T
t=1
, the function

FKT is used to generate a sequence
{
Vi
Ci

}T
i=1

that can be taken as data to be used in the

estimation of (21).

Implementation of the profile SMD estimation requires a consistent estimate of the con-

ditional mean function m(wt, δ, F ), which can be consistently estimated via a sieve least

squares procedure. Let {p0j(wt), j = 1, 2, ..., JT} be a sequence of known basis functions (in-
cluding a constant function) that map from Rdw into R. Denote pJT (·) ≡ (p01 (·) , ..., p0JT (·))′

7Asymptotic theory only provides guidance about the rate at which KT must increase with the sample

size T . Thus, in practice, other considerations must be used to judge how best to set this dimensionality. The

bigger is KT , the greater is the number of parameters that must be estimated, therefore the dimensionality

of the sieve is naturally limited by the size of our data set. With KT = 9, the dimension of the parameter

vector, α along with V0
C0
, is 11, estimated using a sample of size T = 213. In practice, we obtained very

similar results setting KT = 10; thus we present the results for the more parsimonious specification using

KT = 9 below.
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and the T × JT matrix P ≡
(
pJT (w1) , ..., p

JT (wT )
)′
. Then

m̂(w, δ, F ) =

(
T∑
t=1

γ(zt+1, δ, F )pJT (wt)
′(P′P)−1

)
pJT (w) (22)

is a sieve least squares estimator of the conditional mean vectorm(w, δ, F ) = E{γ(zt+1, δ, F )|wt =

w}. (Note that JT must grow with the sample size to ensure that m(wt, δ, F ) is estimated

consistently). We form the first-step profile SMD estimate F̂ (·) for F ∗ (·) based on this
estimate of the conditional mean vector and the sample analog of (21):

F̂ (·, δ) = arg min
FKT

1

T

T∑
t=1

m̂(wt, δ, FKT )′m̂(wt, δ, FKT ). (23)

See the Appendix for a detailed description of the profile SMD procedure.

As shown in the Appendix, an attractive feature of this estimator is that it can be

implemented as an instance of GMM with a particular weighting matrixW given by

W = IN⊗ (P′P)
−1
.

The procedure is equivalent to regressing each γi on the set of instruments p
JT (·) and taking

the fitted values from this regression as an estimate of the conditional mean, where the

particular weighting matrix gives greater weight to moments that are more highly correlated

with the instruments pJT (·). The weighting scheme can be understood intuitively by noting
that variation in the conditional mean is what identifies the unknown function F ∗ (·, δ).

4.2 Second-Step GMM Estimation of δ

Once an initial nonparametric estimate F̂ (·, δ) is obtained for F ∗ (·, δ), we can estimate the

finite dimensional parameters δo consistently by solving a suitable sample minimum distance

problem, for example by using a Generalized Method of Moments (GMM, Hansen (1982))

estimator:

δ̂ = arg minQT (δ),
δ∈D

(24)

QT (δ) =
[
gT (δ, F̂ (·, δ) ;yT )

]′
W
[
gT (δ,F̂ (·, δ) ;yT )

]
, (25)

where W is a positive, semi-definite weighting matrix, yT ≡
(
z′T+1, ...z

′
2,x

′
T , ...x

′
1

)′
denotes

the vector containing all observations in the sample of size T and

gT (δ, F̂ (·, δ) ;yT ) ≡ 1

T

T∑
t=1

γ(zt+1, δ, F̂ (·, δ))⊗ xt (26)
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are the sample moment conditions associated with the Ndx× 1 -vector of population uncon-

ditional moment conditions:

E {γi(zt+1, δo, F ∗ (·, δo))⊗ xt} = 0, i = 1, ..., N (27)

where xt is any chosen measurable function of wt.

Observe that F̂ (·, δ) is not held fixed in the second step, but instead depends on δ.

Consequently, the second-step GMM estimation of δ plays an important role in determining

the final estimate of Fo(·), denoted F̂
(
·, δ̂
)
.

In the empirical implementation, we use two different weighting matrices W to obtain

the second-step GMM estimates of δ. The first is the identity weighting matrixW = I; the

second is the inverse of the sample second moment matrix of the N asset returns upon which

the model is evaluated, denoted G−1T (i.e., the (i, j)th element of GT is 1
T

∑T
t=1Ri,tRj,t for

i, j = 1, ..., N.)

To understand the motivation behind usingW = I andW = G−1T to weight the second-

step GMM criterion function, it is useful to first observe that, in principal, all the parameters

of the model (including the finite dimensional preference parameters), could be estimated in

one step by minimizing the sample SMD criterion:

min
δ∈D,FKT

1

T

T∑
t=1

m̂(wt, δ, FKT )′m̂(wt, δ, FKT ). (28)

It is important to clarify why the two-step profile procedure employed here is superior the one-

step procedure in (28) for our application. First, we want estimates of standard preference

parameters such as risk aversion and the EIS (those contained in δ) to reflect values required

to match unconditional moments commonly emphasized in the asset pricing literature, those

associated with unconditional risk premia. This is not possible when estimates of δ and F ()

are obtained in one step. Note that the estimator of δ in the two procedures differs not

only because they employ different weighting matrices; they also use different information

sets. In the two-step profile procedure, the first step (which is required to estimate the

unknown function F ()), is done using conditional moment restrictions, which corresponds to

infinitely-many unconditional moment restrictions. (Of course this correspondence holds in

econometric theory; we must approximate with finitely-many restrictions in implementation.)

The second step, which is used only to estimate the finite dimensional parameters δ, can

be implemented using finite-many unconditional moments, as in GMM. As a consequence,

with the two-step procedure we are free to choose those finite-many unconditional moment
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restrictions so that the finite dimensional preference parameters, such as risk aversion and

the EIS, reflect values required to match the unconditional moments commonly emphasized

in the asset pricing literature (e.g., in Bansal and Yaron (2004) and others). We are not

free to make this choice if the procedure is done in a single step, since in that case the

finite dimensional parameter estimates are forced to be those that match the very same

conditional moment restrictions required to identify the unknown function. (The unknown

function cannot be identified from unconditional moment restrictions.)

A second reason that the two step procedure is important is that both the weighting

scheme inherent in the SMD procedure (28) and the use of instruments pJT (·) effectively
change the set of test assets, implying that key preference parameters are estimated on

linear combinations of the original portfolio returns. Such linear combinations may bear

little relation to the original test asset returns upon which much of the asset pricing literature

has focused. They may also imply implausible long and short positions in the original test

assets and do not necessarily deliver a large spread in unconditional mean returns. While this

change in the effective set of test assets is necessary to estimate the unknown function F (), it

is unnecessary to consistently estimate the finite dimensional parameters δ. We can estimate

the finite dimensional parameters δ on the original set of test assets by again breaking the

procedure up into two steps and estimating the finite dimensional parameters in a second

step using the identity weighting matrixW = I along with xt = 1N , an N×1 vector of ones.

We also use W = G−1T along with xt = 1N . Parameter estimates computed in this

way have the advantage that they are obtained by minimizing an objective function that is

invariant to the initial choice of asset returns (Kandel and Stambaugh (1995)). In addition,

the square root of the minimized GMM objective function has the appealing interpretation

as the maximum pricing error per unit norm of any portfolio of the original test assets, and

serves as a measure of model misspecification (Hansen and Jagannathan (1997)). We use

this below to compare the performance of the estimated EZW model to that of competing

asset pricing models.

4.3 Decision Interval of Household

We model the decision interval of the household at fixed horizons and measure consumption

and returns over the same horizon. In reality, the decision interval of the household may

differ from the data sampling interval. If the decision interval of the household is shorter

than the data sampling interval, the consumption data are time aggregated. Heaton (1993)
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studies the effects of time aggregation in a consumption based asset pricing model with

habit formation, and concludes, based on a first-order linear approximation of the Euler

equation, that time aggregation can bias GMM parameter estimates of the habit coeffi cient.

The extent to which time aggregation may influence parameter estimates in nonlinear Euler

equation estimation is not generally known.

