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We present a constructive identification proof of p-linear decompositions of q-way arrays. The
analysis is based on the joint spectral decomposition of a set of matrices. It has applications in
the analysis of a variety of latent-structure models, such as q-variate mixtures of p distributions.
As such, our results provide a constructive alternative to Allman, Matias and Rhodes [2009].
The identification argument suggests a joint approximate-diagonalization estimator that is easy
to implement and whose asymptotic properties we derive. We illustrate the usefulness of our
approach by applying it to nonparametrically estimate multivariate finite-mixture models and
hidden Markov models.

1. Introduction. Longitudinal data are since long known to be a powerful tool to establish the

nonparametric identification of latent structures. Early results on the identifiability of multivariate

finite mixtures of Bernouilli distributions were derived by Green [1951] and Anderson [1954], and

have been extended by Kasahara and Shimotsu [2009]. More recently, Hall and Zhou [2003] showed

that mixtures of two arbitary distributions are generally identified as soon as three measurements

are available, provided the component distributions are linearly independent and the outcomes

satisfy a conditional-independence restriction. Allman, Matias and Rhodes [2009] have demonstrated

that this result carries over to mixtures of more components. Their approach can be applied to a

more general class of latent structures that feature some form of conditional independence, such as

hidden Markov models with finite state spaces (see Petrie [1969] for seminal work on this) and to

random-graph models. We note that, although the availability of two measurements can suffice in

problems featuring additive structures, the work of Henry, Kitamura and Salanié [2013] shows that

two measurements will only deliver set-identification of parameters in more general latent-structure

models. Li and Vuong [1998], Bordes, Mottelet and Vandekerkhove [2006], and Gassiat and Rousseau

[2013], among others, present results for additive models.

The work of Allman, Matias and Rhodes [2009] builds heavily on algebraic results for multiway

arrays due to Kruskal [1976; 1977]. Although widely applicable, this approach is not constructive.

Given identification, some authors have set out to develop methods to estimate latent structures.

Benaglia, Chauveau and Hunter [2009] and Levine, Hunter and Chauveau [2011] have constructed

EM-like algorithms for finite mixtures. Gassiat, Cleynen and Robin [2013] investigate the use of

penalized-likelihood methods in hidden Markov models. However, because these approaches are

not based directly on the identification argument, the estimator’s asymptotic properties—that is,

their consistency, convergence rates, and asymptotic distribution—are difficult to establish and are

currently unknown. The results of Hall et al. [2005] on two-component mixtures suggest it should
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Keywords and phrases: estimation, joint diagonalization, latent structure, multilinear-equation system.

1



2 S. BONHOMME, K. JOCHMANS, AND J.-M. ROBIN

be possible to obtain estimators with conventional properties for such latent structures but, to the

best of our knowledge, no such estimators have been proposed.

In this paper we first provide a constructive argument to identification of latent structures from

longitudinal data. We next introduce a convenient estimator, discuss its implementation, and provide

distribution theory. Our framework is the same as that of Allman, Matias and Rhodes [2009] and,

as such, can be used to construct estimators for all structures mentioned above. In particular,

we discuss the nonparametric estimation of multivariate finite mixtures of discrete and continuous

measures, and of hidden Markov models as illustrations of our proposal. When the state spaces

involved are finite, these estimators converge at the parametric rate. For absolutely-continuous

measures we advocate the use of orthogonal-series estimators of densities to avoid tedious choices

about discretizing their support. These estimators are shown to be consistent and to converge at the

usual univariate rates. To evaluate the effectiveness of our approach we also provide some simulation

evidence for each of the illustrations we consider.

Our approach works from a decomposition of multiway arrays and, as such, connects with the

work of Kruskal [1976; 1977]. However, in contrast to Allman, Matias and Rhodes [2009], we go

beyond appealing to his results to claim identification of the decomposition. Moreover, we show

that a simple transformation of the array leads to a set of multilinear restrictions that identify the

parameters of the latent structure at hand in a constructive manner. The restrictions in question

take the form of a set of non-normal matrices that are jointly diagonalizable in the same basis.

We show that this representation of the latent structure as the joint spectral-decomposition of an

array can be cast into a least-squares problem for which an efficient computational approach exists.

Our multilinear restrictions are similar to the factorization equations obtained by Anderson [1954],

Hu [2008], and Kasahara and Shimotsu [2009], but are more general. In this way, our identification

argument allows to reconcile their more ad hoc approaches to the generic but rather different and

more abstract view taken by Allman, Matias and Rhodes [2009]. In addition, we construct a plug-in

estimator based on the joint spectral decomposition and derive distribution theory. This theory, cast

in the form of two theorems, can serve as a blueprint for deriving asymptotic theory for a large class

of latent structures.

2. Identification via the joint spectral decomposition.

2.1. Terminology and general notation. We will be interested in linear combinations of multiway

arrays and, in particular, of outer-product arrays. We borrow terminology and notational conventions

from Kruskal [1976; 1977]. Let q be a finite integer. Let ⊗ denote the (tensor) outer product. A q-way

array of dimension κ1 × κ2 × · · · × κq is said to be an outer-product array, or a q-ad, if it factors as

q⊗
i=1

xi = x1 ⊗ x2 ⊗ · · · ⊗ xq

for column vectors xi of length κi. A one-ad is the vector x1, a two-ad is the matrix x1 ⊗ x2, and

so on. We take the elements of the xi to be real, although all arguments in this section continue to

hold for complex values. A q-way array X is said to admit a q-adic decomposition if it can be written
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as the sum of q-ads, i.e., if it factors as

(2.1) X =

p∑
j=1

q⊗
i=1

xij

for a finite integer p. The rank of a q-way array is the smallest number of q-ads needed to obtain

a q-adic decomposition. To avoid ambiguity when talking about identification later on, throughout,

we will let p be the rank of X. Then the p-linear q-adic decomposition of X in (2.1) is said to

be irreducible. We note that another way to represent this q-adic decomposition, and that will be

particularly useful for the analysis to follow, is as

(2.2) X = [X1, X2, . . . , Xq] ,

where Xi ≡ (xi1, xi2, . . . , xip) is a κi × p matrix. Of course, in either case, the notation means that

the q-way array X has (e1, e2, . . . , eq)th entry equal to Xe1,e2,...,eq =
∑p

j=1

∏q
i=1 xij(ei). Finally, any

array can be seen as a collection of lower-dimensional arrays. Moreover, a q-way array has associated

with it a set of slabs. The collection of slabs in the ith direction are the (q− 1)-way arrays obtained

on fixing the ith index. There are q such collections, one for each direction. For example, a matrix

has two collections of slabs; its slabs in the first direction correspond to its rows, and its slabs in

the second direction correspond to its columns. Similarly, in any direction, a three-way array can be

seen as a collection of matrices.

The q-adic decomposition above is called essentially unique if the matrices Xi can be determined

from knowledge of X up to re-arrangement and scale normalization of their respective columns.

Permutational equivalence is a mostly trivial and inherently unresolvable ambiguity. In contrast,

the indeterminacy of the scale of the columns of the Xi may be undesirable in some situations, and

so a stronger concept than essential uniqueness is called for in such cases.

Definition 1 (identification). The Xi are identified from X if they can be uniquely recovered

up to permutation of their columns.

Any reference to either essential uniqueness or identification of q-adic decompositions made below

implicitely assumes that p is known. We will get back to the identification of p in the discussion of

our applications below.

