SPATIAL DESIGN MATRICES AND ASSOCIATED QUADRATIC FORMS: STRUCTURE AND PROPERTIES

Grant Hillier
Federico Martellosio

THE INSTITUTE FOR FISCAL STUDIES
DEPARTMENT OF ECONOMICS, UCL
cemmap working paper CWP16/04
Spatial Design Matrices and Associated Quadratic Forms: Structure and Properties

Grant Hillier and Federico Martellosio
ghh@soton.ac.uk and fm200@soton.ac.uk
University of Southampton
November 2004

Abstract

The paper provides significant simplifications and extensions of results obtained by Gorsich, Genton, and Strang (J. Multivariate Anal. 80 (2002) 138) on the structure of spatial design matrices. These are the matrices implicitly defined by quadratic forms that arise naturally in modelling intrinsically stationary and isotropic spatial processes. We give concise structural formulae for these matrices, and simple generating functions for them. The generating functions provide formulae for the cumulants of the quadratic forms of interest when the process is Gaussian, second-order stationary and isotropic. We use these to study the statistical properties of the associated quadratic forms, in particular those of the classical variogram estimator, under several assumptions about the actual variogram.

Keywords: Cumulant, Intrinsically Stationary Process, Kronecker Product, Quadratic Form, Spatial Design Matrix, Variogram.

Forthcoming in: Journal of Multivariate Analysis.

1 Introduction

In modelling spatial data - in general in d dimensions - observed at sites labelled by points in some subset of \mathbb{R}^d, it is often assumed that the process
is intrinsically stationary and isotropic (see below and Cressie [6]). Such models are then - intuitively at least - generalizations of familiar stationary time series models defined on the line (the case $d = 1$), and we shall see that there is quite a formal structure that reflects this relationship (Theorem 1 below).

In this paper, as in the recent paper by Gorsich, Genton, and Strang [10] (hereafter abbreviated to GGS), we assume that the observational sites are located on a uniform grid in \mathbb{R}^d, with n sites on each of d axes. Sites may then be labelled by elements of the set $\Gamma = \Gamma(n, d)$ of sequences $\alpha = (\alpha(1), ..., \alpha(d))$ of non-negative integers satisfying $0 \leq \alpha(i) \leq (n - 1)$ for $i = 1, ..., d$, and, to avoid ambiguity, we order the sequences in Γ lexicographically. Extensions to the case of a rectangular grid are straightforward, but for simplicity we confine our results to the hypercubic grid.

Denoting the observed process by $\{Z(\alpha); \alpha \in \Gamma\}$, intrinsic stationarity entails the assumptions that $E(Z(\alpha))$ is constant, and that, for $\alpha \neq \beta$, $\gamma(\alpha, \beta) = Var(Z(\alpha) - Z(\beta))$ depends on (α, β) only through $(\alpha - \beta)$, and the isotropy assumption that $\gamma(\alpha, \beta)$ depends on (α, β) only through $h = \|\alpha - \beta\|^2$, the squared Euclidean distance between the sites α and β. In that case the function $2\gamma(h)$ defined by

$$2\gamma(h) = Var(Z(\alpha) - Z(\beta))$$ \hspace{1cm} (1)

is called the variogram of the process $Z(\alpha)$. Note that, here and throughout, we use h to denote the squared Euclidean distance $\|\alpha - \beta\|^2 = \sum_{i=1}^{d}(\alpha(i) - \beta(i))^2$ between sites, rather than (as is more common) $\|\alpha - \beta\|$ itself. This is notationally more convenient later. Henceforth we take h to be strictly positive unless otherwise indicated.

The natural estimator for $2\gamma(h)$ for $h > 0$ is based on the function

$$q_h = \sum_{N(h)}(z(\alpha) - z(\beta))^2,$$ \hspace{1cm} (2)

where $z(\alpha)$ denotes the observed value of $Z(\alpha)$, and $N(h)$ is the set of (unordered) pairs (α, β) satisfying $\|\alpha - \beta\|^2 = h$. Note that both $\gamma(0) = 0$ and $q_0 = 0$. Statistics of this form are also of interest more generally in the context of modelling spatial processes.

The expression on the right in (2) may be written as a quadratic form

$$q_h = z'L_hz = z'(D_h - A_h)z,$$ \hspace{1cm} (3)
where \(z = (z(\alpha); \alpha \in \Gamma) \) denotes the \(N \)-dimensional vector of observations, \(L_h \) and \(A_h \) are symmetric, and \(D_h \) is a diagonal matrix. Here and throughout \(N = n^d = |\Gamma| \), the cardinality of \(\Gamma \), denotes the total sample size. The matrix of this quadratic form, \(L_h \), is the \(N \times N \) spatial design matrix at distance \(\sqrt{h} \), and \(D_h \) and \(-A_h \) are, respectively, the diagonal and off-diagonal parts of \(L_h \). By expanding the right side of (2) it is easy to see that \(A_h \) has a one in positions labelled by pairs \((\alpha, \beta)\) satisfying \(\|\alpha - \beta\|^2 = h \), and zeros elsewhere, and that the diagonal element in row \(\alpha \) of \(D_h \) is the number of sequences \(\beta \in \Gamma \) satisfying \(\|\alpha - \beta\|^2 = h \), i.e., the sum of the elements in row \(\alpha \) of \(A_h \). The matrices \(L_h = L_h(n, d) \) in (2) are, in GGS, denoted by \(A(d); n, d, h \), with \(h = \|\alpha - \beta\| \). The matrix \(A_h \) may be interpreted as the adjacency matrix of a graph \(G(\Gamma, h) \) with vertex set \(\Gamma \) and edges the pairs \((\alpha, \beta)\in \Gamma \times \Gamma \) for which \(\|\alpha - \beta\|^2 = h \). In that context \(L_h \) is known as the Laplacian matrix of the graph \(G(\Gamma, h) \) (see, Mohar [17, for instance).

Statistics of the type (2) have been studied extensively for the case \(d = 1 \), beginning with von Neumann et al. [19].