In practice, it is diffi cult or impossible to assess the extent to which time aggregation

is likely to bias parameter estimates, for several reasons. First, the decision interval of the

household is not directly observable. Time aggregation arises only if the decision interval

of the household is shorter than the data sampling interval. Recently, several researchers

have argued that the decision interval of the household may in fact be longer than the

monthly, quarterly, or annual data sampling intervals typically employed in empirical work

(Gabaix and Laibson (2002), Jagannathan and Wang (2007)). In this case, time aggregation

is absent and has no influence on parameter estimates. Second, even if consumption data

are time aggregated, its influence on parameter estimates is likely to depend on a number

of factors that are diffi cult to evaluate in practice, such as the stochastic law of motion for

consumption growth, and the degree to which the interval for household decisions falls short

of the data sampling interval.

If time-aggregation is present, however, it may induce a spurious correlation between

the estimated error terms over which conditional means are taken (γi(zt+1, δo, Fo (·, δo)),
above), and the information set at time t (wt) in the first-step profile estimation of F ∗ (·, δ).

Therefore, as a precaution, we conduct our empirical estimation using instruments at time t

that do not admit the most recent lagged values of the variables (i.e., using two-period lagged

instruments instead of one-period lagged instruments). The cost of doing so is that the two-

period lagged instruments may not be as informative as the one-period lagged instruments;

this cost is likely to be small, however, if the instruments are serially correlated, as are a

number of those employed here (see the next section).

5 Data

A detailed description of the data and our sources is provided in the Appendix. Our aggregate

data are quarterly, and span the period from the first quarter of 1952 to the first quarter of

2005.

The focus of this paper is on testing the model’s theoretical restrictions for a cross-section

of asset returns. If the theory is correct, the cross-sectional asset pricing model (7) should be
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informative about the model’s key preference parameters as well as about the unobservable

continuation value function. Specifically, the first-order conditions for optimal consumption

choice place tight restrictions both across assets and over time on equilibrium asset returns.

Consequently, we study a cross-section of asset returns known to deliver a large spread in

mean returns, which have been particularly challenging for classic asset pricing models to

explain (Fama and French (1992) and Fama and French (1993)). These assets include the

three-month Treasury bill rate and six value-weighted portfolios of common stock sorted into

two size quantiles and three book value-market value quantiles, for a total of 7 asset returns.

All stock return data are taken from Kenneth French’s Dartmouth web page (URL provided

in the appendix), created from stocks traded on the NYSE, AMEX and NASDAQ.

To estimate the representative agent formulation of the model, we use real, per-capita

expenditures on nondurables and services as a measure of aggregate consumption. Since

consumption is real, our estimation uses real asset returns, which are the nominal returns

described above deflated by the implicit chain-type price deflator to measure real consump-

tion. We use quarterly consumption data because it is known to contain less measurement

error than monthly consumption data.

We also construct a stockholder consumption measure to estimate the representative

stockholder version of the model. The definition of stockholder status, the consumption

measure, and the sample selection follow Vissing-Jorgensen (2002), which uses the Consumer

Expenditure Survey (CEX). Since CEX data are limited to the period 1980 to 2002, and since

household-level consumption data are known to contain significant measurement error, we

follow Malloy, Moskowitz, and Vissing-Jorgensen (2009) and generate a longer time-series of

data by constructing consumption mimicking factors for aggregate stockholder consumption

growth. The CEX interviews households three months apart and households are asked to

report consumption for the previous three months. Thus, while each household is interviewed

three months apart, the interviews are spread out over the quarter implying that there will

be households interviewed in each month of the sample. This permits the computation

of quarterly consumption growth rates at a monthly frequency. As in Malloy, Moskowitz,

and Vissing-Jorgensen (2009), we construct a time series of average consumption growth for

stockholders from t to t+ 1 as
1

H

H∑
h=1

Ch
t+1

Ch
t

,

where Ch
t+1 is the quarterly consumption of household h for quarter t and H is the number

of stockholder households in quarter t. We use this average series to form a mimicking factor
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for stockholder consumption growth, by regressing it on aggregate variables (available at

monthly frequency) and taking the fitted values as a measure of the mimicking factor for

stockholder consumption growth.

Mimicking factors for stockholder consumption growth are formed for two reasons. First,

the household level consumption data are known to be measured with considerable error,

mostly driven by survey error. To the extent that measurement error is uncorrelated with

aggregate variables, the mimicking factor will be free of the survey measurement error present

in the household level consumption series. Second, since the CEX sample is short (1982

to 2002), the construction of mimicking factors allows a longer time-series of data to be

constructed. The procedure follows Malloy, Moskowitz, and Vissing-Jorgensen (2009). We

project the average consumption growth of stockholders on a set of instruments (available

over a longer period) and use the estimated coeffi cients to construct a longer time-series of

stockholder consumption growth, spanning the same sample as the aggregate consumption

data. As instruments, we use two aggregate variables that display significant correlation

with average stockholder consumption growth: the log difference of industrial production

growth, ∆ ln(IPt), and the log differences of real services expenditure growth, ∆ ln (SVt).

The regression is estimated using monthly data from July 1982 to February 2002, using the

average CEX stockholder consumption growth rates. The fitted values from these regressions

provide monthly observations on a mimicking factor for the quarterly consumption growth of

stockholders. The results from this regression, with Newey and West (1987) t-statistics, are

reported in Table 1. Average stockholder consumption growth is positively related to both

the growth in industrial production, and to the growth in expenditures on services. Each

variable has a statistically significant effect on average stockholder consumption growth,

though the R2 statistics are modest. The modest R2 statistics are not surprising given the

substantial amount of measurement error in household-level consumption data (comparable

R2 values can be found in Malloy, Moskowitz, and Vissing-Jorgensen (2009)).

For the subsequent empirical analysis, we construct a quarterly measure of the stock-

holder consumption growth mimicking factor by matching the fitted values for quarterly

consumption growth over the three consecutive months corresponding to the three months

in a quarter (e.g., we use the observation on fitted consumption growth from March to Jan-

uary in a given year as a measure of first quarter consumption growth in that year). We

refer the reader to Vissing-Jorgensen (2002) and Malloy, Moskowitz, and Vissing-Jorgensen

(2009) for further details on the CEX data and the construction of mimicking factors.

The empirical procedure also requires computation of instruments to estimate the con-
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ditional moment functions m̂(wt, δ, F̂ (·, δ)). These instruments, pJT (wt), are known basis

functions (including a constant function) of conditioning variables, wt. We include lagged

consumption growth in wt, as well as three variables that have been shown elsewhere to have

significant forecasting power for excess stock returns and consumption growth in quarterly

data.8 Two variables that have been found to display forecasting power for excess stock

returns at a quarterly frequency are the “relative T-bill rate” (which we measure as the

three month Treasury-bill rate minus its 4-quarter moving average), and the lagged value

of the excess return on the Standard & Poor 500 stock market index (S&P 500) over the

three-month Treasury bill rate (see Campbell (1991), Hodrick (1992), Lettau and Ludvig-

son (2001a)). We denote the relative bill rate RREL and the excess return on the S&P

500 index, SPEX.9 We also use the proxy for the log consumption-wealth ratio studied

in (Lettau and Ludvigson (2001a)) to forecast returns.10 This proxy is measured as the

cointegrating residual between log consumption, log asset wealth, and log labor income and

is denoted ĉayt.
11 Lettau and Ludvigson (2004) find that quarterly consumption growth is

predictable by one lag of wealth growth, a variable that is highly correlated with SPEX,

and results (not reported) confirm that it is also predictable by one lag of SPEX. Thus, we

use wt =
[
ĉayt, RRELt, SPEXt,

Ct
Ct−1

]′
.We note that consumption growth—often thought to

be nearly unforecastable—displays a fair amount of short-horizon predictability in the sample

used here: a linear regression of consumption growth on the one-period lagged value wt and

a constant produces an F−statistic for the regression in excess of 12.12

8The importance of instrument relevance in a GMM setting (i.e., using instruments that are suffi ciently

correlated with the included endogenous variables) is now well understood. See Stock, Wright, and Yogo

