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Abstract

This course introduces main concepts from the theory of random sets with emphasis on
applications in economics and finance: most importantly inference for partially identified models
and transaction costs modelling.

The main mathematical ideas introduced in this course are that of a random closed set, its
distribution and main analytical tools to handle it, selections and expectations of random sets,
laws of large numbers and limit theorems, and set-valued stochastic processes.

Theoretical material will be presented along with describing the following applications.

• Partially identified models appearing if the available data do not suffice to uniquely identify
the parameter of interest, even if the sample size grows. Possible reasons for this are interval
responses in regression models or multiple equilibria in games. Using random sets, it is
possible to come up with an adequate mathematical framework that makes it possible to
unify a number of special cases and come up with new results.

• In finance it is possible to represent the range of prices (which are always non-unique in
case of transaction costs) as random sets. In the univariate case, this set is a segment with
end-points being bid and ask prices. The no-arbitrage property of the dynamic model
with discrete time is closely related to the existence of martingales that evolve inside the
set-valued process.

1 Distributions of random sets

1.1 Basic examples

In many applications the available data come in the form of sets rather than points. For instance,
in econometric applications respondents may report a salary bracket instead of the exact salary or
the profit of a firm may be intentionally converted to an interval to ensure anonymity.

The most basic statistical example concerns the estimation of the mean where exact observations
x1, . . . , xn are not available, but instead it is known that xi belongs to a set Xi for i = 1, . . . , n.
The nature of the set Xi that replaces the point xi may be explained by the reasons mentioned
above, where there is no reason to prefer a single point from Xi over other points, or Xi may be
a confidence region for the true (unknown) value xi obtained from the initial stage of the data
collection. Then it is necessary to deal with a sample of sets X1, . . . , Xn, which can be considered
realisations of a random set X.
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Example 1.1 (see [6]). Consider a variant of the classical linear regression model, where one
observes the values of an explanatory variable xi, while the only information about the response yi
is that yi belongs to the interval Yi = [yiL, yiU ], i = 1, . . . , n. This setting leads to consideration of
random sets being intervals.

Example 1.2 (see [5]). Consider a random game of k players with pure strategies. The set of (say
Nash) equilibria for such game is a random subset of the discrete cube {0, 1}k.

Example 1.3 (see [5]). Consider a random element z of {0, . . . , n} and vector y0, . . . , yn such
that yi = y is a random variable in [0, 1] if z = i and otherwise yi is any element of [0, 1]. The
corresponding random set can be represented as

Y = Y0 × · · · × Yn ,

where Yi = {y} if z = i and Yi = [0, 1] otherwise. This random set is useful to model response
function in case of missing treatments.

Example 1.4 (see [15, 18]). In real life financial assets have two prices (bid and ask prices)
and the interval between them represents all possible prices at which the asset can be traded.
In case of several assets the range of prices is a parallelepiped, or a more general convex set if
simultaneous transactions on several assets attract an extra discount and so “cut the corners” of
the parallelepiped. These sets of prices depend on time and are random, so form a set-valued
stochastic process.

Example 1.5 (Dangerous area). Let ξ(x), x ∈ R2, be a function that describes the danger level
associated to a point x from the plane. Then X = {x : ξ(x) ≥ a} is the set of points with danger
level at least a. The same construction can be applied if ξ(x) is a confidence level at point x, so
that X describes the set of points with high confidence.

These and numerous further examples coming from image analysis, material science, pattern
recognition, microscopy, networks, astronomy, to name few areas, call for a rigorous definition of a
random set.

1.2 Measurability of set-valued functions on probability space

The first step in defining a random element is to describe the family of its values. For a random
set, the values will be subsets of a certain carrier space E, which is often taken to be the Euclidean
space Rd, but may well be different, e.g. a cube in Rd, a sphere, a general discrete set, or an
infinite-dimensional space like the space of (say continuous) functions. It is always assumed that
E has the structure of a topological space.

The family of all subsets of any reasonably rich space is immense, and it is impossible to define
a non-trivial distribution on it. In view of this, one typically considers certain families of sets with
particular topological properties, e.g. closed, compact or open sets, or further properties, most
importantly convex sets. The conventional theory of random sets deals with random closed sets.
An advantage of this approach is that random points (or random sets that consist of a sigle points,
also called singletons) are closed and so the theory of random closed sets then includes the classical
case of random points or random vectors.1

1By passing to complements it is also possible to work with open sets, then the classical case of random vectors
would correspond to complements of singletons.
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Denote by F the family of closed subsets of the carrier space E. Recall that the empty set and
the whole E are closed and so belong to F . A random closed set is a map X : Ω 7→ F , where Ω is
the space of elementary events equipped with σ-algebra F and probability measure P.