2.2. Essential uniqueness. Essential uniqueness does not hold, in general, in the vector case and

in the matrix case—that is, when either q = 1 or q = 2—unless additional constraints are imposed

on the problem. To appreciate this point, note that both principal-component analysis and factor

analysis, which are widely-used tools in data analysis, can be seen as methods that aim to recover

two-adic compositions. In a linear factor model, a vector of κ observable outcomes, y, is related to

a vector of p ≤ κ latent factors, f , and an error term u as

(2.3) y = Λf + u,

for a κ × p matrix of factor loadings. If f and u are orthogonal, var y = Λ (var f) Λ> + varu.

Suppose that var f is positive definite, so that it factors as CC> for some matrix C; note that this
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decomposition is not unique. Then, even if varu were known, the two-way array

var y − varu = [A,A] = AA>, A ≡ ΛC,

would not yield essential uniqueness of the matrix of factor loadings Λ. It is common to demand

that the factors be orthogonal and have unit variance, that is, to set var f = Ip, in which case Λ can

be recovered up to a rotation matrix; see Anderson and Rubin [1956].

The situation is rather different for q = 3 and beyond, where essential uniqueness holds under

weak conditions on the columns of the Xi. The seminal work of Kruskal [1977] provides sufficient

conditions for essential uniqueness in three-way arrays. An extension of his result to arbitrary q can

be found in Sidiropoulos and Bro [2000], who show that the q-adic decomposition of X above is

essentially unique provided that

(2.4)

q∑
i=1

k-rankXi ≥ 2p+ (q − 1),

where k-rank stands for Kruskal rank (Harshman and Lundy 1984). Recall that the k-rank of matrix

Xi is the largest number k so that every collection of k columns are linearly independent. Thus,

k-rankXi ≤ rank Xi ≤ min{κi, p} and, when all matrices involved have maximal k-rank, (2.4)

becomes

(2.5)

q∑
i=1

min{κi, p} ≥ 2p+ (q − 1).

Further, when the Xi are random, k-rankXi = min{κi, p} holds generically. Clearly, this condition

cannot be satisfied for one-way and two-way arrays. Also, it becomes less stringent as q increases. The

large literature on independent component analysis and blind source separation is concerned with

recovering Λ in models of the form in (2.3) when factors are assumed to be mutually independent

and independent of the error term, and represents a prime example of the usefulness of Kruskal’s

work; see, e.g., Comon [1994].

In recent work, Allman, Matias and Rhodes [2009] showed that a variety of statistical problems can

be represented as linear combinations of outer-product arrays in which the xij are non-negative and

satisfy a scale constraints. As such they were able to succesfully apply Kruskal’s result to establish

new identification results for latent structures such as multivariate finite-mixture models, hidden

Markov models, and random-graph models. Despite the considerable improvement on the existing

literature on latent structures made by Allman, Matias and Rhodes [2009], direct application of

Kruskal’s method does not provide an estimator for these models, and as such leaves something to

be desired.

Our chief aim below is to present a constructive approach to recovering q-adic decompositions,

and equally to provide distribution theory for estimators of the decomposition based on it. We will

focus on identification in the sense of Definition 1 rather than on essential uniqueness as the former

concept is of considerably more importance in statistical and econometric application, such as the

ones just mentioned. To achieve identification rather than mere essential uniqueness we will assume
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that, besides X itself, its lower-dimensional subarrays, too, are directly observable. Moreover, we

assume that X(Q) is observable for any index set that is a subset of {1, 2, . . . , q}, where

X(Q) =

p∑
j=1

⊗
i∈Q

xij .

As will become clear below, this assumption is rather natural in the applications that we have in

mind. In the q-variate finite-mixture model of Hall and Zhou [2003], for example, X(Q) would simply

be the contingency table of a subset of |Q| measurements, which is clearly observable for any |Q| ≤ q
as soon as X is. Here, the xij are probabilities and so, in this particular setting, the problem enforces

a scale constraint on the columns of Xi. However, the availability of lower-dimensional subarrays

will also allow us to tackle situations where such a constraint is absent.

2.3. Identification. To present our approach we may restrict attention to three-way arrays. This

is without loss of generality, as any q-way array may always be unfolded into a three-way array

by collapsing the Xi into matrices of the larger dimension
∏
i κi × p by consecutively taking their

the columnwise Kronecker product (see, e.g., Sorensen et al. 2013, and below) and applying our

techniques to the three-away array so obtained. Thus, our aim will be to recover the Xi making up

the three-adic decomposition

(2.6) X =

p∑
j=1

x1j ⊗ x2j ⊗ x3j = [X1, X2, X3],

in the sense of Definition 1.

We impose the following condition.

Assumption 1 (rank). rank Xi = p for all i.

This assumption is slightly stronger than required and can be relaxed; compare with (2.4). We

maintain it here for reasons of parsimony.

Fix i ∈ {1, 2, 3} and let Qi ≡ {i1, i2} denote the remaining indices. We will recover each Xi from

a transformation of the array X based on the matrix X(Qi) = Xi1X
>
i2

, which we refer to as the

marginalization of the array in the ith direction. Observe that X(Qi) is a κi1 × κi2 matrix whose

rank is p by Assumption 1. Hence, there exist matrices Ui and Vi of dimension p× κi1 and p× κi2 ,

respectively, having the property that

UiX(Qi)V >i = (UiXi1) (ViXi2)> = Ip .

Ui and Vi can readily be constructed from the singular-value decomposition of X(Qi). Note that this

decomposition implies that

(ViXi2)> = Q−1
i , Qi ≡ UiXi1 .

Now consider the collection of slabs of X in the ith direction. That is, all matrices obtained on

fixing the ith index at one of its κi values. Their are κi such slabs. The outer-product structure of

X implies that the kth such slab is the κi1 × κi2 matrix

Sik = Xi1 DikX
>
i2 ,
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where Dik ≡ diagk Xi denotes the p × p diagonal matrix that has the kth row of matrix Xi on its

diagonal. Moreover, pre- and postmultiplying the slabs with Ui and V >i yields the collection of p×p
matrices

(2.7) Wik ≡ UiSikV >i = QiDikQ
−1
i , k = 1, 2, . . . , κi.

This process of transforming the slabs of X in the ith direction by its marginalization in the ith

direction we call the whitening of the array with respect to dimension i. To link the whitened array

to Kruskal’s results, note that they are the slabs in the third direction of a three-way array, say Wi,

that decomposes as

(2.8) Wi = [Qi, Q
−>
i , Xi].

Because each matrix in this decomposition has rank p, Kruskal [1977] implies this decomposition

to be essentially unique. Clearly, for given i, it is only required that k-rankXi ≥ 2, and not that

rank Xi = p, but working under this assumption would destroy the symmetry in the argument.

Moving on, recall that essential uniqueness implies that the we can unravel the decomposition to

recover

QiPC1, Q−>i PC2, XiPC3,

up to a permutation matrix P and diagonal matrices C1, C2, C3 satisfying C1C2C3 = Ip. To establish

identification of Xi we must, therefore, further show that the last such diagonal matrix, C3, equals

the identity matrix. Because from (2.8) it follows that any tri-adic decomposition of the array Wi

into the form [W1,W2,W3] must satisfy the constraints W>1 = W−1
2 and W−1

1 = W>2 , we have that

C1 = C−1
2 must hold. Then C3 = Ip follows from the fact that C1C2C3 = Ip.

As the above holds for all i ∈ {1, 2, 3}, we have demonstrated the following.