(2002) for a survey of this issue. No formal test of instrument relevance has been developed for estimation

involving an unknown function. Thus we choose variables for wt that are known to be strong predictors of

asset returns and consumption growth in quarterly data.
9We focus on these variables rather than some others because, in samples that include recent data, they

drive out many of the other popular forecasting variables for stock returns, such as an aggregate dividend-

price ratio, earnings-price ratio, term spreads and default spreads (Lettau and Ludvigson (2001a)).
10This variable has strong forecasting power for stock returns over horizons ranging from one quarter to

several years. Lettau and Ludvigson (2001b) report that this variable also forecasts returns on portfolios

sorted by size and book-market ratios.
11See Lettau and Ludvigson (2001a) and Lettau and Ludvigson (2004) for further discussion of this variable

and its relation to the log consumption-wealth ratio. Note that standard errors do not need to be corrected for

pre-estimation of the cointegrating parameters in ĉayt, since cointegrating coeffi cients are “superconsistent,”

converging at a rate faster than the square root of the sample size.
12As recommended by Cochrane (2001), the conditioning variables in wt are normalized by standardizing

and adding one to each variable, so that they have roughly the same units as unscaled returns.
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Since the error term γi(zt+1, δo, Fo) is orthogonal to the information set wt, any mea-

surable transformation of wt, pJT (wt), can be used as valid instruments in the first-step

estimation of Fo. We use power series as instruments, where the specification includes a

constant, the linear terms, squared terms and pair-wise cross products of each variable in

wt, or 15 instruments in total.

6 Empirical Results

6.1 Parameter Estimates

The shape of our estimated continuation value ratio function Vt
Ct

= F
(
Vt−1
Ct−1

, Ct
Ct−1

)
can be

illustrated by plotting F̂
(
·, δ̂
)
as a function of Vt−1

Ct−1
, holding fixed current consumption

growth, Ct
Ct−1

. Figures 1 and 2 plot this relation for each estimation described above, using

aggregate consumption (Figure 1) or the stockholder mimicking factor as a measure of stock-

holder consumption (Figure 2). For these plots, Vt−1
Ct−1

varies along the horizontal axis, with
Ct
Ct−1

alternately held fixed at its median, 25th, and 75th percentile values in our sample.

We draw several conclusions from the figures. First, the estimated continuation value-

consumption ratio function is nonlinear; this is evident from the curved shape of the functions

and, especially in Figure 2, from the finding that the shape depends on where in the domain

space the function is evaluated. Notice that the serial dependence of F̂ is negative in both

figures. Such a pattern is possible in the linear state space model if the innovation in the

observation equation (9) is correlated with the innovation in the state equation (10). Second,

the estimated continuation value ratio is increasing in current consumption growth, in both

the representative agent (Figure 1) and representative stockholder (Figure 2) versions of the

model. The estimated relation is, however, nonlinear in consumption growth, a finding that

is especially evident in Figure 2.

The top panel of Table 2 presents statistics of the estimated continuation value-consumption

ratio function, for cases estimated using aggregate or stockholder consumption, and using

one of two weighting matrices employed in the second step (W = I or W=G−1T ) . These

statistics are calculated by reading the historical data in as arguments to the estimated func-

tion Vt
Ct

= F
(
Vt−1
Ct−1

, Ct
Ct−1

)
and then computing statistics for the resulting time-series on Vt/Ct.

Not surprisingly given Figures 1 and 2, the mean of the estimated value function is greater

than one, more so for estimates using stockholder consumption growth. But the panel also

shows that the function estimated on stockholder consumption growth is more volatile than
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that estimated on aggregate consumption growth; when W = I, Vt/Ct is about three and

a half times more volatile when estimated on stockholder consumption growth than when

estimated on aggregate consumption growth. This plays a role in the lower risk aversion

estimates discussed below. Finally, the last column of the top panel of Table 2 reports the

autocorrelation statistics. Note that these are based on a linear univariate relation between

Vt/Ct and Vt−1/Ct−1; thus they do not control for the influence of contemporaneous con-

sumption growth, the second argument of the function Vt
Ct

= F
(
Vt−1
Ct−1

, Ct
Ct−1

)
. For this reason,

the function is positively autocorrelated in a univariate sense when computed using aggre-

gate consumption growth, even though Figure 1 shows that, conditional on consumption

growth, the function is negatively autocorrelated. This occurs because consumption growth

is positively related to Vt
Ct

= F
(
Vt−1
Ct−1

, Ct
Ct−1

)
and is itself positively autocorrelated in aggregate

data, implying that the univariate autoregressive coeffi cient is “biased up.”The same bias

is not present for estimates of the value-consumption ratio using stockholder consumption

because stockholder consumption growth is not positively autocorrelated.

Table 2 presents estimates of the model’s preference parameters δ = (β, ρ, θ)′. The

subjective time-discount factor, β, is close to one in each estimation, with values between

0.99 and 0.999, depending on the measure of consumption and the weighting matrix employed

in the second step (W = I or W=G−1T ). The estimated relative risk aversion parameter θ

ranges from 17-60, with higher values for the representative agent version of the model than

the representative stockholder version. For example, using aggregate consumption data,

estimated risk aversion is around 60, regardless of which estimation is employed in the

second step (W = I or W=G−1T ). By contrast, estimated risk aversion is either 20 or 17

when we use the stockholder mimicking factor as a measure of stockholder consumption.

The finding that estimated risk aversion is higher for the model with aggregate consumption

than for that with stockholder consumption is consistent with results in Malloy, Moskowitz,

and Vissing-Jorgensen (2009), who focus on the special case of the EZW utility model in

which the EIS, 1/ρ is unity. In this case, the pricing kernel simplifies to an expression that

depends only on the expected present value of long horizon consumption growth.

The estimated value of ρ is less than one, indicating that the EIS is above one and con-

siderably different from the inverse of the coeffi cient of relative risk aversion. The results are

similar across estimations. The EIS is estimated to be between 1.667 and 2 in the representa-

tive agent version of the model, and between 1.11 and 1.47 in the representative stockholder

version of the model. The estimates for this parameter are in line with those reported in

Bansal, Gallant, and Tauchen (2007) who estimate a model of long-run consumption risk
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with EZW utility. In theoretical work, Bansal and Yaron (2004) have emphasized the im-

portance of EZW preferences with an EIS >1, in conjunction with a persistent component

of consumption growth, to explain the dynamics of aggregate stock market returns. Lettau

and Ludvigson (2009) have emphasized the large empirical Euler equation errors generated

by the standard power utility, representative agent asset pricing model when confronted

with stock market data. Consistent with these findings, we find that the estimated Euler

equation errors in this study are larger and considerably different from zero when the EIS is

restricted to equal the inverse of the coeffi cient of relative risk aversion compared to when

these parameters are left unrestricted.

Recall that the mean value of the continuation value-consumption ratio is higher using

stockholder consumption data than it is using aggregate consumption data (Table 2, top

panel). The preference parameter estimates for each case help explain these different mean

values for Vt/Ct depending on whether the estimation is carried out using aggregate consump-

tion data or stockholder consumption data. To understand how, consider a simple example

of an EZW asset pricing model that can be solved analytically: ∆ lnCt+1 ∼ i.i.d.N (µ, σ2).

Under this assumption, the Euler equations can be solved analytically for Vt/Ct, which is a

constant equal to

V/C =
Ω

1− Ω
,

Ω = β exp

[
(1− ρ)µ+

(1− θ) (1− ρ)

2
σ2
]
.

It is straightforward to show that V/C is increasing in β, decreasing in θ if ρ < 1 (the

case we estimate), and increasing in ρ when θ is suffi ciently greater than 1. Comparing

estimates with the same weighting matrix (i.e., W = I or W = G−1), we see that those

using stockholder consumption have higher β, lower θ, and higher ρ than do those using

aggregate consumption, helping to explain why estimates using stockholder consumption

data produce higher mean values of V/C than do those using aggregate consumption data.