In order to define the measurability of this map X we specify the family of functionals of X that
are random variables. A possible idea would be to require that indicator function 1X(x) (which is
one if x ∈ X and otherwise is zero) is a stochastic process, i.e. each its value is a random variable.
However this does not work well for random sets X that are “thin”, e.g. for X = {ξ} being a
random singleton. For instance, if ξ is a point in the Euclidean space with an absolutely continuous
distribution, then {x ∈ X} = {x = ξ} has probability zero and so the measurability condition of the
indicator 1X(x) = 1ξ=x does not impose any extra requirement on ξ (if the underlying σ-algebra
is complete). The same problem arises if X is a segment or a curve in the plane.2

So the definition of the measurability based on indicators of points does not work well. Note
that too strict measurability conditions unnecessarily restrict the possible examples of random sets.
On the other hand, too weak measurability conditions do not ensure that important functionals
of a random set become random variables. The measurability of a random closed set is defined in
the following way, which essentially replaces indicator 1X(x) = 1x∈X by the indicator of the event
{X ∩K 6= ∅} for some test sets K.

Definition 1.6. A map X from a probability space (Ω,F,P) to the family F of closed subsets of
a second countable locally compact Hausdorff space3 E is called a random closed set if

X−(K) = {ω : X(ω) ∩K 6= ∅}

belongs to the σ-algebra F on Ω for each compact set K ⊂ E.

In other words, a random closed set is a measurable map from the given probability space to the family
of closed sets equipped with σ-algebra generated by the families of closed sets {F ∈ F : F ∩K 6= ∅} for all
K ∈ K, where K denotes the family of compact subsets of E.

The function X : Ω 7→ F is an example of set-valued function, and X− defined above for K being a

singleton is said to be the inverse of X. In the same way it it is possible to define measurability of any

set-valued function with closed values. Such function does not have to be defined on a probability space.

Many spaces of interest, e.g. the Euclidean space and discrete spaces, are second countable lo-
cally compact and Hausdorff. The local compactness condition fails for infinite-dimensional spaces,
e.g. if E is the space of, say continuous, functions with the uniform metric and X is a random set of
functions. In these spaces the family of compact sets is not sufficient to ensure good measurability
properties of X and it has to be replaced with the family of closed (alternatively open, or Borel)
sets.

A random compact set is defined as random closed set which is compact with probability one,
so that almost all values of X are compact sets. A convex random set is defined similarly.

Example 1.7 (Random sets defined from random points). 1. The singleton X = {ξ} is a ran-
dom closed set.

2This indicator definition however works well if X is regular closed, i.e. coincides with the closure of its interior,
see [20].

3A topological space is called second countable if its topology has a countable base, i.e. there exists a countable
family of open sets such that each open set is the union of sets from this family. A topological space is locally compact
if each its point has a neighbourhood with a compact closure. A topological space is Hausdorff if each two its points
have disjoint open neighbourhoods.
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2. A ball X = Bξ(η) with η and radius ξ is a random closed set if η is a random vector and
ξ is a non-negative random variable. If the joint distribution of (ξ, η) depends on a certain
parameter, we obtain a parametric family of distributions for random balls.

3. A random triangle obtained as the convex hull of {ξ1, ξ2, ξ3} is a random closed set. Similarly,
it is possible to consider random polytopes that appear as convex hulls of any (fixed or
random) number of points in the Euclidean space.

Example 1.8 (Random sets related to deterministic and random functions). 1. Let f : Rd 7→
R be a deterministic function, and let ξ be a random variable. If f is continuous, then
X = {x : f(x) = ξ} is a random set. If f is upper semicontinuous, i.e.

f(x) ≥ lim sup
y→x

f(y)

for all y, then X = {x : f(x) ≥ ξ} is closed and so also defines a random closed set. Its
distribution is determined by the distribution of ξ and the choice of f . In these both case X
can be obtained as the inverse image of a random set, e.g. as f−1({ξ}) or f−1((−∞, ξ]).

2. Let ξ(x), x ∈ Rd, be a real-valued stochastic process. If ξ has continuous sample paths, then
{x : ξ(x) = t} is a random closed set. If ξ has almost surely upper semicontinuous sample
paths, then the excursion set {x : ξ(x) ≤ t} and the hypograph {(x, s) ∈ Rd ×R : ξ(x) ≥ s}
are random closed sets.

Exercise 1.9. Let X be a random closed set in the Euclidean space E = Rd, as specified in
Definition 1.6. Prove that

1. {x ∈ X} is a random event, i.e. belongs to the σ-algebra F, for all x ∈ Rd, so that 1X(x),
x ∈ Rd, is a stochastic process on Rd;

2. {X ∩G 6= ∅} is a random event for each open set G;

3. ‖X‖ = sup{‖x‖ : x ∈ X} is a random variable (with possibly infinite values);

4. ρ(y,X) = inf{ρ(x, y) : x ∈ X}, i.e. the distance from y to the nearest point of X, is a
random variable, and so ρ(y,X), y ∈ Rd, is a stochastic process.

Exercise 1.10. Let X be a random set in a finite space E, so that X is automatically closed.
Prove that the number of points in X is a random variable.

Exercise 1.11. Using the definition check that random singleton {ξ} is a random closed set. Check
that {ξ1, . . . , ξn} is also a random closed set, where ξ1, . . . , ξn are random singletons.