Lemma 1 (identification). Let Assumption 1 hold. Then Xi is identified from Wi.

Rather than stating this result as a theorem, we prefer to highlight an alternative representation in

Theorem 1 below.

Equation (2.7) shows that the slabs of Wi are diagonalizable in the same basis. That is, their

spectral decompositions share the same eigenvectors; the columns of Qi. Furthermore, the associated

eigenvalues, which do vary with the slabs, equal the columns ofXi. Indeed, recoveringXi is equivalent

to recovering the collection of diagonal matrices (Di1, Di2, . . . , Diκi). We refer to the decomposition

in (2.7) as the joint spectral decomposition of an array. The matrix Qi is referred to as the joint

diagonalizer of the array.

To state our main identification theorem, let ‖·‖F be the Frobenius norm and write Qp for the

set of p×p positive-definite matrices whose columns have unit Euclidean norm. In what follows, the

normalization of the columns is inconsequential.

Theorem 1 (joint spectral decomposition). Let Assumption 1 hold. Then (Di1, Di2, . . . , Diκi)

are identified as

Dik = Q−1
i WikQi,
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where

Qi = arg min
Q∈Qp

κi∑
k=1

∥∥Wik −QDk(Q)Q−1
∥∥2

F
, Dk(Q) ≡ diag

[
Q−1WikQ

]
for all i.

Theorem 1 shows that identification of the Xi boils down to recovering a joint diagonalizer, which

is characterized as the solution to a least-squares problem.

A large literature in the field of independent component analysis is dedicated to the construction of

efficient algorithms for the simultaneous diagonalization of a set of matrices. In such applications—as

in (2.3) above—the matrices to be diagonalized are typically normal, and so the joint diagonalizer is

an orthonormal matrix. Orthonormality is convenient, as it drastically reduces the space of matrices

to be searched over. Although it may be the case under additional restrictions, the applications we

have in mind will typically not involve normal matrices; see our illustrations below. Fortunately,

several recent contributions have set out to tackle the computational issues that arise in the general

case when the joint diagonalizer is allowed to be non-orthogonal. Fu and Gao [2006] were the first to

propose a simple algorithm for the joint diagonalization of a set of arbitrary non-defective matrices.

More recently, Iferroudjene, Meraim and Belouchrani [2009] and Luciani and Albera [2010] have

proposed computational refinements.

We advocate the use of the algorithm of Iferroudjene, Meraim and Belouchrani [2009]. Their

method is a Jacobi-like routine that, in contrast to the other procedures, minimizes the criterion

put forth in Theorem 1. Working from a least-squares formulation is useful for our purposes as

it readily suggests the construction of an extremum estimator based on a sample version of the

criterion, and facilitates the derivation of distribution theory. As such, Theorem 1 is constructive.

We present the estimator and derive its asymptotic properties in the next section.

2.4. Impact of q. Before turning to estimation we first discuss how the decomposition

X = [X1, X2, . . . , Xq]

can be recovered via our approach under conditions that weaken as q increases. Let � denote the

Khatri-Rao product, or columnwise Kronecker product. For example, X2�X1 is the κ1κ2×p matrix

obtained on stacking the matrices X1D2k. For a moment, set q = 4. The slabs of X in the fourth

direction are three-way arrays whose slabs in the third direction are again κ1 × κ2 matrices. The

(k1, k2)th such matrix equals X1D3k1D4k2X
>
2 , where k1 and k2 range over the sets {1, 2, . . . , κ3} and

{1, 2, . . . , κ4}, respectively. For each k2, stack the resulting collection of κ3 matrices beneath each

other. Then is gives the collection

(X3 �X1)D4k2X
>
2 , k2 = 1, 2, . . . , κ4,

which are the slabs in the third direction of the array [(X3 �X1), X2, X4], to which Theorem 1 can

be applied. More generally, to recover Xi, X can always be re-arranged into a three-way array with

q-adic decomposition

(2.9) [�i1∈Q1Xi1 ,�i2∈Q2Xi2 , Xi],
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where Q1 and Q2 are index sets that partition {1, 2, . . . , q}. For our results to be applicable to this

array it suffices that the matrices in (2.9) satisfy the rank condition in Assumption 1. As �i∈QXi

is of dimension
∏
i∈Q κi × p, this requirement clearly becomes easier to fulfill as the number of

matrices to be recovered, q, increases. It is interesting to compare this finding with Theorem 4 of

Allman, Matias and Rhodes [2009], which states that the Xi are essentially unique if there exists a

tri-partition Q1,Q2,Q3 of {1, 2, . . . , q} such that

k-rank{�i∈Q1Xi}+ k-rank{�i∈Q2Xi}+ k-rank{�i∈Q3Xi} ≥ 2(p+ 1)

is satisfied. Observe that both these conditions are weaker than (2.4). These conclusions are a

generalization of the observation by Hall and Zhou [2003] that, in the finite-mixture context, the

usual curse of dimensionality does not arise and, rather, works in reverse. Further, it is useful to

note that the whitening process implies that the matrices to be diagonalized are of dimension p× p,
regardless of q and κi. Thus, even in large-dimensional problems, the computational complexity of

the diagonalization problem is limited.

3. Estimation by joint approximate diagonalization. Consider the general case in which

a set of estimable non-defective matrices (W1,W2, . . . ,Wκ) can be jointly diagonalized by a finite

p× p matrix Q0 whose determinant is strictly positive, in the sense that detQ0 > ε for some ε > 0.

Let (D1, D2, . . . , Dκ) denote diagonal matrices with the corresponding eigenvalues on the diagonal.

Rather than the Wk, we have at our disposal only estimators Ŵk, say, constructed from a random

sample of size n. A natural estimator of Q0, then, is the minimizer of the sample analog of the

criterion stated in Theorem 1. Moreover, we take

(3.1) Q̂ ≡ arg min
Q∈Qε

p

κ∑
k=1

∥∥Ŵk −QD̂k(Q)Q−1
∥∥2

F
, D̂k(Q) ≡ diag

[
Q−1ŴiQ

]
,

to be our estimator, where Qε
p ≡ {Q ∈ Qp : detQ > ε} is the parameter space over which the

minimization takes place. An estimator of Dk follows as

(3.2) D̂k ≡ D̂k(Q̂) = diag
[
Q̂−1Ŵk Q̂

]
.

Sampling noise in the Ŵk prevents them from sharing the same set of eigenvectors. Indeed, in general,

there does not exist a Q such that Q−1ŴkQ will be exactly diagonal for all k. The estimator Q̂ is

that matrix that makes all these matrices as diagonal as possible, in the sense of minimizing the

sum of their squared off-diagonal entries. It is thus appropriate to call Q̂ the joint approximate-

diagonalizer of the set of Ŵk. The algorithm of Iferroudjene, Meraim and Belouchrani [2009] can be

applied to (3.1) to compute Q̂, from which the D̂k follow in turn.

Distribution theory for the joint approximate-diagonalizer is not available, and so we provide it

here. We write Jp for a p×p matrix of ones and let Ek ≡
[(

Ip⊗Dk

)
−
(
Dk⊗Ip

)]
(Ip⊗Q−1

0 ). Introduce

Gk ≡ E>k diag[vec(Jp− Ip)]
(
Q>0 ⊗ Ip

)
(Ip⊗Q−1

0 ), H ≡
κ∑
k=1

E>k diag[vec(Jp− Ip)]Ek,

and construct G ≡ (G1, G2, . . . , Gκ), Ŵ ≡ (Ŵ1, Ŵ2, . . . , Ŵκ), and W ≡ (W1,W2, . . . ,Wκ). The

following theorem contains an asymptotically-linear representation of Q̂.
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Theorem 2 (eigenvectors). Let ‖Ŵ −W‖F = OP (1/
√
n) and suppose that Q0 is an interior

element of Qε
p. Then ‖Q̂−Q0‖F = OP (1/

√
n) and

√
n vec(Q̂−Q0) = −H−1G

√
n vec(Ŵ −W ) + oP (1)

as n→∞.