Of course, the data in our study do not necessarily conform to the distributional assumptions

of this simple example. Nevertheless, plausible departures from these assumptions are likely

to lead to (numerical) solutions for Vt/Ct that generate the same qualitative relationships

between the mean of Vt/Ct and the EZW preference parameter values.
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6.2 Model Misspecification and Standard Errors

The estimation procedure used here allows for model misspecification, in the sense that

the moment conditions are allowed to not hold with equality. In this event, the parameters

estimated are pseudo-true parameters. The implementation itself is affected by the allowance

for misspecification in the computation of standard errors. In the class of semiparametric

models considered here Ai and Chen (2007) prove that, when the model is misspecified, as

long as the pseudo-true parameter values are unique and are in the interior of the parameter

space, the estimator is still root-T asymptotically normally distributed, centered at the

psuedo-true parameter values, except that the asymptotic variance now includes extra terms

that would be zero under correct specification. Due to the complication of the asymptotic

variance expressions under misspecification, we compute block bootstrap estimates of the

finite sample distributions of δ̂.

In the bootstrap, the sieve parameters V0
C0
, {aj}KTj=1, the conditional mean m̂(wt, δ, F ),

and the finite dimensional parameters δ = (β, ρ, θ)′ are all estimated for each simulated

realization.13 The procedure is highly numerically intensive, and takes several days to run

on a workstation computer, thus limiting the number of bootstrap simulations that can

be feasibly performed. We therefore conduct the two-step SMD estimation on 100 block

bootstrap samples. The resulting confidence regions are wide, a finding that may in part

be attributable to the small number of bootstrap iterations. Even with the large confidence

regions, however, in the representative agent formulation of the model we can always reject

the hypothesis that θ = ρ. Moreover, the 95% confidence region for ρ is moderate and

contains only values below one, or an EIS above one.

6.2.1 Cyclical Properties of Estimated Pricing Kernel

Figures 3 through 5 give a visual impression of the cyclical properties of the estimated EZW

pricing kernel. For these figures, we focus on the properties of the estimated EZW model

using aggregate consumption where the weighting matrixW = I is employed in the second

stage estimation. The estimated pricing kernel, Mt+1, is the product of two pieces, M1,t+1

13The bootstrap sample is obtained by sampling blocks of the raw data randomly with replacement and

laying them end-to-end in the order sampled. To choose the block length, we follow the recommendation

of Hall, Horowitz, and Jing (1995) who show that the asymptotically optimal block length for estimating a

symmetrical distribution function is l ∝ T 1/5; also see Horowitz (2003).
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and M2,t+1, denoted separately in the graphs:

Mt+1 = β

(
Ct+1
Ct

)−ρ
︸ ︷︷ ︸

M1,t+1

 Vt+1
Ct+1

Ct+1
Ct

Rt

(
Vt+1
Ct+1

Ct+1
Ct

)
ρ−θ

︸ ︷︷ ︸
M2,t+1

.

The first piece corresponds to the part of the pricing kernel that is present in the standard,

constant relative risk aversion, power utility model that arises as a special case when ρ = θ.

The second piece is an additional multiplicative piece that is present more generally when

ρ 6= θ and attributable to the recursive preference structure of the EZW utility function.

Figure 3 plots the estimated pricing kernelMt+1 over time, along with real gross domestic

product (GDP) growth (top panel). Both series are five-quarter moving averages. The middle

and bottom panels plot the estimated values ofM1,t+1 andM2,t+1 separately, over time. The

pricing kernel Mt+1 has a clear countercyclical component, rising in recessions and falling

in booms. Its correlation with real GDP growth is -0.26 over our sample. Both M1,t+1 and

M2,t+1 contribute to this negative correlation, but since M1,t+1 is much less volatile than

M2,t+1, the overall correlation is close to that with just M2,t+1.

The cyclical properties of the pricing kernel are of interest because they determine the

cyclical properties of risk premia. Figures 4 and 5 plot an estimate of the risk premium (and

its components) over time for the aggregate stock market implied by our estimate of Mt+1,

computed as a five quarter moving average of

Risk Premium =
−Cov (Mt+1, RCRSP,t+1 −Rf,t+1)

E (Mt+1)
,

where RCRSP,t+1 denotes the return on the CRSP value-weighted stock market index, and

Rf,t+1 denotes the three-month Treasury-bill rate. To give a rough idea of how the two

components of the pricing kernel contribute to its dynamic behavior, some plots also exhibit

the properties ofM1,t+1 andM2,t+1 separately. In viewing these plots, the reader should keep

in mind that the two components are likely to be correlated; thus the plots do not display

orthogonal movements in M1,t+1 and M2,t+1.

Several aspects of Figures 4 and 5 are noteworthy. First, Figure 4 shows that the stock

market risk premium has a marked countercyclical component: it rises in recessions and falls

in expansions and has a correlation of -0.16 with a five quarter moving average of real GDP

growth. Second, the next two panels show the (negative of the) covariance between M1,t+1

and RCRSP,t+1 −Rf,t+1 (middle panel) and the (negative of the) covariance between M2,t+1

and RCRSP,t+1−Rf,t+1 (bottom panel). The covariance withM2,t+1 is much larger than that
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withM1,t+1 because the former has a much larger standard deviation. (Given our parameter

estimates, the variable in parentheses ofM2,t+1is raised to a large number in absolute value.)

However, both components of the pricing kernel display a countercyclical correlation with

the excess stock market return, rising in recessions and falling in expansions.

Third, the countercyclicality of −Cov (Mt+1, RCRSP,t+1 −Rf,t+1) /E (Mt+1) , is attribut-

able to countercyclicality in the correlation, −Corr (Mt+1, RCRSP,t+1 −Rf,t+1) /E (Mt+1) ,

but also to countercyclical heteroskedasticity in the pricing kernel and in excess returns. Fig-

ure 5 plots the five-quarter moving average of −Corr (Mt+1, RCRSP,t+1 −Rf,t+1) /E (Mt+1)

(top panel), of the standard deviation of Mt+1, StD (Mt+1) (middle panel) and of the stan-

dard deviation of the excess return, StD (RCRSP,t+1 −Rf,t+1). All three components rise

sharply in recessions and fall in booms. The correlation component has a correlation of -0.17

with real GDP growth, but the standard deviation of the pricing kernel is even more coun-

tercyclical, having a correlation with real GDP growth of -0.26. The correlation between the

standard deviation of excess returns and real GDP growth is -0.18.

6.3 Model Comparison

In this section we address the question of how well the EZW recursive utility model explains

asset pricing data relative to competing specifications. We use the methodology provided

by Hansen and Jagannathan (1997), which allows all stochastic discount factor models to be

treated as misspecified proxies for the true unknown SDF.

Hansen and Jagannathan suggest that we compare the pricing errors of various candidate

SDF Mt(b) models by choosing each model’s parameters, b, to minimize the quadratic form

gHJT (b) ≡ {gT (b)}′G−1T gT (b), where gT (b) = (g1T (b), ..., gNT (b))′ is the vector of the sample

average of pricing errors (i.e., giT (b) = 1
T

∑T
t=1Mt(b)Ri,t − 1 for i = 1, ..., N), and GT is the

sample second moment matrix of the N asset returns upon which the models are evaluated

(i.e., the (i, j)-the element of GT is 1
T

∑T
t=1Ri,tRj,t for i, j = 1, ..., N). The measure of model

misspecification is then the square root of this minimized quadratic form, dT ≡
√
gHJT (̂b),

which gives the maximum pricing error per unit norm on any portfolio of the N assets

studied, and delivers a metric suitable for model comparison. It is also a measure of the

distance between the candidate SDF proxy, and the set of all admissible stochastic discount

factors (Hansen and Jagannathan (1997)). We refer to the square root of this minimized

quadratic form, dT ≡
√
gHJT (̂b), as the Hansen-Jagannathan distance, or HJ distance for

short.
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We also compute a conditional version of the distance metric that incorporates con-

ditioning information Zt. In this case, gT (b) = 1
T

∑T
t=1 [(Mt+1 (b)Rt+1 − 1N)⊗ Zt] and

GT ≡ 1
T

∑T
t=1 (Rt+1 ⊗ Zt) (Rt+1 ⊗ Zt)′. Because the number of test assets increases quickly

with the dimension of Zt, we use just a single instrument Zt = cayt. This instrument is

useful because it has been shown elsewhere to contain significant predictive power for re-

turns on the size and book-market sorted portfolios used in this empirical study (Lettau and

Ludvigson (2001b)). We refer to the Hansen-Jagannathan distance metric that incorporates

conditioning information as the conditional HJ distance, and likewise refer to the distance

without conditioning information as the unconditional HJ distance.