As already mentioned, an important application of the quadratic forms \(q_h \) is to the estimation of the variogram in geostatistics. Let \(N_h = |N(h)| \) denote the cardinality of the set \(N(h) \). The statistic \(\hat{\gamma}(h) = q_h / N_h \) is an unbiased estimator of \(\gamma(h) \), and is often referred to as the classical variogram estimator (see Section 3.2 below, and GGS and the references therein). However, for other purposes it is also of interest to consider the statistics

\[
q_h^* = 2 \sum_{N(h)} z(\alpha)z(\beta) = z'A_hz, \tag{4}
\]

based on just the off-diagonal part of \(L_h \). To give just a few examples: (i) the statistic \(q_h^* \), normalized by \(z'z \), is used to test for spatial autocorrelation at distance \(\sqrt{h} \) (see Moran [18]); (ii) if the covariance matrix of the process belongs to the linear span of (some of) the matrices \(A_h \), that is, if the spatial process is not only intrinsically stationary and isotropic, but also second-order stationary, the statistic \(q_h^*/(2N_h) \) is (when the process has zero mean) an unbiased estimator of the covariance function at distance \(\sqrt{h} \) (see Section 3.2); (iii) if the process is assumed to be Gaussian with precision matrix (inverse covariance matrix) that is a linear combination of matrices \(I_N \) and \(\{A_h, h \in H_p\} \), where \(H_p \) contains \(p \) distinct values of \(h \) and \(I_N \) denotes the \(N \times N \) identity matrix, then a \(p \)-th order conditional autoregression is obtained (Besag [4]). The matrices \(A_h, h \in H_p \), play the role of spatial
weights matrices, and the quadratic forms \((z'z, q^*_h, h \in H_p)\), are minimal sufficient statistics for the parameters of the model, and thus form the basis for inference on those parameters.

The problem of interest here is to give structural formulae for the matrices \(A_h\), and thereby for \(D_h\) and \(L_h\). Thus, we continue the work of GGS, whose aim was to analyze the eigenstructure of the matrices \(L_h\), with a view to deducing the properties of statistics like \(q_h\) and \(q^*_h\), or more specifically of the variogram estimator \(2\hat{\gamma}(h)\). It is well-known that under Gaussian assumptions (and also more generally) the properties of \(q_h\) and \(q^*_h\) depend upon \(L_h\) and \(A_h\), respectively, only through their eigenvalues. Our purpose in the present paper will be to simplify and extend the results given in GGS.

In Section 2 we first provide a complete structural representation of the matrices \(A_h\) and \(L_h\), and then give generating functions that make their computation straightforward with a standard symbolic computation package. In principle this completely solves the eigenvalue problem, but in practice, since \(N\) is usually quite large, direct computation of the eigenvalues would be unreliable. And, as we shall see, except in special cases, both \(A_h\) and \(L_h\) are sums of non-commuting matrices. Since, in this case, it is generally not possible to express the eigenvalues of the sum in terms of those of the summands, general explicit formulae for the eigenvalues are unlikely to be accessible.

Fortunately, our generating function results do permit the computation of the cumulants of the statistics of interest very simply and directly. In Section 3 we use these expressions to study the properties of the statistics \(q_h\) and \(q^*_h\) under the assumption that the process \(\{Z(\alpha), \alpha \in \Gamma\}\) is Gaussian, second-order stationary, and isotropic. In particular, in Section 3.3 we show that the earlier results can be applied to the study of the properties of the classical variogram estimator \(2\hat{\gamma}(h)\) under a variety of assumptions on the actual variogram \(2\gamma(h)\).

2 The Matrices \(A_h\), \(D_h\) and \(L_h\)

In this section we give the main structural results for the matrices \(A_h\), \(D_h\) and \(L_h\). The elements of these matrices, indexed by pairs \((\alpha, \beta) \in \Gamma \times \Gamma\), are completely determined by \(n, d\) and \(h\). The results express these matrices in \(d > 1\) dimensions in terms of sums of Kronecker products of the corresponding matrices in dimension \(d = 1\). We begin with the key result - a very simple
2.1 Off-Diagonal Part

The matrices A_h are defined by

$$(A_h)_{\alpha,\beta} = \begin{cases} 1 & \text{if } \|\alpha - \beta\|^2 = h; \\ 0 & \text{otherwise.} \end{cases}$$

(5)

Evidently, setting $A_0 = I_N$, $\Sigma_{h \geq 0} A_h = J_N$, where J_q is the $q \times q$ matrix with all elements one. In dimension $d = 1$ we denote the $n \times n$ matrices A_r by F_r, $r = 0, 1, \ldots, n - 1$. That is:

$$(F_r)_{i,j} = \begin{cases} 1 & \text{if } |i - j| = r; \\ 0 & \text{otherwise.} \end{cases}$$

(6)

Since $\Sigma_{r=0}^{n-1} F_r = J_n$, we have that

$$J_N = \bigotimes_1^n J_n = \bigotimes_1^n \left(\sum_{r=0}^{n-1} F_r \right) = \sum_{\alpha \in \Gamma} (F_{\alpha(1)} \otimes F_{\alpha(2)} \otimes \cdots \otimes F_{\alpha(d)})$$

(7)

by the multilinearity of the Kronecker (or direct) product ‘\otimes’. Note that the elements of

$$F_{\alpha}^{\otimes} = F_{\alpha(1)} \otimes F_{\alpha(2)} \otimes \cdots \otimes F_{\alpha(d)}$$

(8)

are zeros and ones, so exactly one term F_{α}^{\otimes} on the right in (7) has a one in any given position (β, δ). In view of (7), the following result is not surprising:

Proposition 1 Let $\Gamma_h = \{\alpha \in \Gamma : \|\alpha\|^2 = h\}$. Then:

$$A_h = \sum_{\alpha \in \Gamma_h} F_{\alpha}^{\otimes}.$$

(9)

Proof. For each pair $(\beta, \delta) \in \Gamma \times \Gamma$, define $\alpha \in \Gamma$ by $\alpha(i) = |\beta(i) - \delta(i)|$, $i = 1, \ldots, d$. From the definition of A_h, $(A_h)_{\beta,\delta} = 1$ if and only if $\|\alpha\|^2 = h$, or $\alpha \in \Gamma_h$. On the other hand, the (β, δ) element of $(F_{\alpha(1)} \otimes F_{\alpha(2)} \otimes \cdots \otimes F_{\alpha(d)})$ is one if and only if

$$|\beta(i) - \delta(i)| = \alpha(i), \text{ for } i = 1, \ldots, d.$$

(10)
Summing the $F_\alpha \otimes$ over Γ_h must therefore yield A_h by the remark following (8).

For example, if $h = 1$, Γ_1 consists of d sequences containing a single one and $d - 1$ zeros, so that

$$A_1 = \sum_{i=1}^{d} (I_n \otimes \ldots \otimes F_1 \otimes \ldots \otimes I_n),$$

with F_1 in the i-th position in the i-th term (see the discussion of equation (9) in GGS). Likewise, for $h = 2$, Γ_2 consists of the $\binom{d}{2}$ sequences that contain 2 ones and $d - 2$ zeros, so in the corresponding expression for A_2 each term in the sum contains F_1 twice. Notice that, in both of these low-order cases, all the sequences that appear in Γ_h are permutations of a single sequence.