Exercise 1.12. By modifying Definition 1.6, suggest definitions of random open sets or random
Borel sets, see also [20].
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1.3 Hitting probabilities and capacity functional

Definition 1.6 means that X is explored by its hitting events, meaning that X hits a compact set
K. The corresponding hitting probabilities

T (K) = P{X ∩K 6= ∅} , K ∈ K ,

become a functional of K, which is called capacity (or hitting) functional of X. Sometimes we
add X as a subscript and denote it TX . Note that T is a probability measure if X is a random
singleton. In general T is a monotonic map from the family K of compact sets to [0, 1], and T is
called a capacity.

Exercise 1.13. Describe a random closed set whose capacity functional is a sub-probability mea-
sure, i.e. T is a measure with total mass less than or equal to one.

Exercise 1.14. Find T (K) for X = {ξ, η}, where ξ and η are two independent random vectors in
Rd.

Exercise 1.15. Find a random closed set such that T (K) = p for all non-empty compact sets K.

Example 1.16 (Random interval). Let X = [ξ, η] be a random interval on R, where ξ and η are
two (dependent) random variables so that ξ ≤ η almost surely. Then T ({x}) = P{ξ ≤ x ≤ η} and
T ([a, b]) = P{ξ < a, η ≥ a}+ P{ξ ∈ [a, b]}.

Example 1.17 (Random ball). If X = Br(η) is the ball of radius r centred at random point
η ∈ Rd, then T (K) = P{η ∈ Kr}, where Kr = {x : ρ(x,K) ≤ r} is r-envelope of K.

Even if two compact sets K1 and K2 are disjoint, non-singleton X may hit them both and so
the functional T is generally not additive, but only subadditive meaning that

T (K1 ∪K2) ≤ T (K1) + T (K2) . (1.1)

This property can be strengthened to show that

T (K1 ∪K2 ∪K) + T (K) ≤ T (K1 ∪K) + T (K2 ∪K) (1.2)

for all compact sets K,K1,K2 ∈ K. For the proof use

P{X ∩K = ∅, X ∩K1 6= ∅, X ∩K2 6= ∅} ≥ 0 .

Note that (1.2) immediately implies (1.1) by taking K = ∅ and noticing that T (∅) = 0.
It is natural to expect that the hitting probabilities T (K) for all K ∈ K determine uniquely

the distribution of X, which is indeed the case, since events {X ∩ K 6= ∅}, K ∈ K, generate the
σ-algebra on the family of closed sets.

It remains to identify the properties of a functional T (K) defined on a family of compact sets
that guarantee the existence of a random closed set X having T as its capacity functional. This
is done in the following result called the Choquet theorem formulated in the current form by
G. Matheron and proved in a slightly different formulation by D.G. Kendall.

Theorem 1.18 (Choquet-Kendall-Matheron). A functional T : K 7→ [0, 1] defined on the family of
compact subsets of a locally compact second countable Hausdorff space E is the capacity functional
of a random closed set X in E if and only if T (∅) = 0 and
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1. T is upper semicontinuous, i.e. T (Kn) ↓ T (K) whenever Kn ↓ K as n → ∞ with K,Kn,
n ≥ 1, being compact sets.

2. T is completely alternating, i.e. the following successive differences

∆K1T (K) = T (K)− T (K ∪K1) ,

∆Kn · · ·∆K1T (K) = ∆Kn−1 · · ·∆K1T (K)

−∆Kn−1 · · ·∆K1T (K ∪Kn) , n ≥ 2 .

are all non-positive for all compact sets K,K1, . . . ,Kn.

Exercise 1.19. Consider E = R and let X = (−∞, ξ] for a random variable ξ. Check that X is
indeed a random closed set, express its capacity functional by means of the cumulative distribu-
tion function F of ξ and check that the upper semicontinuity condition corresponds to the right
continuity of F , while the complete alternation condition is the monotonicity of F .

Exercise 1.20. Check what does the complete alternation condition imposes for n = 1 and that
the complete alternation condition for n = 2 becomes (1.2).

There are three standard proofs of the Choquet theorem. One derives it from the first principles of
extension of measures from algebras to σ-algebras. For this, one notices that the events of the form {X∩V =
∅, X ∩W1 6= ∅, . . . , X ∩Wk 6= ∅} form an algebra, where V,W1, . . . ,Wk are obtained by taking finite unions
of open and compact sets and k ≥ 0. The probabilities of these events are given by

∆W1T (V ) = P{X ∩ V 6= ∅} −P{X ∩ (V ∪W1) 6= ∅}
= −P{X ∩W1 6= ∅, X ∩ V = ∅}

and further by induction

−∆Wk
· · ·∆W1

T (V ) = P{X ∩ V = ∅, X ∩Wi 6= ∅, i = 1, . . . , k} ,

so that the non-positivity of the successive differences corresponds to the non-negativity of the probabilities.
Note that the missing events can be combined, i.e. {X ∩ V1 = ∅, X ∩ V2 = ∅} = {X ∩ (V1 ∪ V2) = ∅}, while
the hitting events cannot, i.e. it is not possible to simplify {X ∩W1 6= ∅, X ∩W2 6= ∅}.

Since T determines uniquely the distribution ofX, properties ofX can be expressed as properties
of T . For instance, X is stationary (i.e. X + a coincides in distribution with X for all translations
a) if and only if the capacity functional of X is translation invariant.