If, further,
√
n vec(Ŵ −W )

A∼ N (0, V ) for some asymptotic covariance matrix V , then Theorem 2

implies that √
n vec(Q̂−Q0)

A∼ N
(
0, H−1GV G>H−1

)
.

Given consistency of vec Q̂, a consistent plug-in estimator of the asymptotic variance can easily be

constructed provided we have at our disposal a matrix V̂ that satisfies ‖V̂ − V ‖F = oP (1).

With Theorem 2 at hand, asymptotic results for the eigenvalues are immediate.

Theorem 3 (eigenvalues). Let the conditions of Theorem 2 hold. Then ‖D̂k−Dk‖F = oP (1/
√
n)

and

√
n vec(D̂k −Dk) = diag[vec Ip]

{
E>k
√
n vec(Q̂−Q0) +

(
Q>0 ⊗Q−>0

)√
n vec(Ŵk −Wk

)}
+ oP (1)

as n→∞.

In our context, the proof to Theorem 1 shows that the input matrices are estimates of the form

Ŵk = Û ŜkV̂
>,

where Û and V̂ are estimators of U ≡ Λ−1/2A and V ≡ Λ−1/2B for a diagonal matrix Λ and

orthonormal matrices A,B such that AΛB> is a singular-value decomposition of a marginalization

matrix M . If a
√
n-consistent and asymptotically-normal estimator of M is available, then its left

and right singular vectors and its singular values are
√
n-consistent and asymptotically-normal

estimators of A,B, and Λ, respectively, if all singular values of M are simple (see, e.g., Eaton and

Tyler [1991]; Magnus [1985]; Bura and Pfeiffer [2008]). The latter condition holds generically. Hence,

the estimator of the input matrices will be asymptotically-linear if the estimator of the slabs is. In

all the applications we consider in the next section, this will be the case.

4. Finite-mixture models. The identification of finite mixtures from longitudinal data has

recently received quite some attention. Assume there are q measurements (y1, y2, . . . , yq) and p latent

classes. The cornerstone model assumes that the measurements are independent within a given group

(extensions to dynamics are possible, see Kasahara and Shimotsu [2009] and also below). Let πj be

the marginal probability of belonging to group j. Then the distribution of (y1, y2, . . . , yq) factors as

(4.1) µ(y1, y2, . . . , yq) =

p∑
j=1

πj

q∏
i=1

µij(yi),

where µij is the conditional univariate distribution function of measurement i when it belongs to

group j. Hettmansperger and Thomas [2000] and Hall and Zhou [2003] showed that, in a bivariate
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mixture, both the component distributions and the mixing proportions are identified when at least

three measurements are available. For the general case, Hall et al. [2005] showed there exists a q(p)

so that component distributions and the mixing proportions are identified if q > q(p). The link

between finite mixtures and three-way arrays was made by Allman, Matias and Rhodes [2009] who,

using Kruskal’s results mentioned above, established generic identifiability for any p when the µij
are linearly independent and q ≥ 3. In the context of finite mixtures, the failure of Kruskal’s rank

condition when q = 2 is the underlying cause for the partial-identification results obtained by Hall

and Zhou [2003] and Henry, Kitamura and Salanié [2013]. Point identification can be restored by

imposing additional restrictions; Bordes, Mottelet and Vandekerkhove [2006] and Hunter, Wang

and Hettmansperger [2007] consider location models under a symmetry condition on the noise

distribution, and Henry, Jochmans and Salanié [2013] achieve identification under a tail restriction

on the component distributions in more general models.

In spite of these important results, there has been little work on the nonparametric estimation of

mixtures from longitudinal data. Hall and Zhou [2003] and Hall et al. [2005] discuss estimation in

the two-component case but their procedures do not naturally extend to the general case. Recently,

Benaglia, Chauveau and Hunter [2009] and Levine, Hunter and Chauveau [2011] have developed an

algorithm akin to the conventional EM algorithm of Dempster, Laird and Rubin [1977] to estimate

both the mixing proportions, πj , and the component distributions, µij . However, as mentioned by

the authors, it seems rather difficult to establish the estimators’ statistical properties, such as its

consistency and convergence rates.

Below we illustrate how our joint-diagonalization approach yields estimators of finite mixtures

with conventional asymptotic properties.

4.1. Mixtures of discrete measures. Suppose first that the yi are discrete random variables with

κi points of support. Let pij be the vector that collects the κi point probabilities of measurement i

conditional on belonging to group j. Conditional independence implies that the contingency table

of any collection Q of |Q| measurements is

P(Q) =

p∑
j=1

πj
⊗
i∈Q

pij .

Apart from the presence of πj , which can be seen as scale factors, this representation directly fits

our framework. Nonetheless, the component distributions pij and the mixing proportions πj will be

separately identified because, essentially, the mixing proportions do not vary with Q. Moreover, the

contingency table of all the measurements, P, admits the q-adic decomposition

P = [P1Π, P2, . . . , Pq] = [P1, P2Π, . . . , Pq] = · · · = [P1, P2, . . . , PqΠ],

where Pi ≡ (pi1, pi2, . . . , pip) and Π ≡ diag π for π ≡ (π1, π2, . . . , πp)
>. All these representations are

equivalent. However, because π equally shows up in all lower-dimensional subarrays, whitening the

array with respect to its marginalization in any direction will always absorb the mixing proportions

in the joint diagonalizer.

Impose the following conditions.
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Assumption 2 (rank). The µij are linearly independent for each i, πj > 0 for each j, and q ≥ 3.

Assumption 2 is identical to the conditions in Theorem 8 of Allman, Matias and Rhodes [2009].

Linear independence of the pij implies that all the Pi have maximal column rank. Ruling out the

possibility that πj = 0 is natural and, together with the rank condition on the Pi, ensures that the

mixture is irreducible, so that the components are unambiguously defined.

Showing Proposition 1 can be done by direct application of Theorem 1.

Proposition 1 (identification). Let Assumption 2 hold. Then Pi is identified from a joint-

spectral decomposition for each i.

Assumption 2 requires κi ≥ p for all i. This effectively demands the yi to have more support points

than there are latent groups. This ensures identification as soon as q = 3. In line with the discussion

above, Proposition 1 can be shown to hold under weaker conditions on the columns of Pi if q is

larger than this minimum value.

Turning to estimation, a natural way to proceed is to replace P(Q) by its sample counterpart and

to apply the techniques introduced above. Moreover, for any Q, an estimator of P(Q) is simply the

empirical frequency table of the data. When the support of the µij is large, a smoothed approach

may be preferable to avoid the issue of empty cells; see Aitchison and Aitken [1976]. In any case,

such an estimator converges at the parametric rate and is asymptotically normal. Theorem 3 then

delivers consistent and asymptotically-linear point estimators of the pij .

A direct consequence of Proposition 1 is that the mixing proportions, too, are identified. Moreover,

π = P+
i P({i}), P+

i ≡
(
P>i Pi

)−1
P>i ,

for each i because the univariate mixture for yi has associated with it the lower-dimensional subarray

P({i}) = Piπ and Pi has maximal column rank.