An alternative proof of Proposition 1 based on known graph-theoretic results is worth recording, because it shows immediately how to generalize the result to cover index sets more complex than the uniform grid Γ, e.g., the rectangular grid mentioned in the Introduction. We refer the reader to Cvetković et al. [7] for more on the graph-theoretic details.

Given graphs $G_i(V_i, E_i)$, $i = 1, \ldots, d$, with vertex sets V_i and edge sets E_i, the direct product of the G_i, $G_1 \times \ldots \times G_d$ is the graph G_d^\times, say, defined as follows. The vertex set of G_d^\times is the Cartesian product $V_d = V_1 \times \ldots \times V_d$ of the V_i, and if $x_i, y_i \in V_i$ for $i = 1, \ldots, d$, (x_1, \ldots, x_d) and (y_1, \ldots, y_d) are adjacent in G_d^\times if and only if $(x_i, y_i) \in E_i$ for $i = 1, \ldots, d$. In our case, the matrices F_r, $r = 0, \ldots, n - 1$, are the adjacency matrices of the (so-called distance) graphs G_r with common vertex sets $V_r = V = \{0, \ldots, n - 1\}$, and with edge sets defined by: for $i, j \in \{0, \ldots, n - 1\}$, $(i, j) \in E_r$ only when $|i - j| = r$. Then, $V_d^\times = \Gamma$, and for each $\alpha \in \Gamma$ we may define a product $G_d^\times(\alpha)$ of the graphs $G_d^\times(\alpha)$ as above. It is known that $G_d^\times(\alpha)$ has adjacency matrix F_{α}^\otimes (Cvetković et al. [7, Theorem 2.21]). Thus, for any subset U of Γ, the union of the graphs $G_d^\times(\alpha)$ has adjacency matrix $A_U = \sum_{\alpha \in U} F_{\alpha}^\otimes$. Proposition 1 gives the case $U = \Gamma_h$.

Call two sequences (β, δ) h-neighbors if the sequence α defined in (10) is in Γ_h. This definition of neighbors - based on the Euclidean distance between points - is natural in some contexts, but in others a neighborhood structure based, say, on the L_1-norm (the length of the shortest walk connecting β to δ) may be more appropriate. The observation in the previous paragraph makes it straightforward to extend the results to follow to this case (and to neighborhood structures defined by other L_p-norms), but we omit the
2.2 Diagonal Part

The matrices D_h in (3) are diagonal matrices with diagonal elements $D_h(\alpha)$ equal to the number of h-neighbors of α. In dimension $d = 1$ define, for each $r = 0, ..., n - 1$, the diagonal matrix M_r with i-th diagonal element the i-th row sum of F_r, and then define, for $\alpha \in \Gamma$,

$$M^\otimes_\alpha = M_{\alpha(1)} \otimes M_{\alpha(2)} \otimes ... \otimes M_{\alpha(d)}.$$ \hspace{1cm} (11)

It is straightforward to prove:

Proposition 2 $D_h = \sum_{\alpha \in \Gamma_h} M^\otimes_\alpha$.

Notice that $tr[D_h]$ is the total number of non-zero elements in A_h, so that $tr[D_h] = 2N_h$. We have now established:

Theorem 1 The spatial design matrix at distance \sqrt{h} is given by:

$$L_h = \sum_{\alpha \in \Gamma_h} (M^\otimes_\alpha - F^\otimes_\alpha),$$ \hspace{1cm} (12)

where M^\otimes_α and F^\otimes_α are as defined in (11) and (8).

The above expressions for the matrices A_h, D_h, and L_h involve summing over the set Γ_h. We next examine this set more closely, and give formulae for these matrices that do not involve Γ_h.

2.3 Generating Functions

Since h must be a sum of squares of d of the integers $(0, 1, ..., n - 1)$, not all values of $h \leq d(n - 1)^2$ are feasible. This is so even when $d \geq 4$, notwithstanding Lagrange’s four-square theorem (Hardy and Wright [11, Sec. 20.5]), because no term in the decomposition of h can exceed $(n - 1)^2$. Thus, Γ_h in Proposition 1 can be empty, and in that case we define A_h, D_h and L_h to be zero matrices.
The values of \(h \) that yield non-vanishing matrices \(L_h \) can be read off from the expansion of the polynomial

\[
(1 + t + t^4 + \ldots + t^r + \ldots + t^{(n-1)^2})^d = \sum_{h=0}^{d(n-1)^2} m_h t^h,
\]

in which the coefficient \(m_h \) is evidently the number of ways in which \(h \) can be expressed as a sum of squares of \(d \) of the integers \((0, 1, \ldots, n-1) \), i.e., \(m_h = |\Gamma_h| \) is the number of \(h \)-neighbors of the origin. Except for the restriction \(h \leq d(n-1)^2 \), the \(m_h \) evidently depend on \(d \) but not directly on \(n \). Letting \(f_n(t) = \sum_{r=0}^{n-1} t^r \), and using Wilf’s [20] notation, we may write

\[
m_h = [t^h](f_n(t))^d,
\]

where \([t^h]\) means “the coefficient of \(t^h \) in the expansion of the following function in powers of \(t \)”. Note that \([t^h]\) is identical to the operator \((h!)^{-1}(\partial/\partial t)^h|_{t=0} \), and, as an operator, is therefore linear. A cumbersome formula for the \(m_h \) can be deduced from (14), but using a modern symbolic computing package it is a simple matter to compute \(m_h \) from (14) without having to rely on such formulae.

Similarly, letting \(b_n(t) = \sum_{r=0}^{n-1} t^r x_i \), where the \(x_i \) are labels for the integers \(0, 1, \ldots, n-1 \), obeying the usual rules of multiplication, we see that, from the formal expansion of \((b_n(t))^d\),

\[
[t^h](b_n(t))^d = \sum_{\alpha \in \Gamma_h} \left\{ \prod_{i=1}^{d} x_{\alpha(i)} \right\}.
\]

Thus, the sequence \(\alpha \) belongs to \(\Gamma_h \) only if the product \(\prod_{i=1}^{d} x_{\alpha(i)} \) appears in the \(h-th \) term on the right in (15).