Exercise 1.21. Prove that a random closed set is convex if and only if its capacity functional satisfies

T (K1 ∪K2) + T (K1 ∩K2) = T (K1) + T (K2)

for all convex compact sets K1 and K2 such that K1 ∪K2 is also convex.

The capacity functional can be properly extended to a functional on all (even non-measurable!)
subsets of Rd, see [20]. This is done by approximation, for example T (Rd) becomes the limit of
T (K) as K ↑ Rd. Note that T (Rd) can be strictly smaller than one, since the random set X may
be empty.

A closely related functional is the avoidance functional Q(K) = 1− T (K) that gives the prob-
ability that X misses compact set K. The avoidance functional can be written as

Q(K) = P{X ∩K 6= ∅} = P{X ⊂ Kc} ,
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where Kc is the complement to K. The right-hand side corresponds to the value of the capacity
functional on the open set Kc. Thus, the avoidance functional is related to the containment
functional

C(F ) = P{X ⊂ F} .

Another useful functional related to X is the inclusion functional

I(K) = P{K ⊂ X} .

The inclusion functional vanishes if X is a singleton. The distribution of X is possible to describe
by the inclusion functional if an only if the indicator function 1X is a separable stochastic process,
and in this case X itself is also called separable.

Example 1.22 (Random intervals). Let Y = [yL, yU ] be a random segment, where yL and yU are
two dependent random variables such that yL ≤ uU almost surely. Then the capacity functional of
Y for K = [a, b] is

TY (K) = P{yL ∈ [a, b] or yU ∈ [a, b]}

and so determines the joint distribution of yL and yU . In this case the containment functional has
an simpler expression

C([a, b]) = P{[yL, yU ] ⊂ [a, b]} = P{yL ≥ a, yU ≤ b} .

Example 1.23 (Measure of a random set). If µ is a locally finite measure, then µ(X) is a random
variable. Indeed, Fubini’s theorem applies to the integral of 1X(x) with respect to µ(dx) and leads
to

Eµ(X) = E

∫
1X(x)µ(dx)

=

∫
E 1X(x)µ(dx)

=

∫
P{x ∈ X}µ(dx) .

The fact that the expected value of µ(X) for a locally finite µ equals the integral of the probability
P{x ∈ X} is known under the name of the Robbins theorem formulated by A.N. Kolmogorov in
1933 and then independently by H.E. Robbins in 1944-45. It should be noted that this fact does
not hold for a general measure µ. 4

Exercise 1.24. Find an expression for E(µ(X)n) for a locally finite measure µ.

Example 1.25 (Distance function). If X is a random closed set, then the distance function ξ(y) = ρ(y,X)
is a stochastic process. Then

P{ξ(y) ≤ t} = P{X ∩Bt(y) 6= ∅} = T (Bt(y)) .

Thus,

Eρ(y,X) =

∫ ∞
0

(1− T (Bt(y)))dt .

4For instance, if X is a singleton with an absolutely continuous distribution and µ is the counting measure, then
Eµ(X) = 1, while P{x ∈ X} vanishes identically.
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Example 1.26 (Point processes). A simple point process φ can be viewed as the random closed
set X which is locally finite, i.e. such that each compact set K contains only a finite number of
points from X. Since P{X ∩K = ∅} = P{φ(K) = 0}, the distribution of a simple point process
is identically determined by its avoidance probabilities (i.e. probabilities that a given compact set
contains no point of the process). For instance, a random closed set with the capacity functional

T (K) = 1− e−Λ(K) , K ∈ K ,

with Λ being a locally finite measure on Rd is the Poisson process with intensity measure Λ.

It is possible to integrate with respect to the hitting functional. The Choquet integral of a
non-negative function is defined as∫

fdT =

∫ ∞
0

T ({x : f(x) ≥ t})dt .

2 Selections and measurability issues

2.1 Existence of measurable selections

A random point ξ is said to be a selection of random set X if ξ ∈ X almost surely. In order to
emphasise the fact that ξ is measurable itself, one often calls it a measurable selection. A possibly
empty random set clearly does not have a selection. Otherwise, the fundamental selection theorem
establishes the existence of a selection of a random closed set under rather weak conditions. It is
formulated below for random closed sets in Rd.

Theorem 2.1 (Fundamental selection theorem, see [20]). If X : Ω 7→ F is an almost surely
non-empty random closed set in Rd, then X has a measurable selection.

Remark 2.2 (Different selections for identically distributed sets). Since the family of selections
depends on the underlying σ-algebra, two identically distributed random closed sets might have
different families of selections. For instance, consider random closed set X which always takes the
value {0, 1}. If the underlying probability space Ω is trivial, then the only selections of X are ξ = 0
and ξ = 1, while if the probability space is rich, e.g. Ω = [0, 1], then a random point taking values
either 0 or 1 is also a selection of X. However, it is known that the weak closures of the families of
selections coincide if the random closed sets are identically distributed.

The following result by C. Himmelberg establishes equivalences of several measurability concepts. It is
formulated in a bit restrictive form for Polish spaces.5

Theorem 2.3 (Fundamental Measurability Theorem). Let E be a Polish space and let X : Ω 7→ F be a
function defined on a complete probability space (Ω,F,P) with values being non-empty closed subsets of E.
Then the following statements are equivalent.