Corollary 1 (mixing proportions). Let Assumption 2 hold. Then π is identified as the solution

to a least-squares fit of P({i}) on Pi.

Given
√
n-consistent estimators of Pi and P({i}), a plug-in version of π, too, will be

√
n-consistent.

Its asymptotic distribution can be deduced by an application of the delta method.

So far we always assumed the number of components to be known. Assumption 2, however, implies

the following.

Corollary 2 (number of components). Let Assumption 2 hold. Then p is identified as the rank

of P({i1, i2}) for any i1, i2 ∈ {1, 2, . . . , q}.

This result relates directly to a recent contribution of Kasahara and Shimotsu [2014]. Moreover, a

consistent estimator of p is easily formed via a sequential-testing procedure based on infering the

rank of an empirical analog of the P({i1, i2}). In empirical applications, this procedure can give

guidance on the number of components. An issue that we have not addressed in our asymptotics is

accounting for the resulting estimation uncertainty p.
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4.2. Mixtures of continuous measures. Return to (4.1) but, now, suppose that the function µij
are absolutely continuous. Let fij be the associated densities. Then

(4.2) f(y1, y2, . . . , yq) =

p∑
j=1

πj

q∏
i=1

fij(yi).

The identification results from the previous subsection can be generalized by discretizing the support

of the variables. Such an approach would be in line with Allman, Matias and Rhodes [2009] and with

Kasahara and Shimotsu [2014] but is not attractive for the construction of estimators. An alternative

approach that has the advantage of yielding nice estimators is to consider a discretization in the

frequency domain, as was recently done for a special case of (4.2) in Bonhomme, Jochmans and

Robin [2013].

Suppose that the fij are supported on the compact interval [−1, 1]. The translation to generic

compact intervals is straightforward. Let {φi, i > 0} be a set of polynomials that form a complete

orthonormal system with respect to a weight function ρ on [−1, 1]. For example, polynomials such

as those belonging to the Jacobi class—e.g., Chebychev polynomials or Legendre polynomials—can

serve this purpose.

Assume the fij to be square-integrable with respect to ρ. The projection of fij onto the subspace

spanned by ϕκi ≡ (φ1, φ2, . . . , φκi)
> is

(4.3) Projκi fij ≡ ϕ
>
κiγij , γij ≡

∫ 1

−1
ϕκi(u)ρ(u)fij(u) du,

for any integer κi. The vector γij collects the (generalized) Fourier coefficients of fij . The projection

converges to fij in L2
ρ-norm, that is,

‖Projκi fij − fij‖2 → 0

as κi → ∞, where ‖f‖2 ≡
( ∫ 1
−1 f(u)2ρ(u) du

)1/2
. Such projections are commonly-used tools in the

approximation of functions (Powell 1981) and underly orthogonal-series estimators of densities and

conditional-expectation functions (Efromovich 1999). Now, convergence in L2
ρ-norm of two functions

implies that they share the same Fourier coefficients and can differ only on a set of measure zero.

Hence, recovering the function fij is equivalent to recovering its Fourier coefficients.

Now, γij is the expectation of ϕκiρ against the density fij , which is not directly observable.

However, in the same way, we can define the projection of f(yi1 , yi2 , . . . , yi|Q|) for any index set Q.

Its Fourier coefficients equal the array

(4.4) G(Q) ≡
∫ 1

−1

∫ 1

−1
· · ·
∫ 1

−1

⊗
i∈Q

ϕκi(ui)ρ(ui) f(ui1 , ui2 , . . . , ui|Q|) d(ui1 , ui2 , . . . , ui|Q|),

and is nonparametrically identified. From (4.2), (4.3), and (4.4) it follows that

G(Q) =

p∑
j=1

πj
⊗
i∈Q

γij ,
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which fits our framework. Note that, here, the problem does not impose a natural scale constraints

on the entries of G. Nonetheless, lower-dimensional subarrays are available as the Fourier coefficients

of the joint densities of a subset of the measurements.

Let Γi ≡ (γi1, γi2, . . . , γip).

Proposition 2 (identification). Let Assumption 2 hold. Then rank Γi = p for sufficiently large

κi.

Proposition 2 implies that Proposition 1 and Corollaries 1 and 2 carry over to the case of finite

mixtures of continuous distributions. For the remainder of this subsection, we assume that the κi
are chosen sufficiently large so that rank Γi = p holds.

To construct an estimator of the fij , let {ym1, ym2, . . . , ymq}nm=1 denote a random sample of size n.

The entries of the array G(Q) can be estimated as sample averages over the orthogonal polynomials,

weighted against ρ. Moreover, a sample analog is

Ĝ(Q) ≡ n−1
n∑

m=1

⊗
i∈Q

ϕκi(ymi)ρ(ymi).

Joint approximate diagonalization then yields estimators of the γij , say γ̂ij , which can be used to

construct the orthogonal-series estimator

(4.5) f̂ij ≡ ϕ>κi γ̂ij

of fij for each i, j.

Let ‖·‖∞ be the supremum norm. Some weak regularity conditions on the basis functions are

collected in Assumption 3.

Assumption 3 (regularity). The sequence {φi, i ≥ 0} is dominated by a function ψ, which is

continuous on (−1, 1) and positive almost everywhere on [−1, 1]. Both ψρ and ψ2ρ are integrable.

There exists a sequence of constants {ζκ, κ > 0} so that ‖
√
ϕ>κ ϕκ‖∞ ≤ ζκ.

These conditions are satisfied for the class of Jacobi polynomials, for example.

To present convergence rates for our orthogonal-series estimator we require an assumption about

the smoothness of the density that is being estimated.

Assumption 4 (smoothness). The fij are continuous and the (ψρ)2fij are integrable. There

exists a constant β ≥ 1 such that ‖Projκi fij − fij‖∞ = O(κ−βi ).

Convergence in L2
ρ-norm implies that limκi→∞‖γij‖F is finite. The coefficient β is a measure of how

fast the Fourier coefficients shrink. In general, β is larger the smoother the underlying function that

is being approximated.

Under these conditions we obtain integrated squared-error and uniform convergence rates.

Proposition 3 (convergence rates). Let Assumptions 2–4 hold. Then∥∥f̂ij − fij∥∥2

2
= OP (κi/n+ κ−2β

i ),
∥∥f̂ij − fij∥∥∞ = OP (ζκi

√
κi/n+ κ−βi ),

for all i, j.
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Fig 1. Component densities and distributions
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Proposition 3 shows that there is no penality in terms of convergence rate for not observing group

membership of the observations. Under slightly stronger tail conditions on the fij we can equally

derive an asymptotically-linear representation of the density estimator at a fixed point and present a

pointwise asymptotic-normality result by suitably adapting the arguments in Bonhomme, Jochmans

and Robin [2013]. Such results are useful to construct
√
n-consistent estimators of functionals of fij

or semiparametric two-step estimators of Euclidean parameters.

Assumptions 3 and 4 imply that the Fourier coefficients are estimated at the parametric rate.

Thus,

π̂ ≡ Γ̂+
i Ĝ({i}),

with Γ̂i ≡ (γ̂i1, γ̂i2, . . . , γ̂ip), is a
√
n-consistent and asymptotically-normal estimator of the mixing

proportions for any i.