The key to obtaining a simple representation for the matrices \(A_h, D_h, \) and hence \(L_h \), is to notice that the scalar generating function \((b_n(t))^d\) can be generalized in such a way that, when expanded, the coefficient of \(t^h \) is precisely \(A_h \). To see this, define the matrix

\[
B_n(t) = \sum_{r=0}^{n-1} t^r F_r,
\]

an \(n \times n \) Toeplitz matrix with \((i, j)\) element \(t^{(i-j)^2} \). By direct expansion of the \(d\)-th Kronecker power \(B_n^{\otimes d}(t) = \bigotimes_1^d B_n(t) \), it is clear that \(A_h \) is the coefficient
of t^h in the expansion of $B_n^\otimes(t)$ in powers of t. That is,

$$A_h = [t^h]B_n^\otimes(t).$$

Similarly, letting

$$C_n(t) = \sum_{r=0}^{n-1} t^r M_r$$

and $C_n^\otimes(t) = \bigotimes_i C_n(t)$, we see that

$$D_h = [t^h]C_n^\otimes(t).$$

We therefore have the simple generating-function representation for L_h given in:

Theorem 2 The spatial design matrix at distance \sqrt{h} is given by:

$$L_h = [t^h](C_n^\otimes(t) - B_n^\otimes(t)).$$

These results evidently do not require knowledge of Γ_h: it is built into the generating function. On the other hand, the matrices appearing in these representations of A_h, D_h and L_h are $N \times N$, and likely to be high-dimensional, so it might seem that these results would be of little practical value. On the contrary, we will see in the next section that they provide both analytically and computationally convenient information about the statistics q_h and q^*_h discussed in the Introduction, and hence about the properties of the variogram estimator $2\hat{\gamma}(h)$. Before doing so we note some further implications of these results.

It is clear that, if $\alpha \in \Gamma_h$, so is every permutation of the elements of α. Thus, Γ_h must be a union of one or more orbits in Γ under the action of the symmetric group S_d (the group of permutations of d objects). A set of orbit representatives is provided by the set $\Omega = \Omega(d, n)$ of non-decreasing sequences $\omega = (\omega(1), \ldots, \omega(d)) \in \Gamma$, with $\omega(1) \leq \omega(2) \leq \ldots \leq \omega(d)$. Let $\Omega_h = \{\omega \in \Omega : \|\omega\|^2 = h\}$, and, for $j = 0, \ldots, n-1$, $\omega \in \Omega$, let $k_\omega(j)$ denote the multiplicity of j in ω, so that $\sum_{j=0}^{n-1} k_\omega(j) = d$, and write $\nu(\omega) = \prod_{j=0}^{n-1} k_\omega(j)!$, with, as usual, $0! \equiv 1$.

With this notation it is easy to see that $m_h = d! \sum_{\omega \in \Omega_h} (\nu(\omega))^{-1}$, and since $\Gamma_h = \{\sigma \omega : \omega \in \Omega_h, \sigma \in S_d\}$, where $\sigma \omega$ denotes the permutation σ of ω, we have that

$$A_h = \sum_{\omega \in \Omega_h} \frac{1}{\nu(\omega)} F^*_\omega,$$
where $F_\omega^* = \sum_{\sigma \in S_d} F_{\sigma \omega}^\otimes$ is a symmetric function of the matrices $F_\omega(1), \ldots, F_\omega(d)$. By an obvious extension of this argument to the off-diagonal part, and setting $M_{\omega}^* = \sum_{\sigma \in S_d} M_{\sigma \omega}^\otimes$, we can state:

Theorem 3 The spatial design matrix at distance \sqrt{h} is given by

$$L_h = \sum_{\omega \in \Omega_h} \frac{1}{\nu(\omega)} (M_{\omega}^* - F_{\omega}^*).$$

(21)

For many values of h, equation (15) reveals that Γ_h consists of a single orbit, which is to say that Ω_h has a single element, say ω_h. In that case $m_h = d!/\nu(\omega_h)$, and Theorem 3 gives the very simple result that $L_h = (\nu(\omega_h))^{-1} (M_{\omega_h}^* - F_{\omega_h}^*)$. In the example following Proposition 1, for instance, $h = 1$, $\omega_1 = (0, \ldots, 0, 1)$ and $\nu(\omega_1) = (d - 1)!$.

Using these results we may also obtain the following generalization and simplification of Lemma 6.1 and Theorem 6.1 in GGS, which give upper bounds on the largest eigenvalues of L_h and A_h (for sets Ω_h with low cardinality), and hence upper bounds for the normalized statistics $z' L_h z / z' z$ and $z' A_h z / z' z$.

Lemma 1 Let λ_h and μ_h denote the largest eigenvalues of A_h and L_h, respectively, and let $u_h = d! \sum_{\omega \in \Omega_h} \frac{2^{d-k_{\omega}(0)}}{\nu(\omega)}$. Then $\lambda_h \leq u_h$ and $\mu_h \leq 2u_h$.

Proof. Let $g_h = \max_{\alpha \in \Gamma} D_h(\alpha)$ denote the maximum number of h-neighbors for any point in the grid Γ. The number m_h is the number of h-neighbors of the origin, so that $g_h \geq m_h$. Under the condition that no sequence $\alpha \in \Gamma_h$ contains an element $\alpha(i) > n/2$, we have $g_h = u_h$. To see this, suppose first that Ω_h contains just the single sequence ω_h. If $k_{\omega_h}(0) = 0$, $g_h = 2^d m_h$ because, under the stated condition, $\max_{\alpha \in \Gamma} D_h(\alpha)$ occurs at a sequence α for which the h-neighbors in all 2^d directions enter $D_h(\alpha)$, and m_h counts just the h-neighbors β in the direction for which the vector $\beta - \alpha$ has only positive components. If $k_{\omega_h}(0) > 0$, only $2^{d-k_{\omega_h}(0)}$ distinct directions are needed. Repeating the argument for each $\omega \in \Omega_h$ proves the claim $g_h = u_h$.

Finally, when the condition that no $\alpha(i)$ exceeds $n/2$ is dropped, it is clear that $g_h \leq u_h$. The assertions $\lambda_h \leq u_h$, $\mu_h \leq 2u_h$ follow by Gershgorin’s theorem (see Marcus and Minc [16]).

If Ω_h contains only the single sequence ω_h, which contains only one non-zero term (so Γ_h contains only what GGS call “non-diagonal directions”), the
matrices in the sum $\sum_{\alpha \in \Gamma} F_\alpha^\otimes$ are pairwise commutative, so the eigenvalues of A_h are simple functions of those of the single matrix F_r ($r = \sqrt{h}$) involved. Under the same condition, $L_h = ((d - 1)!)^{-1}L_{\omega_h}$, with $L_{\omega_h} = \sum_{\sigma \in S_d} L_{\sigma \omega_h}$, which is also a sum of pairwise commutative matrices. Thus, as GGS note in Lemma 5.1, in the case of non-diagonal directions the eigenvalues of L_h are simple functions of those of the matrix $(M_{\sqrt{h}} - F_{\sqrt{h}})$.