1. X−(B) = {ω : X(ω ∩B 6= ∅} ∈ F for every Borel set B ⊂ E.

2. X−(F ) ∈ F for every F ∈ F .

3. X−(G) ∈ F for every open set G ⊂ E (in this case X is said to be Effros measurable.

4. The distance function ρ(y,X) = inf{ρ(y, x) : x ∈ X} is a random variable for each y ∈ E.

5Each complete separable metric space is Polish.
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5. There exists a sequence {ξn, n ≥ 1} of measurable selections of X such that

X = cl{ξn, n ≥ 1} .

6. The graph of X
graph(X) = {(ω, x) ∈ Ω× E : x ∈ X(ω)}

is measurable in the product σ-algebra of F and the Borel σ-algebra on E.

Note that the family of compact sets does not appear in the Fundamental Measurability Theorem.
Indeed, the family of compact sets in a general Polish space can be rather poor. If E = Rd (or more
generally if E is locally compact), then all above measurability conditions are equivalent to X−(K) ∈ F for
all compact sets K.

Exercise 2.4 (see [20]). Let X be regular closed , i.e. X almost surely coincides with the closure of its
interior. Show that all measurability properties of X are equivalent to {x ∈ X} ∈ F for all x ∈ E.

In particular, Statement 5 of Theorem 2.3 means that X can be obtained as the closure of a countable

family of random singletons, known as the Castaign representation of X. This is a useful tool to extend

concepts defined for points to their analogues for random sets.

The fundamental measurability theorem helps to establish measurability of set-theoretic oper-
ations with random sets.

Theorem 2.5 (Measurability of set-theoretic operations). If X is a random closed set in a Polish
space E, then the following multifunctions are random closed sets:

1. the closed convex hull of X;

2. αX if α is a random variable;

3. the closed complement to X, the closure of the interior of X, and ∂X, the boundary of X.

If X and Y are two random closed sets, then

1. X ∪ Y and X ∩ Y are random closed sets;

2. the closure of X + Y = {x + y : x ∈ X, y ∈ Y } is a random closed set (if E is a Banach
space);

3. if both X and Y are bounded, then the Hausdorff distance6 ρH(X,Y ) is a random variable.

If {Xn, n ≥ 1} is a sequence of random closed sets, then

1. cl(
⋃
n≥1Xn) and

⋂
n≥1Xn are random closed sets;

2. lim supn→∞Xn and lim infn→∞Xn are random closed sets.

6The Hausdorff distance between two bounded sets X and Y in a metric space is defined as the infimum of all ε
such that X is contained in the ε-neighbourhood of Y and Y is contained in the ε-neighbourhood of X.
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2.2 Characterisation of selections

Probability distributions of selections can be characterised by the following domination condition.

Theorem 2.6 (Artstein). A probability distribution µ is the distribution of a selection of random
closed set X if and only if

µ(K) ≤ T (K) = P{X ∩K 6= ∅} (2.1)

for all compact sets K.

It is important to note that if µ from Theorem 2.6 is the distribution of some random vector ξ,
then it is not guaranteed that ξ ∈ X a.s., e.g. ξ can be independent of X. Theorem 2.6 means that
for each such µ it is possible to construct ξ with distribution µ that belongs to X almost surely,
in other words one couples ξ and X on the same probability space. If X is a singleton, then the
inequality in (2.1) turns into an equality and means that X = {ξ} for a random vector ξ coupled
with X on the same probability space.

Proof of Theorem 2.6. The necessity is evident. The proof of sufficiency is based on the domination condition
for probability distributions in partially ordered spaces from [17], which implies that two random sets Y and
X can be coupled on the same probability space so that Y ⊂ X a.s. if and only if

P{Y ∩K1 6= ∅, . . . , Y ∩Kn 6= ∅} ≤ P{X ∩K1 6= ∅, . . . , X ∩Kn 6= ∅} (2.2)

for all compact sets K1, . . . ,Kn and n ≥ 1. In the special case of Y = {ξ} being a singleton condition (2.1)
implies that

P{Y ∩K1 6= ∅, . . . , Y ∩Kn 6= ∅} = P{ξ ∈ ∩ni=1Ki}

≤ P{X ∩
(
∩ni=1 Ki

)
}

≤ P{X ∩K1 6= ∅, . . . , X ∩Kn 6= ∅} .

The realisability of µ as a selection of X can be interpreted as the fact that µ is stochastically smaller

than the distribution of X. This concept can be extended to compare two random sets Y and X. However,

the domination of the capacity functionals TY (K) ≤ TX(K) is substantially weaker than (2.2) and does not

suffice to ensure that X and Y can be realised on the same probability space (coupled) so that Y ⊂ X a.s.

The family of compact sets in Theorem 2.6 can be replaced by all closed or all open sets. By
passing from the capacity functional to the containment functional we arrive at the equivalent
criterion requiring that

µ(F ) ≥ C(F ) = P{X ⊂ F} (2.3)

for all closed sets F .