An interesting yet unresolved issue is the selection of the number of terms in the series expansion

of the fij . Because we recover the γij from a multiway array that involves all fij and must satisfy

a rank condition, the problem appears far more complicated than in standard orthogonal-series

estimation for which some selection rules exist (see, e.g., Diggle and Hall 1986).

To illustrate the performance of the orthogonal-series estimator we applied it to simulated data

from a three-variate two-component mixture of generalized beta distributions on the interval [−1, 1].

The solid lines in the upper plots of Figure 1 represent these densities. The solid lines in the lower

plots are the corresponding distribution functions. The data was drawn from a mixture of these
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Table 1
Mixing proportions

n = 500 n = 1000
mean std mean std
π1 π2 π1 π2 π1 π2 π1 π2

i = 1 .5133 .4794 .0257 .0260 .5090 .4869 .0186 .0186
i = 2 .5130 .4854 .0300 .0301 .5092 .4895 .0204 .0205
i = 3 .4978 .4948 .0319 .0320 .4980 .4989 .0231 .0229

distributions with π1 = π2 = .5, with the right-skewed distribution is labelled as the first component.

We estimated the densities by means of our joint approximate-diagonalization estimator using the

leading five Chebychev polynomials of the first kind as basis functions on data of size n = 500, and

then applied the correction of Gajek [1986] to the resulting estimator to obtain bona fide estimates.

We next used Clenshaw and Curtis [1960] quadrature to construct an estimator of the µij . In each

plot, dashed lines are given for the mean and for the upper and lower envelopes of 1, 000 replications

of our estimation procedure. The plots show our approach is effective at recovering the component

densities. Table 1 provides the mean and standard deviation of the estimated mixing proportions

over the Monte Carlo simulations for n = 500 and with n = 1000. In the table, π1 denotes the

proportion associated with the right-skewed density while π2 denotes the proportion corresponding

to the left-skewed density. Again, the point estimates are broadly correctly centered. Further, the

standard deviation decreases roughly with a factor 1/
√
n as n is doubled, confirming that the mixing

proportions are estimated at the parametric rate.

5. Hidden Markov models. As a final example, we discuss hidden Markov models. Such

a model can be seen as a stationary finite-mixture model in which group membership changes

according to a Markov switching process. Thus, compared to our mixture from above, here, we

allow for (latent) Markovian dynamics. To set up the model, let {st, t > 0} be a strictly stationary

stochastic process that can take on values in {1, 2, . . . , p} with probability {π1, π2, . . . , πp}, and

whose dependency structure is first-order Markov. Let K denote the p× p transition matrix of the

chain. Then,

K(e1, e2) = Pr[st = e2|st−1 = e1].

Rather than st we observe outcome variables {yt, t > 0}. These outcome variables are taken to be

jointly-independent conditional on {st, t > 0}, and the distribution of yt depends on {st, t > 0}
only through the current state, st. Let µj denote the conditional distribution of yt given st = j.

The µj are called the emission distributions and, together with the vector of marginal probabilities

π = (π1, π2, . . . , πp)
> and the transition matrix K, are the parameters of interest in the hidden

Markov model. The recent monograph by Cappé, Moulines and Rydén [2005] provides an extensive

overview of the literature and many illustrations.

Because of the dynamics in the latent states st, it may not be immediately obvious that a hidden

Markov model fits our setup. Nonetheless, as noted by Allman, Matias and Rhodes [2009] and more

recently by Gassiat, Cleynen and Robin [2013], a close inspection of the problem allows to fit the

hidden Markov model in the framework of three-way arrays, and therefore makes it amendable to

our approach.
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Fig 2. Emission densities and distributions
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Sufficient conditions for identification are collected in Assumption 5.

Assumption 5 (rank). The µj are linearly independent, rankK = p, and q ≥ 3.

These conditions should by now be familiar. They yield identification both when the state space of

yt is finite and when it is a continuous interval.

Consider the case where yt can take on values in the finite set {v1, v2, . . . , vκ}. For i ∈ {1, 2, . . . , q},
consider κ× p matrices Pi whose entries are

Pi(e1, e2) = Pr[yi = ve1 |s2 = e2].

Note that the conditioning argument involves s2 regardless of i. This asymmetry is a consequence of

the Markovian dependence in the latent states. Then it is easily shown that the q-way contingency

table of (y1, y2, . . . , yq) decomposes as

P = [P1Π, P2, . . . , Pq],

where, again, Π = diag π. The presence of π with P1 is due to the initial state being drawn from

the stationary distribution of the Markov chain. Note that the columns of the matrix P2 are the

emission distributions. Hence, given the similarity with the mixture model from the previous section,

identification of the emission distributions is immediate. Further, and again similar to before, the

vector of marginal mixing probabilities, π, can be recovered as

π = P+
2 P({1}),

where P+
2 is the Moore-Penrose pseudoinverse of P2. Finally, the transition matrix can be recovered

from a slightly more convoluted identity involving P({1, 2}). Note that

Pr[y1 = a, y2 = b] =

p∑
e1=1

p∑
e2=1

Pr[y2 = b|s2 = e2] Pr[y1 = a|s1 = e1] Pr[s2 = e2|s1 = e1] Pr[s1 = e1],
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Table 2
Hidden Markov model

parameter value mean std

Pr[st = 1] .7591 .7255 .0755
Pr[st = 0] .2409 .2554 .0786
K(0, 0) .5000 .5731 .3056
K(0, 1) .5000 .3913 .3494
K(1, 0) .1587 .1352 .0587
K(1, 1) .8413 .8500 .0608

and so P({1, 2}) = P2ΠKP>2 holds by stationarity. Hence, pre- and postmultiplying by P+
2 yields

ΠK from which

K = Π−1P+
2 P({1, 2})(P+

2 )>

follows because all objects on the right-hand side have already been shown to be identified. When the

µj are absolutely continuous and the associated density functions fj , say, are compactly supported

and square integrable, we can again work via a discretization in the frequency domain. In this case,

everything continues to go through after replacing the Pi by Γi, using obvious notation. We have

thus established the following result.

Proposition 4 (identification). Let Assumption 5 hold. Then µj, π, and K are all identified.

For both the discrete- and the continuous-outcome case, asymptotic results for estimators of the

hidden Markov model can be established in the same way as before. In particular, under regularity

conditions, plug-in estimators based on the identification approach just laid out are consistent and

converge at the conventional univariate rates.

Rather than going into more detail on this here, we provide the results of a small Monte Carlo

experiment in which we generated st via the stationary probit model

st = 1{st−1 ≥ εt}, εt ∼ N (0, 1),

and subsequently drew yt from a left-skewed beta distribution on [−1, 1] when st = 0 and from a

right-skewed beta distribution when st = 1. The solid lines in Figure 2 present the emission densities

(left plot) and distributions (right plot). The stationary distribution of the Markov chain and its

transition matrix are given in Table 2. The data generating process is such that it is more likely to

deliver observations from the right-skewed regime. Indeed, the event st = 1 occurs with probability

roughly equal to .75 in equilibrium, and it is characterized by positive state dependence, that is,

K(1, 1) > K(1, 0). We implemented our procedures in the same way as in the previous section,

using Chebychev polynomials to estimate the emission densities and Clenshaw-Curtis quadrature

to recover estimates of the emission distributions. Figure 2 has the same layout as Figure 1. It

again shows our algorithm to be effective in recovering the underlying densities and distributions.

As anticipated, the left-skewed density is estimated less precisely than is the right-skewed density.