The necessary and sufficient conditions required to ensure pairwise commutativity of the summands in Theorem 3 are that Ω_h contains only the single sequence ω_h, and ω_h contains no more than one (possibly repeated) non-zero integer. Note that ω_h may correspond to what GGS would call “diagonal directions”, and that these conditions are always satisfied for $h = 1, 2, 3$ (for any d), but otherwise clearly hold only for special values of h.

3 Applications

In this section we use the results established above to study the properties of the statistics $q_h^* = z'A_hz$ and $q_h = z'L_hz$. We consider first the case in which $z \sim N(0, I_N)$, but in Section 3.2 show how our earlier results can be used to deal with the more general case $z \sim N(0, \Sigma)$, assuming the process is second-order stationary and isotropic.

3.1 Properties of the Quadratic Forms q_h^* and q_h

Under the assumption $z \sim N(0, I)$, the distributions of the quadratic form $q = z'A_hz$, and its normalized form $\bar{q} = z'A_hz/z'z$, can certainly be obtained (see James [14] for the former, and Hillier [13] for the latter), but both are sufficiently complicated as to inhibit their use for practical study of, and/or tabulation of, the distribution. On the other hand, it is well known that the cumulants of $q = z'A_hz$ under the assumption $z \sim N(0, \Sigma)$ are given by:

$$\kappa_p = 2^{p-1}(p - 1)!tr[(A\Sigma)^p], \quad p = 1, 2, ...$$

(see Kendall and Stuart [15] Chapter 3 for the definition of cumulants, and Chapter 15 for the result given in equation (22)). The results in Section 2 allow these cumulants to be computed quite straightforwardly when $\Sigma = I_N$ and the matrix A in (22) is either A_h or L_h. These results are given next. First, for comparison, we summarize the properties of the analogue of q_h^* for the case $d = 1$.

11
In the case $d = 1$ the properties of the statistics $Q^*_r = y'y, \ r = 1, \ldots, n - 1,$ with $y \sim N(0, I_n),$ have been extensively studied. The following Lemma summarizes some elementary properties of the statistics $Q^*_r,$ all of which are either given in, or are easily deduced from, the comprehensive results in Anderson [2]:

Lemma 2 For $r = 1, \ldots, n - 1,$ let $Q^*_r = y'y, and assume that $y \sim N(0, I_n).$ Then:

\[
E(Q^*_r) = tr[F_r] = 0, \text{ and } \var(Q^*_r) = 2tr[F_r^2] = 2tr[M_r] = 4(n - r).
\]

All odd cumulants of Q^*_r vanish, so the density of Q^*_r is symmetric about zero, and for $r_1 \neq r_2, Q^*_{r_1}$ and $Q^*_{r_2}$ are uncorrelated.

Properties of the q^*_h

With $A = A_h$ and $\Sigma = I_N$ in (22) we obtain the cumulants, $\kappa^*_{p,h},$ of $q^*_h.$ Much of Lemma 2 generalizes easily to this case:

Lemma 3 For $h \geq 1, any d \geq 1,$ and $z \sim N(0, I_N),$ \[E(q^*_h) = tr[A_h] = 0,\]

\[
\var(q^*_h) = 2tr[A_h^2] = 2tr[D_h],
\]

and, for $h_1, h_2 \geq 1, h_1 \neq h_2, q^*_{h_1}$ and $q^*_{h_2}$ are uncorrelated.

Proof. The first two cumulants are straightforward. To show that $\cov(q^*_{h_1}, q^*_{h_2}) = 2tr[A_{h_1}A_{h_2}] = 0,$ consider a diagonal element of $A_{h_1}A_{h_2}:$

\[(A_{h_1}A_{h_2})_{\alpha,\alpha} = \sum_{\beta \in \Gamma} (A_{h_1})_{\alpha,\beta}(A_{h_2})_{\beta,\alpha} \quad \alpha \in \Gamma.
\]

The product $(A_{h_1})_{\alpha,\beta}(A_{h_2})_{\beta,\alpha}$ vanishes unless both $\|\alpha - \beta\|^2 = h_1$ and $\|\beta - \alpha\|^2 = h_2,$ which is impossible. Hence, for each $\alpha \in \Gamma,$ every term in the sum on the right here vanishes.

Now, with the help of the generating function $C^\otimes_n(t)$ for $D_h,$ it is straightforward to obtain a generating function for the variances $\var(q^*_h),$ since

\[
\var(q^*_h) = 2tr[D_h] = 2tr \left\{ [t^h]C^\otimes_n(t) \right\} \quad \text{(using (19))}
\]

\[
= 2[t^h]tr \left\{ C^\otimes_n(t) \right\}
\]

\[
= 2[t^h](tr(C_n(t))^d.
\]

(23)
The last step here follows from a standard property of the trace operator for Kronecker products, and the penultimate step from the fact that the operator \([t^h]\) commutes with the trace operator. Noting that \(tr[M_0] = n\), and \(tr[M_r] = 2(n - r), \ r = 1, ..., n - 1\), it follows from the definition of \(C_n(t)\) that

\[
tr(C_n(t)) = (n + 2(n - 1)t + ... + 2(n - r)t^{r^2} + ... + 2t^{(n-1)^2}).
\]

(24)

Since \(2N_h = tr[D_h]\), these formulae provide simple and efficient methods for computing the values \(N_h\): setting \(g_n(t) = tr(C_n(t))\) we have

\[
2N_h = [t^h](g_n(t))^d.
\]

(25)

In general, for \(d > 1\), the density of \(q_h^*\) is not symmetric about zero. The analogue of the symmetry result for the case \(d = 1\) in Lemma 2 is the weaker result given in:

Lemma 4 If \(ph\) is odd \(tr[A_p^h] = 0\) (independently of \(d\)). Hence, for \(h\) odd, the distribution of \(q_h^*\) (and also its normalized form \(\tilde{q}_h^* = q_h^*/|z'|z\)) is symmetric about zero.