An important advantage of this procedure is that the second moment matrix of returns

delivers an objective function that is invariant to the initial choice of asset returns. The iden-

tity and other fixed weighting matrices do not share this property. Kandel and Stambaugh

(1995) have suggested that asset pricing tests using these other fixed weighting matrices can

be highly sensitive to the choice of test assets. Using the second moment matrix helps to

avert this problem.

We compare the specification errors of the estimated EZW recursive utility model to those

of the time-separable, constant relative risk aversion (CRRA) power utility model (3) and to

two alternative asset pricing models that have been studied in the literature: the three-factor,

portfolio-based asset pricing model of Fama and French (1993), and the approximately linear,

conditional, or “scaled”consumption-based capital asset pricing model explored in Lettau

and Ludvigson (2001b). These models are both linear stochastic discount factor models

taking the form

Mt+1(b) = b0 +
k∑
i=1

biFi,t+1, (29)

where Fi,t+1 are variable factors, and the coeffi cients b0 and bi are treated as free parameters

to be estimated. Fama and French develop an empirical three-factor model (k = 3), with

variable factors related to firm size (market capitalization), book equity-to-market equity,

and the aggregate stock market. These factors are the “small-minus-big”(SMBt+1) portfo-

lio return, the “high-minus-low”(HMLt+1) portfolio return, and the market return, Rm,t+1,

respectively.14 The Fama-French pricing kernel is an empirical model not motivated from

14SMB is the difference between the returns on small and big stock portfolios with the same weight-

average book-to-market equity. HML is the difference between returns on high and low book-to-market

equity portfolios with the same weighted-average size. Further details on these variables can be found in

Fama and French (1993). We follow Fama and French and use the CRSP value-weighted return as a proxy

for the market portfolio, Rm. The data are taken from Kenneth French’s Dartmouth web page (see the
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any specific economic model of preferences. It nevertheless serves as a benchmark because it

has displayed unusual success in explaining the cross section of mean equity returns (Fama

and French (1993), Fama and French (1996)). The model explored by Lettau and Ludvig-

son (2001b) can be interpreted as a “scaled” or conditional consumption CAPM (“scaled

CCAPM”hereafter) and also has three variable factors (k = 3), ĉayt, ĉayt ·∆ logCt+1, and

∆ logCt+1. Lettau and Ludvigson (2001b) show that such a model can be thought of as a

linear approximation to any consumption-based CAPM (CCAPM) in which risk-premia vary

over time.

To insure that the SDF proxies we explore preclude arbitrage opportunities over all assets

in our sample (including derivative securities), the estimated SDF must always be positive.

The SDF of the time-separable CRRA utility model and of the EZW recursive utility model

is always positive, thus these models are arbitrage free. By contrast, the SDFs of the linear

comparison models may often take on large negative values, and are therefore not arbitrage

free. In order to avoid comparisons between models that are arbitrage free and those that

are not, we restrict the parameters of the linear SDF to those that produce a positive SDF

in every period. Although we cannot guarantee that the linear SDFs will always be positive

out-of-sample, we can at minimum choose parameters so as to insure that they are positive

in sample, and therefore suitable for pricing derivative claims in sample.

In practice, the set of parameters that deliver positive SDFs is not closed, so it is con-

venient to include limit points by choosing among parameters b that deliver nonnegative

SDFs. To do so, we choose the unknown parameters b = (b0, b1, ..., bk)
′ of the linear mod-

els to minimize the squared HJ distance for that model, subject to the constraint that

the SDF proxy be nonnegative in every period of our sample. In the computation of the

HJ distance metric, this implies that we restrict gT (b)≡ 1
T

∑T
t=1 [{Mt+1 (b)}+Rt+1−1N ] or

gT (b)≡ 1
T

∑T
t=1 [({Mt+1 (b)}+Rt+1−1N)⊗Zt], where {Mt+1 (b)}+ = max {0,Mt+1 (b)} .

For the EZW recursive utility model, the SDF is always positive and the restriction is

non-binding. The HJ distance for the EZW model (19) is computed by using the parameter

estimates obtained from the two-step procedure described in Section 3, for the case in which

W = G−1T in the second step GMM estimation of the finite-dimensional parameters δ =

(β, ρ, θ)′. Notice that this drastically restricts the number of parameters in the EZW model

that are chosen to minimize the HJ distance. In particular, we choose only the finite-

dimensional parameters δ = (β, ρ, θ)′ of the EZW model to minimize the HJ distance—the

parameters of the nonparametric F () function are chosen to minimize the SMD criterion (23).

Appendix).
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Note that this places the EZW model (19) at a disadvantage because the sieve parameters of

the unknown function F () are not chosen to minimize the HJ criterion, which is the measure

of model misspecification. By contrast all of the comparison models’parameters are chosen

to minimize the HJ criterion.15 To rank competing models, we apply an AIC penalty to the

HJ criterion of each model, for the number of free parameters b chosen to minimize the HJ

distance. The HJ distances for all models are reported in Table 3.16

Table 3 reports the measure of specification error given by the HJ distance (“HJ Dist”),

dT ≡
√
gHJT (̂b), for all the models discussed above. Several general patterns emerge from the

results. First, for both the representative agent version of the model and the representative

stockholder version of the model, the estimated EZW recursive utility model always displays

smaller specification error than the time-separable CRRA model, but greater specification

error than the Fama-French model. This is true regardless of whether the unconditional or

conditional HJ distance is used to compare models. The unconditional HJ distance for the

EZW recursive specification is 0.449, about 13 percent smaller than that of the time-separable

CRRA model, but about 26 percent larger than the Fama-French model. When models are

compared according to the conditional HJ distance, the distance metric for the recursive

model is only 15 percent larger than that of the Fama-French model. Second, the EZW

model performs better than than the scaled CCAPM: the HJ distance is smaller when models

are compared on the basis of either the unconditional or conditional HJ distance, regardless

of which measure of consumption is used.17 Third, when the representative stockholder

version of the model is estimated, the recursive utility model performs better than every

model except the Fama-French model according to both the conditional and unconditional

distance metrics. These results are encouraging for the recursive utility framework, because

15Recall that the SMD minimization gives greater weight to moments that are more highly correlated with

the instruments pJT (wt), while the HJ minimization matches unconditional moments.
16The adjusted criterion function (with AIC penalty) is√

d2T +
# param

T
,

where “# param” refers to the number of free parameters b chosen to minimize the Hansen-Jagannathan

distance.
17The estimated HJ distances for the linear scaled CCAPM are larger than reported in previous work

(e.g., Lettau and Ludvigson (2001b)) due to the restriction that the SDF proxy be positive. Although the

scaled CCAPM does a good job of assigning the right prices to size and book-market sorted equity returns,

its linearity implies that it can assign negative prices to some positive derivative payoffs on those assets.

This is not surprising, since linear models—typically implemented as approximations of nonlinear models for

use in specific applications—are not designed to price derivative claims.
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they suggest that the model’s ability to fit the data is in a comparable range with other

models that have shown particular success in explaining the cross-section of expected stock

returns.

Note that the HJ distances computed so as to insure that the SDF proxies are nonneg-

ative, are in principle distinct from an alternative distance metric suggested by Hansen and

Jagannathan (1997), denoted “HJ+ Dist,”which restricts the set of admissible stochastic

discount factors to be nonnegative. In practice, however, the two distance metrics are quite

similar. Estimates of “HJ+ Dist”are reported in Table 4.18

Several authors have focused on the cross-sectional implications of EZW preferences

when the EIS, ρ−1, is restricted to unity (e.g., Hansen, Heaton, and Li (2008), Malloy,

Moskowitz, and Vissing-Jorgensen (2009)). The Appendix presents results when we repeat

our estimation fixing ρ = 1. We find qualitatively similar results in an estimation of the

representative stockholder version of the model.