2.3 Reduction of the family of test compact sets

An important issue in relation to distributions of random sets is the possibility to reduce the family
of all compact sets required to describe the distribution or characterise a selection of a random
closed set. The first such reduction is possible if the family of all compact sets is replaced by its
subfamily, which is dense in a certain sense, see [20]. For instance, in the Euclidean space, it suffices
to consider compact sets obtained as finite unions of closed balls with rational centres and radii.
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For a further reduction one should impose further restrictions on the family of realisations of
X. Assume that X is almost surely convex. It would be natural to expect that the probabilities of
the type C(F ) = P{X ⊂ F} for all convex closed sets F determine uniquely the distribution of X.

Theorem 2.7 (see [20]). The distribution of a convex compact random set X in the Euclidean
space is uniquely determined by its containment functional C(F ) = P{X ⊂ F} on the family of all
compact convex sets F (even on the family of all compact convex polytopes).

Proof. A random compact convex set X can be viewed as its support function

hX(u) = sup{〈x, u〉 : x ∈ X}

being a conventional sample continuous stochastic process on the unit sphere. Then the probabilities
of the events {hX(u1) ≤ a1, . . . , hX(uk) ≤ ak} determine the finite-dimensional distributions of the
support function. It suffices to note that these probabilities are exactly the values of the containment
functional on a polytope F whose faces have normal vectors u1, . . . , uk.

Theorem 2.7 does not hold for non-compact X even if F is any convex closed set. A counterex-
ample is a random half-space touching the unit ball at a uniformly distributed point. Indeed, in
this case, the containment functional C(F ) vanishes for each convex F .

The reduction of the family of compact sets required for the characterisation of selections is even more
complicated. For instance, it is not sufficient to check (2.3) for convex sets F even if X is almost surely
compact and convex. For the following result, note that X ⊂ K if and only if X ⊂ KX , where

KX =
⋃

ω∈Ω′, X(ω)⊂K

X(ω)

for any set Ω′ of the full probability.

Proposition 2.8. Let X be a random compact set. Then µ is the distribution of a selection of X if and
only if

µ(K) ≥ P{X ⊂ KX} (2.4)

for all compact sets K.

Exercise 2.9. Assume that X is a segment in the plane. Suggest a reduction of the family of compact sets
in order to characterise its distribution and describe all selections? Explore what Proposition 2.8 brings in
this case.

Exercise 2.10. Assume that X is the union of two convex sets. What could be the smallest class to
characterise the distribution of X and to identify its selections?

Example 2.11 (Games with pure equilibria). Consider a random game of n players which is
assumed to possess with probability one at least one equilibrium in pure strategies. The pure
strategies of all players can be represented as n-vectors composed of 0 and 1, so a point from
the discrete cube {0, 1}n. Let X be random set of equilibria, which is a subset of the discrete
cube {0, 1}n, so the carrier space is finite and consists of 2n points. The observed equilibrium ξ
is a selection of X. The probability distribution of ξ, which is vector of length 2n describes the
theoretical frequencies of all possible equilibria. By Theorem 2.6, it can be characterised by a finite
(however large) set of inequalities. For estimation purposes, the distribution of X depends on a
parameter which can be estimated as solution of these inequalities constructed with the empirical
counterpart of µ.
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Example 2.12 (Treatment effects). Consider random set from Example 1.3. Its selections rep-
resent all possible treatment responses that are compatible with the observation in presence of
missing treatments. Thus, the distributions of possible responses are exactly those which satisfy
the inequalities (2.1).

Exercise 2.13. Let X = (−∞, ξ]. Which family of compact sets is necessary to consider in order
to ensure that the domination condition µ(K) ≤ TX(K) implies that µ is the distribution of a
selection of X? How to generalise this for X being a random half-space in Rd?

2.4 Weak convergence

The weak convergence of random closed sets is defined by specialising the general weak convergence
definition for random elements or, equivalently, the weak convergence of probability measures on
the space F of closed sets.

Theorem 2.14. A sequence {Xn, n ≥ 1} of random closed sets in Rd converges weakly to X if and
only if TXn(K)→ TX(K) for all compact sets K such that TX(K) = TX(IntK).

The condition on K in Theorem 2.14 is akin to the conventional requirement for the weak
convergence of random variables which is equivalent to the convergence of their cumulative distri-
bution functions at all points of continuity of the limit. Condition TX(K) = TX(IntK) means that
X “touches” K with probability zero.

Exercise 2.15. Prove that the weak convergence of random singletons Xn = {ξn} corresponds
exactly to the weak convergence of random vectors ξn in the classical sense.

Exercise 2.16. Figure out what the weak convergence means for intervals Xn = [ξn, ηn] on the
real line.

It is possible to metrise the weak convergence, i.e. to define the distance between distributions
of random sets that metrises the convergence in probability, see [20].

3 Empirical distributions

3.1 Glivenko–Cantelli theorem for empirical capacity functionals

Assume that a sample X1, . . . , Xn of values of a random closed set X is given. A natural estimator
for the capacity functional of X is its empirical variant

T̂n(K) =
1

n

n∑
i=1

1K∩Xi 6=∅ .