Proof. Consider a diagonal element of \(A_p^h\):

\[
(A_p^h)_{\alpha,\alpha} = \sum_{\beta_1, \beta_2, ..., \beta_p \in \Gamma} (A_h)_{\alpha, \beta_1} (A_h)_{\beta_1, \beta_2} ... (A_h)_{\beta_{p-2}, \beta_{p-1}} (A_h)_{\beta_{p-1}, \alpha}, \ \alpha \in \Gamma.
\]

This is non-zero only if

\[
\|\alpha - \beta_1\|^2 = \|\beta_1 - \beta_2\|^2 = ... = \|\beta_{p-1} - \alpha\|^2 = h.
\]

Expanding each term \(\|\beta_i - \beta_{i+1}\|^2\) as \(\|\beta_i\|^2 + \|\beta_{i+1}\|^2 - 2\langle \beta_i, \beta_{i+1} \rangle\) and adding the \(p\) terms gives (with \(\beta_0 = \beta_p = \alpha\)):

\[
2 \left(\|\alpha\|^2 + \sum_{i=1}^{p-1} \|\beta_i\|^2 - \sum_{i=0}^{p-1} \langle \beta_i, \beta_{i+1} \rangle \right) = ph.
\]

The left side is certainly an even integer, so when \(ph\) is odd we obtain a contradiction. Thus, when \(ph\) is odd, every term in the expression above for \((A_p^h)_{\alpha,\alpha}\) vanishes, for all \(\alpha \in \Gamma\), implying \(tr[A_p^h] = 0\). ■

The following result is also of some interest:
Lemma 5 For $d = 2$ and every $h \geq 1$, $\text{tr}[A_h^2] = 0$.

Proof. The diagonal element of A_h^3 labelled by (α, α) is given by:

$$(A_h^3)_{\alpha,\alpha} = \sum_{\beta, \gamma \in \Gamma} (A_h)_{\alpha,\beta}(A_h)_{\beta,\gamma}(A_h)_{\gamma,\alpha},$$

and is non-zero only if there are $\beta, \delta \in \Gamma$ satisfying

$$\|\alpha - \beta\|^2 = \|\beta - \delta\|^2 = \|\delta - \alpha\|^2 = h.$$

This equation asserts that (α, β, δ) must be the vertices of an equilateral triangle in \mathbb{R}^2, and it is well-known that there is no equilateral triangle with vertices in a two-dimensional integer grid (see, for instance, Beeson [3]), so this condition cannot be met for any α if $d = 2$.

Hence, if $d = 2$, $\kappa^*_{3,h} = 8\text{tr}[A_h^3] = 0$. The analogous result for dimensions $d > 2$ fails because in that case there are equilateral triangles in a uniform grid.

Properties of the q_h

We now deal with the case $A = L_N$ and $\Sigma = I_N$ in (22). Since $L_N l_N = 0$ (where l_N is an $N \times 1$ vector of ones), the results to follow continue to hold under the assumption that $z \sim N(\mu l_N, I_N)$, i.e., that the $Z(\alpha)$ have an unknown constant mean μ. We have, in either case, for the cumulants of q_h,

$$\kappa_{p,h} = 2^{p-1}\Gamma(p)\text{tr}[L_h^p], \quad p = 1, 2, \ldots$$

Thus:

Lemma 6 When $z \sim N(\mu l_N, I_N)$,

$$E(q_h) = \text{tr}[L_h] = \text{tr}[D_h] = 2N_h,$$ \hspace{1cm} (26)

and

$$\text{var}(q_h) = 2\text{tr}[L_h^2] = 2 \left(\text{tr}[D_h^2] + \text{tr}[D_h] \right).$$ \hspace{1cm} (27)

The result for the variance uses the facts that $\text{tr}[D_h A_h] = 0$ and $\text{tr}[A_h^2] = \text{tr}[D_h]$. The computation of $\text{tr}[D_h]$ has been discussed above, and we can compute the term $\text{tr}[D_h^2]$ from the formula:

$$\text{tr}[D_h^2] = \text{tr} \left[[t^h][s^h]C_n^\otimes(t)C_n^\otimes(s) \right] = [(ts)^h](\text{tr}[C_n(t)C_n(s)])^d.$$

Thus:

$$\text{var}(q_h) = 2 \left\{ [t^h][s^h](\text{tr}[C_n(t)C_n(s)])^d + 2N_h \right\}.$$ \hspace{1cm} (28)
From the definition of $C_n(t)$, $tr[C_n(t)C_n(s)] = \sum_{r_1, r_2 = 0}^{n-1} t^2 r_1^2 tr[M_{r_1}M_{r_2}]$, and it is easy to check that $tr[M_0^2] = n$ and, for $1 \leq r_1 \leq r_2 \leq n - 1,$

$$tr[M_{r_1}M_{r_2}] = \begin{cases} 4(n - r_2) - 2r_1 & \text{if } r_1 + r_2 \leq n; \\ 2(n - r_2) & \text{otherwise.} \end{cases} \quad (29)$$

Thus, we again have a simple generating function for the variances of the statistics q_h, and hence for the variance of the variogram estimator in the “null” case ($\Sigma = I_N$) (see Section 3.3 below).

Higher-order cumulants and product cumulants (e.g., covariances) for both the q^*_h and the q_h can be obtained by obvious extensions of these methods. For instance,

$$tr[A^p_h] = [(t_1 \ldots t_p)^h](tr[B_n(t_1) \ldots B_n(t_p)])^d, \quad (30)$$

and

$$\text{cov}(q_{h_1}, q_{h_2}) = 2tr[L_{h_1} L_{h_2}] = 2tr[D_{h_1} D_{h_2}] = 2[t_{h_1}] [t_{h_2}] (tr[C_n(t)C_n(s)])^d. \quad (31)$$

The generating functions in these expressions may, of course, simplify (as above), and this reduces the computational problem considerably. We leave other such extensions to the reader.