7 The Return to AggregateWealth and HumanWealth

In this section, we investigate the estimated EZW recursive utility model’s implications for

the return to aggregate wealth, Rw,t+1, and the return to human wealth, denoted Ry,t+1

hereafter. The return to aggregate wealth represents a claim to future consumption and is in

general unobservable. However, it can be inferred from our estimates of Vt/Ct by equating the

marginal rate of substitution (5), evaluated at the estimated parameter values
{
δ̂,F̂

(
·, δ̂
)}
,

with its theoretical representation based on consumption growth and the return to aggregate

wealth (6):

β

(
Ct+1
Ct

)−ρ Vt+1
Ct+1

Ct+1
Ct

Rt

(
Vt+1
Ct+1

Ct+1
Ct

)
ρ−θ

=

{
β

(
Ct+1
Ct

)−ρ} 1−θ
1−ρ {

1

Rw,t+1

} θ−ρ
1−ρ

.

If, in addition, we explicitly model human wealth as part of the aggregate wealth portfolio,

the framework also has implications for the return to human wealth, Ry,t. We do so by

18Following Hansen and Jagannathan (1997), HJ+ is computed numerically as

HJ+ =

{
max
λ∈RN

(1/T )

T∑
t=1

[
(Mt+1)

2 −
(
Mt+1 − λ′Rt+1

)+2 − 2λ′]}1/2 ,
where

(
Mt+1 − λ′Rt+1

)+
= max

{
Mt+1 − λ′Rt+1, 0

}
.
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following Campbell (1996), who assumes that the return to aggregate wealth is a portfolio

weighted average of the unobservable return to human wealth and the return to financial

wealth. Specifically, Campbell starts with the relationship

Rw,t+1 = (1− νt)Ra,t+1 + νtRy,t+1, (30)

where νt is the ratio of human wealth to aggregate wealth, and Ra,t+1 is the gross simple

return on nonhuman wealth (a refers to financial asset wealth). A diffi culty with (30) is that

the wealth shares may in principal vary over time. Campbell deals with this by linearizing

(30) around the means of νt, the log return on nonhuman asset wealth, and the log return

on human wealth, assuming that the means of the latter two are the same. Under these

assumptions, an approximate expression for the log return on aggregate wealth may be

obtained with constant portfolio shares. Unfortunately, this approximation assumes that

the means of human and nonhuman wealth returns are the same. As a start, we instead

adopt the crude assumption that portfolio shares in (30) are constant:

Rw,t+1 = (1− ν)Ra,t+1 + νRy,t+1.

Such an assumption is presumably a reasonable approximation if portfolio shares between

human and nonhuman wealth are relatively stable over quarterly horizons. Given observa-

tions on Rw,t+1 from our estimation of the EZW recursive utility model, and given a value

for ν, the return to human wealth, Ry,t+1, may be inferred.

The exercise in this section is similar in spirit to the investigation of Lustig and Van

Nieuwerburgh (2008). These authors, following Campbell (1996), investigate a loglinear

version of the EZW recursive utility model under the assumption that asset returns and

consumption are jointly lognormal and homoskedastic. With these assumptions, the authors

back out the human wealth return from observable aggregate consumption data, and find

a strong negative correlation between the return to asset wealth and the return to human

wealth. Our approach generalizes their exercise in that it provides an estimate of the fully

nonlinear EZW model without requiring the assumption that asset returns and consumption

are jointly lognormal and homoskedastic. An important question of this study is whether our

approach leads to significantly different implications for both the aggregate wealth return

and the human wealth return.

Tables 5 and 6 present summary statistics for our estimated aggregate wealth return,

Rw,t+1 and human wealth return, Ry,t+1. Following Campbell (1996) and Lustig and Van

Nieuwerburgh (2008), we use the CRSP value-weighted stock market return to measure
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Ra,t+1. The statistics for Ry,t+1 are presented for two different values of the share of human

wealth in aggregate wealth: ν = 0.333 and ν = 0.667. There are two different sets of

estimates, depending on whetherW = I orW = G−1T in the second-step estimation of the

EZW model. Summary statistics for the W = I case are presented in Table 5, and for the

W = G−1T case in Table 6. For comparison, summary statistics on the CRSP value-weighted

return, RCRSP,t+1 are also presented.

Several conclusions can be drawn from the results in Tables 5 and 6. First, the return

to aggregate wealth is always considerably less volatile than the aggregate stock market re-

turn. For example, in Table 5, the annualized standard deviation of Rw,t+1 is 0.01 in the

representative agent model and 0.036 in the representative stockholder model. By contrast,

the annualized standard deviation of RCRSP,t+1 is 0.165. Second, in the representative agent

model, the mean of Rw,t+1 is less than the mean of RCRSP,t+1, but is larger in the repre-

sentative stockholder model. Since the mean of Rw,t+1 is a weighted average of the means

of Ry,t+1 and RCRSP,t+1, and given that the mean of RCRSP,t+1 is 0.084, the mean of the

human wealth return can be quite small if, as in the representative agent model, the mean

of aggregate wealth return is small. This is especially so when the share of human wealth

takes on the smaller value of 0.333. Indeed, if the mean of aggregate wealth is suffi ciently

small (as it is in Table 6 where it equals 0.023), the gross return on human wealth can even

be less than one, so that the simple net return is negative. Third, the return to human

wealth is a weighted average (where the weights exceed one in absolute value) of the returns

to aggregate wealth and the return to asset wealth. Thus, unless the correlation between the

stock market return and the aggregate wealth return is suffi ciently high, the return to human

wealth can be quite volatile, especially when ν is small. This occurs in the representative

stockholder versions of the model when ν = 0.333.

Finally, the results show that the only way to reconcile a relatively stable aggregate

wealth return with a volatile stock market return is to have the correlation between the

human wealth return and the stock market return be negative and large in absolute value.

The correlation between Ry,t+1 and RCRSP,t+1 ranges from -0.764 in Table 6 when ν = 0.667,

to -0.996 in Table 5 when ν = 0.333. These numbers are strikingly close to those reported

in Lustig and Van Nieuwerburgh (2008) for the cases where the EIS exceeds one.

The Appendix of this paper presents additional results from an investigation of the impli-

cations of the findings above for forecastability of the multi-horizon excess return to the aggre-

gate wealth portfolio, Rw,t+h, using the log aggregate wealth-consumption ratio lnWt− lnCt

as a predictor variable.
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8 Conclusion

In this paper we undertake a semiparametric econometric evaluation of the Epstein-Zin-Weil

recursive utility model, a framework upon which a large and growing body of theoretical

work in macroeconomics and finance is based. We conduct estimation of the EZW model

without employing an observable financial market return as a proxy for the unobservable

aggregate wealth return, without linearizing the model, and without placing tight paramet-

ric restrictions on either the law of motion or joint distribution of consumption and asset

returns, or on the value of key preference parameters such as the elasticity of intertemporal

substitution. We present estimates of all the preference parameters of the EZW model, eval-

uate the model’s ability to fit asset return data relative to competing asset pricing models,

and investigate the implications of such estimates for the unobservable aggregate wealth

return and human wealth return.

Using quarterly data on consumption growth, assets returns and instruments, we find

evidence that the elasticity of intertemporal substitution in consumption differs considerably

from the inverse of the coeffi cient of relative risk aversion, and that the EZW recursive utility

model displays less model misspecification than the familiar time-separable CRRA power

utility model. Taken together, these findings suggest that the consumption and asset return

data we study are better explained by the recursive generalization of the standard CRRA

model than by the special case of this model in which preferences are time-separable and the

coeffi cient of relative risk aversion equals the inverse of the EIS.

Our results can be compared to those in the existing the literature. For example, we

find that the estimated relative risk aversion parameter ranges from 17-60, with considerably

higher values for the representative agent representation of the model than the representative

stockholder representation. These findings echo those in the approximate loglinear version of

the model where the EIS is restricted to unity, studied by Malloy, Moskowitz, and Vissing-

Jorgensen (2009). On the other hand, we find that the estimated elasticity of intertemporal

substitution is typically above one, regardless of which consumption measure is employed.