The conventional law of large numbers implies that T̂n(K) converges to T (K) almost surely for
each given K. It is often desirable to come up with a uniform convergence for K from a certain
family M of compact sets, so that, for each compact set K0,

sup
K∈M, K⊂K0

|T̂n(K)− TX(K)| → 0 a.s. as n→∞ . (3.1)

12



Exercise 3.1. Show that it is possible to get rid of condition K ⊂ K0 in (3.1) if X is almost surely
compact.

The following example shows that even the family of all singletons asMmay fail to the Glivenko–Cantelli
theorem (3.1).

Example 3.2. Let M = {{xn}, n ≥ 1} be a countable family of distinct singletons in [0, 1]. Passing to
subclasses if necessary, assume that xn → x0 as n → ∞, and {x0} ∈ M. Let {ξn, n ≥ 1} be a sequence of
independent identically distributed random variables taking the values 0 and 1 with probability 1/2. Define

X = {xn : n ≥ 1, ξn = 1} ∪ {x0} .

Then, for all its independent realisations X1, . . . , Xn, there exists a point xn (with a possibly random n)
such that xn /∈ ∪ni=1Xi almost surely. Hence, T̂n({xn}) = 0, while T ({xn}) = 1/2, i.e. (3.1) does not hold.

The reason for this effect lies in possible realisations of X and similar examples can be constructed for

other nowhere dense random sets of positive Lebesgue measure.

Recall that IntX denotes the interior of X and ∂X is the boundary of X. The random set X
is said to be regular closed if X almost surely coincides with the closure of its interior.

Theorem 3.3. Let M be a class of compact sets that is closed in the Hausdorff metric7. If a
random closed set X satisfies the conditions:

(A1) X is almost surely regular closed;

(A2) for each K ∈M, TX(K) = TIntX(K), i.e. TX(K) = P{IntX ∩K 6= ∅};

then (3.1) holds. Conditions (A1) and (A2) are also necessary ifM = K and X is a.s. continuous,
i.e. P{x ∈ ∂X} = 0 for each x ∈ Rd.

The next corollary follows from the fact that the boundary of an a.s. regular closed set in R1

contains at most countably many points.

Corollary 3.4. If X is an a.s. continuous random closed subset of the line R, then (3.1) holds if
and only if X is a.s. regular closed.

Proof. It suffices to prove that P{X ∩K 6= ∅, IntX ∩K = ∅} = 0 for every compact set K ⊂ R. Note that
IntX = ∪∞i=1(αi, βi), where αi, βi, i ≥ 1, are selections of X. Then

P{X ∩K 6= ∅, IntX ∩K = ∅}

≤
∞∑
i=1

P{αi ∈ K, IntX ∩K = ∅}+

∞∑
i=1

P{βi ∈ K, IntX ∩K = ∅} .

Consider one of the summands in the first sum. Let K1 be the set of x ∈ K such that K ∩ (x, x+ ε) = ∅ for
some ε > 0. Since every x ∈ K1 corresponds to an interval from a family of disjoint intervals on R, the set
K1 is at most countable. Then

P{αi ∈ K, IntX ∩K = ∅} ≤
∑
x∈K1

P{αi = x, (αi, βi) ∩K = ∅} ≤
∑
x∈K1

P{x ∈ ∂X} = 0 .

7The family M is closed in the Hausdorf metric if ρH(Kn,K) → 0 for a sequence Kn ∈ M means that the limit
K also belongs to M.
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It is well known that the family of all half-lines is a universal class (also called the Vapnik–Chervonenkis

class) for empirical distributions of random variables, i.e. the empirical distribution of each random variable

converges uniformly on this class to the theoretical distribution. In contrast to this, the universal classes for

random closed sets are very poor, see [21].

3.2 Functional limit theorem

It follows from the standard central limit theorem that the finite dimensional distributions of the
random field

Zn(K) =
√
n
(
T ∗n(K)− TX(K)

)
, K ∈ K , (3.2)

converge as n→∞ to the finite-dimensional distributions of the Gaussian field Z(K),K ∈ K, with
zero mean and covariance

σ(K1,K2) = E [Z(K1)Z(K2)]

= TX(K1) + TX(K2)− TX(K1 ∪K2)− TX(K1)TX(K2) . (3.3)

However, to ensure the functional convergence of Z(K) for K ∈M, the classM and the functional
TX(·) must satisfy additional conditions, which are similar to those used in the theory of empirical
measures and set-indexed random functions [7, 25].

Theorem 3.5. Suppose that K ⊂ K0 for all K ∈M and that

(C1) log ν(ε) = O(ε−β) for some β ∈ (0, 1), where ν(ε) is the cardinality of the minimum ε-net of
M in the Hausdorff metric8;

(C2) there exists γ > β, such that

sup
ρH(K1,K2)<ε, K1,K2∈M

|TX(K1)− TX(K2)| = O(εγ) .

Then Zn(·) converges weakly in the uniform metric to the Gaussian random field Z(·) on M with
the covariance (3.3), i.e. every continuous in the uniform metric functional of Zn converges in
distribution to its value on Z.