3.2 Second-Order Stationary Isotropic Processes

Under the assumption that the process is second-order stationary and isotropic - which is stronger than the intrinsic stationarity assumption mentioned in the introduction (see Cressie [6]) - we have, as an obvious consequence of equation (17):

Proposition 3 If the process \(\{Z(\alpha); \alpha \in \Gamma\} \) is second-order stationary and isotropic, its covariance matrix Σ has the representation $\Sigma = \sum_{h \in H} c(h) A_h$, where H is a some set of values of h containing zero (recall that $A_0 = I_N$), and the coefficients $\{c(h); h \in H\}$ must be such that Σ is positive definite. Thus, from (17),

$$\Sigma = [S_H(t)] B_n^\otimes(t), \quad (32)$$

where

$$[S_H(t)] = \sum_{h \in H} c(h)[t^h]. \quad (33)$$
The operator $[S_H(t)]$ constructs a linear combination, with parameters $c(h)$, of the coefficients of the powers t^h, $h \in H$, that occur in the expansion of the function to which it is applied. Like the $[t^h]$ themselves, $[S_H(t)]$ is clearly linear. If we now assume that $z \sim N(0, \Sigma)$, with Σ as in (32), and take $h > 0$, we easily see that:

$$E(q_h^*) = \text{tr}[A_h \Sigma] = \sum_{k \in H} c(k) \text{tr}[A_h A_k] = \begin{cases} c(h) \text{tr}[D_h] & \text{if } h \in H; \\ 0 & \text{otherwise.} \end{cases}$$ (34)

And (since $\text{tr}[A_h] = \text{tr}[D_k A_h] = 0$),

$$E(q_h) = \text{tr}[L_h \Sigma] = \sigma^2 \text{tr}[D_h] - \sum_{k \in H \setminus \{0\}} c(k) \text{tr}[A_h A_k]$$

$$= \begin{cases} \{\sigma^2 - c(h)\} \text{tr}[D_h] & \text{if } h \in H; \\ \sigma^2 \text{tr}[D_h] & \text{otherwise,} \end{cases}$$ (35)

where we have put $c(0) = \sigma^2$. Since, under these assumptions, $\gamma(h) = \sigma^2 - c(h)$, this shows that $2\hat{\gamma}(h) = q_h / N_h$ is an unbiased estimator of the true variogram $2\gamma(h)$, for all $h > 0$, as is well-known (Cressie [6]). Obviously, to compute the unbiased estimator $2\hat{\gamma}(h)$ one needs to know the correct scale factor N_h, and this has hitherto been unavailable for the isotropic case in general; equation (25) gives a simple general procedure for computing it, generalizing the special case given in Lemma 7.1 in GGS.

The variances and covariances of the statistics q_h^* and q_h for several values of h are often needed in applications. For instance, the entire covariance matrix of a vector of statistics q_h at a set of values of h is required for variogram fitting by generalized least squares (Genten [9], Cressie [6, Sec. 2.6.2]), and this has previously been unavailable for the isotropic case. The covariances cannot easily be written down in closed form, but when Σ has the form (32) are easily represented in generating function form using the operators $[S_H(t)]$ defined in (33). Thus we easily obtain:

Lemma 7 Suppose $z \sim N(0, \Sigma)$, with Σ of the form (32). Then, for any $h_1 \geq h_2$:

$$\text{cov}(q_{h_1}^*, q_{h_2}^*) = 2\text{tr}[A_{h_1} \Sigma A_{h_2} \Sigma] = 2[s_1^{h_1}] [s_2^{h_2}] [S_H(t_1)] [S_H(t_2)] v_n^d(s_1, s_2, t_1, t_2),$$ (36)

and

$$\text{cov}(q_{h_1}, q_{h_2}) = 2\text{tr}[L_{h_1} \Sigma L_{h_2} \Sigma] = 2[s_1^{h_1}] [s_2^{h_2}] [S_H(t_1)] [S_H(t_2)] V_n^d(s_1, s_2, t_1, t_2).$$ (37)
where

$$v_n^d(s_1, s_2, t_1, t_2) = (\text{tr}[B_n(s_1)B_n(t_1)B_n(s_2)B_n(t_2)])^d$$

and

$$V_n^d(s_1, s_2, t_1, t_2) = v_n^d(s_1, s_2, t_1, t_2) + (\text{tr}[C_n(s_1)B_n(t_1)C_n(s_2)B_n(t_2)])^d$$

$$-2(\text{tr}[C_n(s_2)B_n(t_2)B_n(s_1)B_n(t_1)])^d.$$ \(39\)

Note that \(\text{cov}(q^*_h, q^*_h) = 0\) when \(h \neq h_2\) and \(h_1, h_2 \notin H\), and that the elements of the matrix defining \(v_n^d(s_1, s_2, t_1, t_2)\) are positive. Thus, if the \(c(h)\) in (32) are positive and non-decreasing in \(|H|\), an increase in \(|H|\) must increase \(\text{cov}(q^*_h, q^*_h)\). Extensions to higher-order cumulants are obvious, but, as in the case \(\Sigma = I_N\), will entail a larger computational burden. Finally, we note that the approach used here can also be extended to the case where the precision matrix \(\Sigma^{-1}\), rather than \(\Sigma\) itself, is a linear combination of the \(A_h\).

3.3 Properties of the Classical Variogram Estimator

The above results for \(q_h\) provide the tools for studying the properties of the classical variogram estimator for a second-order stationary and isotropic process under virtually any specification for the \(c(h)\). We do not intend to study the detailed properties of the variogram estimator here, but will show that the above results can be used to study the properties of \(2\hat{\gamma}(h)\) under a variety of specifications for the variogram \(2\gamma(h)\) (for the intrinsically stationary, but non-isotropic case, see Cressie [5]).

We first consider the variance of \(2\hat{\gamma}(h) = q_h/N_h\) as a function of \(h\) and \(d\), assuming \(\Sigma = I_N\). In Fig. 1 we plot \(\text{var}(2\hat{\gamma}(h)) = \text{var}(q_h)/N_h^2\), computed using equations (25) and (28), for \(d = 1, 2, 3, 4\), and \(h = 1, \ldots, 16\), with \(N\) held fixed at \(N = 2^{12}\), so that, for \(d = 1, 2, 3, 4\) we have \(n = 2^{12}, 2^6, 2^4, 2^3\) respectively.

Figure 1 about here

Fig. 1 shows that: (a) for each fixed dimension \(d > 1\), the variance is quite volatile as \(h\) varies; and (b) the variance is not monotonic in \(d\) for fixed \(h\) (see for instance the value \(h = 9\)). Thus, in contrast to Fig. 4 in GGS (where the variance could only be computed for “non-diagonal” directions), our results show that when “diagonal” directions are taken into account -
as it is natural to do under the assumption of isotropy - \(\text{var} \ (2\hat{\gamma}(h)) \) is no longer monotonic either in \(d \) or in \(h \). The volatility and non-monotonicity of the variances is attributable to variation in \(N_h, m_h \), and the structure of \(\Omega_h \) as \(h \) varies. The explanation is purely number theoretic: the number of decompositions of a particular \(h \) as a sum of squares is not related in any simple way to the values \(n \) and \(d \).