Finally, the empirical estimates imply that the unobservable aggregate wealth return is

weakly correlated with the CRSP value-weighted stock market return and only one-tenth to

one-fifth as volatile. These findings suggest that the return to human wealth must be strongly

negatively correlated with the aggregate stock market return, similar to results reported for

an approximate loglinear version of the model studied by Lustig and Van Nieuwerburgh

(2008).
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As an asset pricing model, the EZW recursive utility framework includes an additional

risk factor for explaining asset returns, above and beyond the single consumption growth risk

factor found in the time-separable, CRRA power utility framework. The added risk factor

in the EZW recursive utility model is a multiplicative term involving the continuation value

of the future consumption plan relative to its conditional expected value today. This factor

can in principal add volatility to the marginal rate of substitution in consumption, helping

to explain the behavior of equity return data (Hansen and Jagannathan (1991)). One way

this factor can be volatile is if the conditional mean of consumption growth varies over long

horizons. The estimation procedure employed here allows us to assess the plausibility of

this implication from the consumption and return data alone, without imposing restrictions

on the data generating process for consumption. The results suggest that the additional

risk factor in the EZW model has suffi cient dynamics so as to provide a better description

of the data than the CRRA power utility model, implying that the conditional mean of

consumption growth is unlikely to be constant over time (Kocherlakota (1990)). At the

same time, the added volatility coming from continuation utility is modest and must be

magnified by a relatively high value for risk aversion in order to fit the equity return data.

A possible objection to our estimation approach concerns the applicability of the model

to microeconomic data. Suppose we take the model of preferences we have estimated as lit-

erally true at the individual level. There is no general aggregation result stating that these

same preferences hold for a representative agent, that is for the average consumption of some

set of heterogeneous households. In this case, the resulting parameter estimates on average

consumption data may be biased estimates of the preference parameters applicable to an

individual. Attanasio and Weber (1993) have emphasized this point in documenting that

estimates of the EIS are typically lower for aggregate data than they are for average cohort

data. A second possible objection concerns the use of average stockholder consumption data

when stock market participation rates have fluctuated over the sample. If different individ-

uals move in and out of the stock market, the average consumption growth of stockholders

may not correspond to that of any single stockholder or even to the growth rate of the aver-

age consumption of individuals who remained stockholders between t and t + 1 (Attanasio,

Banks, and Tanner (2002)).

If the null hypothesis is that the preferences we have estimated are an accurate represen-

tation of the true preferences of individuals, these considerations point to important areas for

future research using household level data. Preference heterogeneity across households (in-

cluding possibly the non-parametric part of the utility function), and possible non-classical
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measurement error in household level data are important challenges that would need to be

addressed in the context of nonlinear estimation with an unknown function. But the ap-

plicability to microeconomic data is not the primary concern of the present paper. Our

goal, challenging enough, is to take the representative agent specifications that have been

routinely employed in the large and growing asset pricing literature on EZW preferences

and provide some empirical content to the parameter values of the utility function as well

as provide formal statistical tests of the model’s ability to fit the data relative to competing

specifications. The representative-agent preferences used in this literature could take the

same form as those of individual agents, or they could result from aggregation of hetero-

geneous agents with quite different preferences. An important aspect this approach is that

the model of the stochastic discount factor need not be correctly specified, thereby permit-

ting estimation under misspecification. Misspecification could arise for a number of reasons,

including lack of complete aggregation when markets are incomplete, or mismeasurement

of stockholder consumption over time. If the model is misspecified, the methodology here

will not allow us to uncover the true preference parameter estimates, but it does allow us

to estimate the pseudo-true parameters (those that best fit the data) of the representative

agent approximating specification, and assess the magnitude of misspecification relative to

competing specifications. An important area of future research is to investigate how the

magnitude of specification error in the representative agent versions of the model compares

to that when these same preferences are applied to individual level data.
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Table 1
First-Stage Estimates Weights Stockholder Consumption

Model: ∆cSHt = γ0 + γ1∆ ln(IPt) + γ2∆ ln (SVt) + εt

Est. (t-stat)

γ0 0.007 (1.447)

γ1 0.833 (6.780)

γ2 1.992 (2.204)

R2 0.075

Notes: The table reports the results from regressing stockholder consumption growth on the log difference

of industrial production growth, ∆ ln(IPt), and the log differences of real services expenditure growth,

∆ ln (SVt). Point estimates are reported, along with Newey and West (1987) corrected t-statistics in

parentheses. The sample period is 1982:M7-2002:M2.



Table 2

Value Function Statistics

Mean Std AC

Agg Cons,W = I 1.37 0.011 0.53

Agg Cons,W = G−1T 1.87 0.019 0.58

SH Cons,W = I 4.89 0.025 -0.24

SH Cons,W = G−1T 2.77 0.047 -0.29

Preference Parameter Estimates

2nd Step Estimation β θ ρ

(95% CI) (95% CI) (95% CI)

Aggregate Consumption

W = I 0.990 57.5 0.60

(.985, .996) (27.5, 129) (.24, .99)

W = G−1T 0.999 60 0.50

(.994, .9999) (42,144) (.20, .75)

Stockholder Consumption

W = I 0.994 20.00 0.90

(.993, .9995) (.25, 40) (.38, 1.24)

W = G−1T 0.998 17.0 0.68

(.992, .9999) (1, 43.3) (.23, 1.01)

Notes: The top panel presents statistics (mean, standard deviation, autocorrelation) of the estimated

value function. The bottom panel reports second-step estimates of preference parameters, with 95% con-

fidence intervals in parenthesis. β is the subjective time discount factor, θ is the coeffi cient of relative

risk aversion, and ρ is the inverse of the elasticity of intertemporal substitution. Second-step estimates are

obtained by minimizing the GMM criterion with eitherW = I or withW = G−1T , where in both cases

xt=1N , an N × 1 vector of ones. The sample is 1952:Q1-2005:Q1.



Table 3
Specification Errors for Alternative Models: HJ Distance

Unconditional Conditional

Aggregate Consumption

Model HJ Dist HJ Dist

(1) (2) (3)

Recursive 0.451 0.591

CRRA Utility 0.514 0.627

Fama-French 0.363 0.515

Scaled CCAPM 0.456 0.625

Stockholder Consumption

Model HJ Dist HJ Dist

(1) (2) (3)

Recursive 0.463 0.605

CRRA Utility 0.517 0.627

Fama-French 0.363 0.515

Scaled CCAPM 0.490 0.620

Notes: The table reports the Hansen-Jagannathan distance metric

HJ DistT (b) = min
b

√
gT (b)′G−1T gT (b) ,

where b are parameter values associated with the model listed in column 1. In column 2, gT (b) ≡
1
T

∑T
t=1 [{Mt (b)}+Rt−1N ] , and GT≡ 1

T

∑T
t=1RtR

′
t, where Mt (b) is the stochastic discount fac-

tor associated with the model listed in column 1 and {Mt (b)}+ = max {0,Mt (b)}. In column 3,

gT (b) ≡ 1
T

∑T
t=1 [({Mt+1 (b)}+Rt+1−1N)⊗Zt] and GT ≡ 1

T

∑T
t=1 (Rt+1⊗Zt+1) (Rt+1⊗Zt)′

with Zt= cayt. The sample is 1952:Q1-2005:Q1.



Table 4
Specification Errors for Alternative Models: HJ+ Distance

Unconditional Conditional

Aggregate Consumption

Model HJ+ Dist HJ+ Dist

(1) (2) (3)

Recursive 0.451 0.591

CRRA Utility 0.514 0.627

Fama-French 0.341 0.519

Scaled CCAPM 0.464 0.643

Stockholder Consumption

Model HJ+ Dist HJ+ Dist

(1) (2) (3)

Recursive 0.463 0.605

CRRA Utility 0.517 0.627

Fama-French 0.338 0.506

Scaled CCAPM 0.467 0.661

Notes: For each model in column 1, “HJ+ Dist” is the distance between the model proxy and

the family of admissible nonnegative stochastic discount factors. The sample is 1952:Q1-2005:Q1.



Table 5
Summary Statistics for Return to Aggregate Wealth, Human Wealth,W = I

Model-Implied Aggregate Wealth Return

Representative Agent Rep Stockholder

Rw,t RCRSP,t Rw,t RCRSP,t

Panel A: Correlation Matrix

Rw,t 1.00 0.171 1.00 -0.049

RCRSP,t 1.00 1.00

Panel B: Univariate Summary Statistics

Mean 0.057 0.084 0.109 0.084

Standard deviation 0.010 0.165 0.036 0.165

Autocorrelation 0.234 0.055 -0.08 0.055

Notes: See next page.