Table 2 shows a similar pattern for the estimators of π and K. The point estimates are broadly

correct, on average. Also, the bias and standard deviation are both smaller for transition from the

highly-probable state, as could have been expected.
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APPENDIX

Proof of Theorem 1. By Lemma 1 and (2.7), Qi and (Dik, Di2, . . . , Diκ) uniquely solve

(A.1) min
Q∈Qp, {Dk}∈Dp

κ∑
k=1

∥∥Wik −QDkQ
−1
∥∥2

F
,

where Dk denotes the set of p× p diagonal matrices. For given Q, the solution for Dik is easily seen

to be Dk(Q). Profiling out the diagonal matrices from (A.1) yields the objective function for the

joint diagonalizer stated in Theorem 1.

Proof of Theorem 2. To see that ‖Q̂−Q0‖F = oP (1), note that (i) the parameter space Qε
p

is a compact set; (ii) the sample objective function converges to the population criterion stated in

Theorem 1 uniformly on Qε
p because of consistency of the first-stage estimators and because the

objective function is Lipschitz continuous; (iii) the population criterion is uniquely minimized at

Q0 by the identification result in Theorem 1; and (iv) the population criterion is continuous in Q

because the Frobenius norm is continuous. Theorem 2.1 in Newey and McFadden [1994] then yields

consistency.

To derive asymptotic theory for the joint approximate-diagonalization estimator we start by

setting up the Lagrangian for the constrained optimization problem in (3.1). To do so it is useful to

reformulate the problem as

min
(Q,R)

κ∑
k=1

∥∥Ôk(Q,R)
∥∥2

F
s.t. QR> = Ip, Q

>R = Ip, Ôk(Q,R) ≡ off[R>ŴkQ],

where off A ≡ A − diagA and we have used the fact that the Frobenius norm is invariant under

rotations. Denote the (i, j)th entries of Q and R as qij and rij , respectively, and let δij ≡ 1{i = j}
denote Kronecker’s delta. Then the Lagrangian is

L̂(Q,R) ≡
κ∑
k=1

∥∥Ôk(Q,R)
∥∥2

F
+

p∑
i,j=1

λij

{
p∑
`=1

r`iq`j − δij

}
+

p∑
i,j=1

γij

{
p∑
`=1

qi`rj` − δij

}
,

where {λij} and {γij} are sets of Lagrange multipliers. Let ◦ denote the Hadamard product. To

compute the vector of first derivatives with respect to vecQ we use the fact that ‖A‖2F = traceAA>

and that

vec[off A] = vec[(Jp− Ip) ◦A] = diag[vec(Jp− Ip)] vecA

for any p × p matrix, together with elementary properties of the trace operator and its derivative

(see, e.g., Magnus and Neudecker 2007, Chapter 9). By an application of the chain rule, it is easily
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seen that

(A.2)
∂L̂(Q,R)

∂ vecQ
= 2

κ∑
k=1

(
Ip⊗Ŵ>k R

)
vec Ôk(Q,R) +

(
Ip⊗R

)
vec Λ +

(
R> ⊗ Ip

)
vec Γ,

where Λ and Γ are p×p matrices that collect the Lagrange multipliers {λij} and {γij}, respectively.

To compute the first-derivative vector of the Lagrangian with respect to R we further rely on the

p × p commutation matrix (e.g., Magnus and Neudecker 2007, pp. 46–48), Kp. The commutation

matrix is defined through the equality vecA> = Kp vecA, where A is any p× p matrix, and satisfies

Kp = K>p = K−1
p . We obtain

∂L̂(Q,R)

∂ vecR
= 2

κ∑
k=1

Kp2
(
ŴkQ⊗ Ip

)
vec Ôk(Q,R) + Kp2

(
Q⊗ Ip

)
vec Λ + Kp2

(
Ip⊗Q>

)
vec Γ.

Solve ∂L̂(Q,R)/∂ vecR = 0 for vec Λ and enforce RQ> = Ip to see that

vec Λ =
(
Q−1 ⊗ Ip

)
vec Γ− 2

κ∑
k=1

(
Q−1ŴkQ⊗R

)
vec Ôk(Q,R).

Substitute this result back into (A.2) to dispense with the Lagrange multipliers. Enforce the con-

straints by replacing R> by Q−1 to arrive at

M̂(Q) ≡ ∂L̂(Q,Q−>)

∂ vecQ
= 2

κ∑
k=1

[(
Ip⊗Q−1Ŵk

)> − (Q−1ŴkQ⊗Q−>
)]

vec Ôk(Q,Q
−>).(A.3)

This function is the first derivative of the concentrated problem in Theorem 2 defining Q̂, and Q̂

solves

M̂(Q) = 0,

the associated score equation. M̂(Q) is a plug-in version of the derivative of the population objective

function in Theorem 1, M(Q), say. Note that

M(Q) = 2
κ∑
k=1

[(
Ip⊗Q−1Wk

)> − (Q−1WkQ⊗Q−>
)]

vecOk(Q), Ok(Q) ≡ off[Q−1WkQ],

which differs from M̂(Q) only in its dependence on Wk rather than on Ŵk. Introduce the matrices

of second derivatives

MQ(Q) ≡ ∂M(Q)

∂ vec[Q]>
, MWk

(Q) ≡ ∂M(Q)

∂ vec[Wk]>
.

A Taylor expansion of M̂(Q̂) = 0 around vecQ0 and the vecWk, together with the
√
n-consistency

of their respective estimators, gives

M̂(Q̂) = 0 = M(Q0) +
κ∑
k=1

MWk
(Q0) (vec Ŵk − vecWk) +MQ(Q0) (vec Q̂− vecQ0) + oP (1/

√
n),
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from which, in turn, follows the asymptotically-linear representation

√
n vec(Q̂−Q0) = −MQ(Q0)−1

κ∑
k=1

MWk
(Q0)

√
n vec(Ŵk −Wk) + oP (1/

√
n).

To establish Theorem 2 it remains only to verify that (i) 1
2MQ(Q0) = H and (ii) 1

2MWk
(Q0) = Gk.

For (i), note that

1

2
MQ(Q) =

{(
Ip⊗(Q−1Wk)

>)− (Q−1WkQ⊗Q−>
)} ∂ vec[Ok(Q)]

∂ vec[Q]>

+ vec[Ok(Q)> ⊗ Ip]

{
∂ vec[Ip⊗(Q−1Wk)

>]

∂ vec[Q]>
− ∂ vec[Q−1WkQ⊗Q−>]

∂ vec[Q]>

}
,

and that the second right-hand side term vanishes when Q = Q0. A calculation then establishes that

∂ vecOk(Q)

∂ vec[Q]>
= diag[vec(Jp− Ip)]

[(
Ip⊗Q−1Wk

)
−
(
(Q−1WkQ)> ⊗Q−1

)]
,

from which (i) follows after simplifying the resulting expression using that Q−1
0 Wk = DkQ

−1
0 . Also,

because
∂ vecOk(Q)

∂ vec[Wk]>
= diag[vec(Jp− Ip)]

(
Q> ⊗Q−1

)
,

(ii) follows in the same way.

Proof of Theorem 3. Because both ‖Ŵk −Wk‖ = OP (1/
√
n) and ‖Q̂ − Q0‖ = OP (1/

√
n)

hold,

Q̂−1ŴkQ̂−Q−1
0 WkQ0 = (Q̂−Q0)−1WkQ0 +Q−1

0 (Ŵk −Wk)Q0 +Q−1
0 Wk(Q̂−Q0) + oP (1/

√
n)

follows from a linearization. For the first right-hand side term, because matrix inversion is a contin-

uous transformation, the delta method can further be applied to yield

vec
(
(Q̂−Q0)−1WkQ0

)
= −

(
Q>0 W

>
k ⊗ Ip

) (
Q−>0 ⊗Q−1

0

)
vec
(
Q̂−Q0

)
= −

(
Dk⊗Q−1

0

)
vec
(
Q̂−Q0

)
.