The variance of the classical variogram estimator when \(\Sigma \) is of the form (32) can be computed using (37) with \(h_1 = h_2 \). Using this formula, one can study the behavior of \(\text{var} \ (2\hat{\gamma}(h)) \) under various specifications for the true variogram \(2\gamma(h) \), i.e., of the \(c(h) \) in (32). In Fig. 2 we plot the variances for the case of a spherical variogram with sill 1, nugget 0 and range \(r \), so that the \(c(h) \) in (32) are given by

\[
c(h) = c(h, r) = \begin{cases}
1 - (3\sqrt{h}/r + (\sqrt{h}/r)^3)/2 & \text{if } 0 \leq h \leq r^2; \\
0 & \text{if } h > r^2.
\end{cases}
\]

The value of \(N \) is kept fixed, as above, at \(N = 2^{12} \). We plot the variances for \(d = 2 \) and \(d = 3 \) as a function of the range \(r \) (the variogram is not valid for \(d > 3 \)). In Fig. 2(a) we display the results for \(h = 2 \) (note that this is a diagonal direction in the sense of GGS - for any \(d \)), and in Fig. 2(b) for \(h = 4 \). The corresponding figure for \(h = 1 \) is equivalent to Fig. 7 in GGS, which was produced by simulation for \(N = 2^8 \) (note that GGS appear to have omitted a factor 2).

Figures 2(a) and 2(b) about here

In Fig. 3 we repeat this exercise for the case of an exponential variogram with sill 1, nugget 0 and (practical) range \(r \), so that the \(c(h) \) in (32) are given by:

\[
c(h) = c(h, r) = \exp\{-3\sqrt{h}/r\}, \ h \geq 0.
\]

In this case, all feasible values of \(h \) will appear in equation (32), presenting a much larger computational task for the evaluation of \(\text{var}(2\hat{\gamma}(h)) \). Nevertheless, by exploiting the structure of the generating function (39) to streamline the computation, the variances can be computed efficiently. In Fig. 3(a) we plot the variances as a function of \(r \) for \(h = 2 \), and in Fig. 3(b) those for \(h = 4 \), in both cases for \(d = 2, 3, \) and 4 (the exponential variogram is valid for all \(d \)).

Figures 3(a) and 3(b) about here
With a fixed number, N, of i.i.d. observations, we expect the variance to decrease, at least for small h ($h \leq N^{\frac{1}{d}}$) as d increases, because the number of pairs of points available to estimate $2\gamma(h)$ (for fixed h) cannot decrease as d increases, and usually increases. But, as dependence in the data increases, or h increases, one anticipates that this effect might be overturned. Both Figs. 2 and 3 show that these expectations are correct: the variances are not monotonic in r, sometimes increasing with r initially, then decreasing. And the non-monotonicity is more pronounced for larger h, and for the case of a spherical variogram. Note that the lack of smoothness for low values of r evident in Fig. 2 arises because the spherical variogram itself is not smooth. For sufficiently large values of r - the values most likely to be used in applications - the variance for fixed h is increasing in d for both variograms - as suggested by GGS.

Of course, the usefulness of Lemma 7 is in providing a means to compute $\text{var}(2\gamma(h))$ (and covariances) exactly in applications. For the exponential this is not a trivial computation, because as we note above, $c(h) \neq 0$ for all feasible values of h, so that $[S_H(t)]$ in (33) contains all feasible values. In practice, however, perfectly satisfactory accuracy can be achieved by truncating the $c(h, r)$ at some point.

4 Concluding Remarks

We have provided simple formulae and generating functions for the spatial design matrices implicitly defined by quadratic forms that arise in the analysis of isotropic spatial models on uniform grids, extending and simplifying the results in Genton [9] and Gorsich, Genton, and Strang [10]. Such models are a natural generalization of familiar time series models - the one-dimensional case - and the structural results we have derived reflect this relation. These results show that in general these matrices are sums of non-commuting matrices - Kronecker products of their counterparts for the one-dimensional case - and hence that their eigenvalues are unlikely to be expressible in terms of those of the summands.

Fortunately, to study the properties of the associated quadratic forms the eigenvalues themselves are not needed: the generating functions for the matrices themselves induce generating functions for their cumulants. We provide detailed results on the means, variances and covariances of these statistics. As an important application of these results, we give simple formulae for
the normalizing constant needed to produce an unbiased estimator of the variogram, and, assuming second-order stationarity, the covariance matrix needed to implement generalized least squares procedure for variogram estimation (see Cressie [6, Ch. 6]). Finally, we briefly study some properties of the classical variogram estimator for the cases of some popular choices of the actual variogram.

For the purposes of hypothesis testing the normalized statistics $\bar{q}_h^* = z'A_hz/z'_z$ and $\bar{q}_h = z'L_hz/z'_z$ are of greater interest. But since exact distribution theory for such statistics is difficult, various techniques for approximating the distributions based on just the low-order cumulants have been developed (see, for instance, Durbin and Watson [8], Ali [8] or Henshaw [12]). Although we do not implement them here, the results in Section 3 make such techniques quite straightforward. It is easily seen that, under the assumption that $z \sim N(0, \sigma^2I_N)$ - usually the null hypothesis - the ratios \bar{q}_h^* and \bar{q}_h are independent of their denominator, so that the moments of the ratios are ratios of the moments. Hence the cumulant results for q_h^* and q_h given in Section 3 can also be used to study or approximate the properties of \bar{q}_h^* and \bar{q}_h under this assumption.

It is, of course, both analytically and computationally convenient if the eigenvalues, or good approximations to them, of L_h and A_h are known. One possible device for developing approximations in the case $d = 1$ is to replace the F_r by their circular counterparts (see Anderson [2, Ch. 6.5]), and our results allow that approach to be adapted to higher dimensional cases straightforwardly. We will report our work on that subject elsewhere.

Acknowledgements
We thank two anonymous referees for helpful comments on an earlier version of the paper. FM acknowledges support from ESRC grant No. R42200134323.

References

Figure 1: The variance of the classical estimator $2\hat{\gamma}(h)$ as a function of h and $d: d = 1$ (diamond), 2 (cross), 3 (square), 4 (line); $N = 2^{12}$, $\Sigma = I_N$.
Figure 2: The variance of the classical estimator $2\hat{\gamma}(h)$ when the variogram is spherical. In (a) $h = 2$, in (b) $h = 4$. The variance is plotted for many values of the range r from 0 to 10, $N = 2^{12}$, $d = 2$ (thin line), $d = 3$ (thick line).

Figure 3: The variance of the classical estimator $2\hat{\gamma}(h)$ when the variogram is exponential. In (a) $h = 2$, in (b) $h = 4$. The variance is plotted for many values of the (practical) range r from 0 to 10, $N = 2^{12}$, $d = 2$ (thin line), $d = 3$ (thick line), $d = 4$ (dashed line).