Table 5, continued
Model-Implied Human Wealth Return, ν = 0.333

Representative Agent Rep Stockholder

Ry,t RCRSP,t Ry,t RCRSP,t

Panel A: Correlation Matrix

Ry,t 1.00 -0.996 1.00 -0.953

RCRSP,t 1.00 1.00

Panel B: Univariate Summary Statistics

Mean 0.003 0.084 0.160 0.084

Standard deviation 0.327 0.165 0.353 0.165

Autocorrelation 0.044 0.055 0.042 0.055

Model-Implied Human Wealth Return, ν = 0.667

Representative Agent Rep Stockholder

Ry,t RCRSP,t Ry,t RCRSP,t

Panel A: Correlation Matrix

Ry,t 1.00 -0.982 1.00 -0.847

RCRSP,t 1.00 1.00

Panel B: Univariate Summary Statistics

Mean 0.043 0.084 0.121 0.084

Standard deviation 0.082 0.165 0.101 0.165

Autocorrelation 0.036 0.055 0.016 0.055

Notes: The table reports summary statistics for the return to the aggregate wealth portfolio, Rw,t, and

the return to human wealth, Ry,t, implied by the estimates of the model, and for the CRSP value-weighted

stock market return, RCRSP,t. The parameter ν is the steady state fraction of human wealth in aggregate

wealth. Means and standard deviations are annualized. Results for the model-implied returns are based

on second-step estimates obtained by minimizing the GMM criterion withW = I and xt=1N , an N × 1

vector of ones. The sample is 1952:Q1-2005:Q1.



Table 6
Summary Statistics for Return to Aggregate Wealth, Human Wealth,W = G−1T

Model-Implied Aggregate Wealth Return

Representative Agent Rep Stockholder

Rw,t RCRSP,t Rw,t RCRSP,t

Panel A: Correlation Matrix

Rw,t 1.00 0.18 1.00 0.004

RCRSP,t 1.00 1.00

Panel B: Univariate Summary Statistics

Mean 0.023 0.084 0.092 0.084

Standard deviation 0.012 0.165 0.046 0.165

Autocorrelation 0.055 0.055 -0.434 0.055

Notes: See next page.



Table 6, continued

Model-Implied Human Wealth Return, ν = 0.333

Representative Agent Rep Stockholder

Ry,t RCRSP,t Ry,t RCRSP,t

Panel A: Correlation Matrix

Ry,t 1.00 -0.994 1.00 -0.921

RCRSP,t 1.00 1.00

Panel B: Univariate Summary Statistics

Mean -0.093 0.084 0.110 0.084

Standard deviation 0.326 0.165 0.359 0.165

Autocorrelation 0.043 0.055 0.013 0.055

Model-Implied Human Wealth Return, ν = 0.667

Representative Agent Rep Stockholder

Ry,t RCRSP,t Ry,t RCRSP,t

Panel A: Correlation Matrix

Ry,t 1.00 -0.975 1.00 -0.764

RCRSP,t 1.00 1.00

Panel B: Univariate Summary Statistics

Mean -0.007 0.084 0.097 0.084

Standard deviation 0.081 0.165 0.108 0.165

Autocorrelation 0.032 0.055 -0.103 0.055

Notes: The table reports summary statistics for the return to the aggregate wealth portfolio, Rw,t, and

the return to human wealth, Ry,t, implied by the estimates of the model, and for the CRSP value-weighted

stock market return, RCRSP,t. The parameter ν is the steady state fraction of human wealth in aggregate

wealth. Means and standard deviations are annualized statistics from quarterly data. Results for the model-

implied returns are based on second-step GMM estimation using theW = G−1T and xt = 1N . The sample

is 1952:Q1-2005:Q1.



Figure 1 
Estimated Continuation Value-Consumption Ratio, Aggregate Consumption, W=I 
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Estimated Continuation Value-Consumption Ratio, Aggregate Consumption, W=(GT)-1 
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Notes: The figure plots the estimated continuation value-consumption ratio against lagged values of the 
continuation value with consumption growth held alternately held at the 25th, 50th and 75th percentiles in the 
sample. Consumption is measured as aggregate consumption, “W=” indicates the weighting matrix used in 
second-step estimation. The sample is 1952:Q1-2005Q1.  



Figure 2 
Estimated Continuation Value-Consumption Ratio, Stockholder Consumption, W=I 
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Notes: The figure plots the estimated continuation value-consumption ratio against lagged values of the 
continuation value with consumption growth held alternately held at the 25th, 50th and 75th percentiles in the 
sample. Consumption is measured as stockholder consumption, “W=” indicates the weighting matrix used 
in second-step estimation. The sample is 1952:Q1-2005Q1.  



Figure 3 
Cyclical Properties of Estimated EZW Pricing Kernel 

1950 1960 1970 1980 1990 2000
−3

−2

−1

0

1

2

3
Corr=−0.261

M
t
=M

1,t
*M

2,t
,  GDP

S
ta

nd
ar

di
ze

d 
U

ni
ts

 

 

1950 1960 1970 1980 1990 2000
−3

−2

−1

0

1

2

3
Corr=−0.476

M
1,t

,  GDP

S
ta

nd
ar

di
ze

d 
U

ni
ts

 

 

1950 1960 1970 1980 1990 2000
−3

−2

−1

0

1

2

3
Corr=−0.26

M
2,t

,  GDP

S
ta

nd
ar

di
ze

d 
U

ni
ts

 

 

recession
M
GDP

recession
M

1

GDP

recession
M

2

GDP

 
Notes: The top panel of this figure plots the estimated pricing kernel, Mt=M1,t*M2,t, as the product of two 
components, M1,t and M2,t, along with real gross domestic product (GDP) growth over time. M1,t 
corresponds to the conventional CRRA piece, ( ) ,/11,1

ρβ −
++ = ttt CCM  M2,t  corresponds to multiplicative 

piece added by EZW preferences, ( )( )
( )( )( ) .
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between the pricing kernel or one of its components and GDP growth. Shaded areas denote a recession as 
designated by the National Bureau of Economic Research. The SDF plotted is estimated using aggregate 
consumption, with W=I as the weighting matrix in second-step estimation. The sample is 1952:Q1-
2005Q1. 



Figure 4 
Cyclical Properties of Market Risk Premium Implied by EZW Estimation 
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Notes: The top panel of this figure plots rolling, 5 quarter estimates of risk premium for the aggregate stock 
market, computed as the covariance of  Mt=M1,t*M2,t with the CRSP excess stock market return, RCRSP,t-Rf,t, 
divided by the mean of Mt . Also plotted is real gross domestic product (GDP) growth over time. “Corr =” 
indicates the correlation between the risk premium and GDP growth. M1,t corresponds to the conventional 
CRRA piece,  M( ) ,/11,1

ρβ −
++ = ttt CCM 2,t  corresponds to multiplicative piece added by EZW preferences, 
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M Shaded areas denote a recession as designated by the National 

Bureau of Economic Research. The SDF plotted is estimated using aggregate consumption, with W=I as 
the weighting matrix in second-step estimation. The sample is 1952:Q1-2005Q1.  



Figure 5 
Cyclical Properties of Components of Market Risk Premium Implied by EZW Estimation 
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Notes: The estimated pricing kernel is Mt=M1,t*M2,t. The top panel plots rolling, 5 quarter estimates of 
Corr(Mt, RCRSP,t-Rf,t)/E(Mt), along with real gross domestic product (GDP) growth over time. The bottom 
subpanels plot rolling, 5 quarter estimates of the standard deviations of M1,t and M2,t. M1,t corresponds to the 
conventional CRRA piece,  M( ) ,/11,1

ρβ −
++ = ttt CCM 2,t  corresponds to multiplicative piece added by EZW 

preferences, ( )( )
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line in each subplot and GDP growth. Shaded areas denote a recession as designated by the National 
Bureau of Economic Research. The SDF plotted is estimated using aggregate consumption, with W=I as 
the weighting matrix in second-step estimation. The sample is 1952:Q1-2005Q1. 