The remaining right-hand side terms are already linear in the estimators Q̂ and Ŵk. As diagA =

Ip ◦A for any compatible matrix A,

vec(D̂k −Dk) = diag[vec Ip]
{
E>k vec

(
Q̂−Q0

)
+
(
Q>0 ⊗Q−>0

)
vec(Ŵk −Wk

)}
+ oP (1/

√
n),

as claimed.

Proof of Proposition 3. It suffices to consider the case with q = 3. Fix i throughout. Denote

the slabs of G in the ith direction as Sik and let Ŝik be their estimators. The proof consists of

two steps. We first derive integrated squared-error and uniform convergence rates for the infeasible

estimator that assumes the whitening can be performed without statistical noise. We then show that

the additional noise in the feasible estimator is asymptotically negligible.
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The infeasible estimator is given by

f̃ij ≡ ϕ>κi γ̃ij ,

where the coefficient vector γ̃ij is constructed from D̃ik ≡ diag[(Q−1
i Ui) Ŝik (V >i Qi)], where Ui and

Vi are constructed from the singular-value decomposition of G({i1, i2}). The feasible estimator, in

contrast, equals

f̂ij = ϕ>κi γ̂ij ,

where the coefficient vector γ̂ij is constructed from D̂ik = diag[(Q̂−1
i Ûi) Ŝik (V̂ >i Q̂i)], using obvious

notation.

We begin by showing that ‖γ̃ij − γij‖F = OP (
√
κi/n). The convergence rates for f̃ij will then

follow easily. Write sk1k2k for the (k1, k2)th entry of Sik and let ŝk1k2k be its estimator. First observe

that, for any k,

E
∥∥Ŝik − Sik∥∥2

F
=

κi1∑
k1=1

κi2∑
k2=1

E
[
(ŝk1k2k − sk1k2k)2

]
=

κi1∑
k1=1

κi2∑
k2=1

E
[( 1

n

n∑
m=1

φk1(ymi1)ρ(ymi1)φk2(ymi2)ρ(ymi2)φk(ymi)ρ(ymi)− sk1k2k
)2]

=

κi1∑
k1=1

κi2∑
k2=1

E
[
φk1(yi1)2ρ(yi1)2φk2(yi2)2ρ(yi2)2φk(yi)

2ρ(yi)
2
]
− s2

k1k2k

n

≤
κi1∑
k1=1

κi2∑
k2=1

∑p
j=1 πj

( ∫ 1
−1 ψ(u)2ρ(u)2fij(u) du

)
− s2

k1k2k

n
.

As the ψ2ρ2fij are integrable and the Fourier coefficients sk1k2k3 are square summable, we have that

E
∥∥Ŝik − Sik∥∥2

F
= O(1/n) uniformly in k. Hence,

∑κi
k=1 E

∥∥Ŝik − Sik∥∥2

F
= OP (κi/n) follows from

Markov’s inequality, and

‖γ̃ij − γij‖2F ≤
κi∑
k=1

∥∥D̃ik −Dik

∥∥2

F
≤
∥∥Q−1

i Ui ⊗Q>i Vi
∥∥2

F

κi∑
k=1

∥∥Ŝik − Sik∥∥2

F
= OP (κi/n)

follows by the Cauchy-Schwarz inequality. This establishes the rate result on the Fourier coefficients

sought for. Now turn to the convergence rates. By orthonormality of the φi,∥∥f̃ij − fij∥∥2

2
=
∥∥f̃ij − Projκi fij

∥∥2

2
+
∥∥Projκi fij − fij

∥∥2

2
= ‖γ̃ij − γij‖2F +

∥∥Projκi fij − fij
∥∥2

2
.

The first right-hand side term is known to be OP (κi/n) from above. For the second right-hand side

term, by Assumption 4,∥∥Projκi fij − fij
∥∥2

2
≤
∫ 1

−1

∥∥Projκi fij − fij
∥∥2

∞ ρ(u) du = O(κ−2β
i )

because ρ is integrable. This established the integrated squared-error rate for f̃ij . To obtain the

uniform convergence rate, use the triangle inequality to see that∥∥f̃ij − fij∥∥∞ ≤ ∥∥f̃ij − Projκi fij
∥∥
∞ +

∥∥Projκi fij − fij
∥∥
∞.
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By the Cauchy-Schwarz inequality in the first step and by the uniform bound on the norm of the

basis functions and the convergence rate of ‖γ̃ij −γij‖F in the second, the first right-hand side term

satisfies ∥∥f̃ij − Projκi fij
∥∥
∞ ≤

∥∥√ϕ>κiϕκi∥∥∞ ‖γ̃ij − γij‖ = O
(
ζκi
)
OP
(√

κi/n
)
.

By Assumption 4,
∥∥Projκi fij − fij

∥∥
∞ = O(κi

−β). This yields the uniform convergence rate.

To extend the results to the feasible density estimator we first show that the presence of estimation

noise in Qi and (Ui, Vi) implies that

(A.4) ‖γ̂ij − γ̃ij‖F = OP (1/
√
n) +OP (

√
κi/n).

By the Cauchy-Schwarz inequality,

∥∥γ̂ij − γ̃ij∥∥2

F
≤

κi∑
k=1

∥∥D̂ik − D̃ik

∥∥2

F
≤
∥∥Q̂−1

i Ûi ⊗ Q̂>i V̂i −Q−1
i Ui ⊗Q>i Vi

∥∥2

F

κi∑
k=1

∥∥Ŝik∥∥2

F
.

Because both Qi and (Ui, Vi) are
√
n-consistent,

∥∥Q̂−1
i Ûi ⊗ Q̂>i V̂i − Q

−1
i Ui ⊗ Q>i Vi

∥∥2

F
= OP (1/n).

Also, from above, we have that

κi∑
k=1

∥∥Ŝik∥∥2

F
≤ 2

κi∑
k=1

∥∥Sik∥∥2

F
+ 2

κi∑
k=1

∥∥Ŝik − Sik∥∥2

F
= O(1) +OP (κi/n).

Together, these results imply (A.4). Then

‖f̂ij − fij‖22 ≤ 2‖γ̂ij − γ̃ij‖2 + 2‖f̃ij − fij‖22.

From above, the first right-hand side term is OP (1/n) + OP (κi/n
2) while the second right-hand

side term is OP (κi/n+ κ−2β
i ). Therefore, the difference between γ̂ij and γ̃ij has an asymptotically-

negligible impact on the density estimator, and

‖f̂ij − fij‖22 = OP (κi/n+ κ−2β
i ).

For the uniform convergence, similarly, the triangle inequality gives the bound

‖f̂ij − fij‖∞ ≤ ‖f̂ij − f̃ij‖∞ + ‖f̃ij − fij‖∞

And, again,

‖f̂ij − f̃ij‖∞ ≤
∥∥√ϕ>κiϕκi∥∥∞ ∥∥γ̂ij − γ̃ij∥∥ = OP (ζκi/

√
n) +OP (ζκi

√
κi/n),

which is of a smaller stochastic order than is ‖f̃ij − fij‖∞. This concludes the proof.
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