Note that (C1) and (C2) imply that Z is a.s. continuous in the Hausdorff metric on M.
The empirical capacity functionals can be used to produce minimum contrast estimators for

parameters of random sets. Assume that T (·; θ) is the capacity functional that depends on unknown
parameter θ. Then θ can be estimated by minimising the uniform distance between T (K; θ) and
T̂n(K) for K from a certain family of compact sets, see [10] for an application of this method for
some stationary random sets called the Boolean models.

8The ε-net is the family K1, . . . ,Kν(ε) such that each set K ∈ M lies within ε-neighbourhood of a set from the
net.
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3.3 Stationary random sets

A random closed set X in Rd is stationary if X coincides in distribution with X+a for each a ∈ Rd.
In this case the indicator function 1X(x) is a stationary random field and in particular one-point
covering probabilities

p = P{x ∈ X}

do not depend on x ∈ Rd and p is called the volume (or area if d = 2) fraction of X.
The stationarity assumption makes it possible to estimate probabilities associated with X by

averaging over the space. For this, the set X should satisfy the ergodicity assumption and, in order
that the central limit theorem holds, also the mixing assumption. These assumptions are essentially
the ergodicity and mixing properties of the indicator process if X is regularly closed and so the
indicator process identifies its distribution.

Let W be an observation window, for instance a ball of a growing radius.9 The volume fraction
of X can be estimated as

p̂W =
|X ∩W |
|W |

,

where |W | is the volume (Lebesgue measure) of W . The properties of estimator p̂W are well
understood, since it can be also written as the spatial average of the indicator process

p̂W =
1

|W |

∫
W

1X(x)dx .

The second-order properties of this estimator depend on the covariance of X defined as

C(x1, x2) = P{x1, x2 ∈ X}

and on the geometry of the window W through its covariogram γW (x) = |W ∩ (W + x)|.
The capacity functional T (K) can be estimated by noticing that the probability P{K+a∩X 6=

∅} does not depend on a and so is the volume fraction of the random set

X + Ǩ = {x− y : x ∈ X, y ∈ K} .

Therefore, we arrive at the estimator

T̂W (K) =
|(X + Ǩ) ∩W |

|W |
.

While this estimator is consistent, it should be used with a care if K is “large” because of the
so-called edge effects. Indeed, (X + Ǩ) ∩W 6= ∅ might result from points of X lying outside W .
The easiest way to handle edge effects is to use the plus-sampling, namely observe X inside the
enlarged window in order to make inference in the original (smaller) window.

The obtained estimator T̂W (K) is consistent and its uniform consistence over some family of
compact sets can be shown in the same way as in Section 3.1.

9It is possible to formulate a general condition on the sequence of growing windows that yield consistent estimators.
In general, it suffices to assume that W is a scaled convex set containing the origin in its interior.
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Example 3.6 (Boolean model). Let Π = {xi, i ≥ 1} be the stationary Poisson process in Rd of
intensity λ and let X1, X2, . . . be a sequence of i.i.d. random compact sets such that X1 lies within
a ball of integrable volume. Then

X =
⋃
i≥1

(xi +Xi)

is a random closed set called the Boolean model with the typical grain X1. This construction makes
it possible to construct “complicated” patterns from rather simple components, e.g. in case X1 is
a ball centred at the origin. The statistical issues for the Boolean model consist in estimation of λ
and the distribution of X1 by observing the union set X. Note that in the individual grains xi+Xi

may be not visible in X because of occlusions and so this estimation task is not trivial, see [22].

3.4 Solutions of inequalities and quantiles

Sets appear naturally as solutions of inequalities. Let h be a real-valued function on Rd.10 Define

H(t) = {x ∈ Rd : h(x) ≤ t} . (3.4)

A function h is said to be lower semicontinuous if h(a) ≤ lim infx→a h(x) for all a, equivalently,
that the level sets (3.4) are closed for all t. If the estimator hn of h is also lower semicontinuous,
then the plug-in estimator of H(t)

Hn(t) = {x : hn(x) ≤ t} (3.5)

is a random closed set. Note that (possibly unknown and estimated) t can be included in h by
considering new function h(x)− t.

The above estimation problem appears in applications if h is a density function or a cumula-
tive distribution function, if h represent some moment inequalities used to estimate the unknown
parameter x or if h are grey values of an image with the aim to threshold it. If h satisfies extra
smoothness conditions, then its level sets are smooth and so can be estimated with better rates,
see [19, 26].

If h(x) = P{ξ < t} is the left continuous variant of the cumulative distribution function, then
H(t) = (−∞, xt], where xt is the t-quantile of the random variable ξ. If ξ is a random vector, we
obtain a set-valued quantile, also considered as multivariate generalisation for the value-at-risk.

The properties of the plug-in estimator (3.5) have been studied in [23].

Theorem 3.7. Assume that, for each compact set K0,

ηn = sup
x∈K0

|hn(x)− h(x)| → 0 a.s. as n→∞ . (3.6)

The estimator Hn(t) is strongly consistent in the Hausdorff metric, i.e.

ρH(Hn(p) ∩K0, H(p) ∩K0)→ 0 a.s. as n→∞ (3.7)

for each compact set K0 if
H(t) ⊆ cl(H(t−)) , (3.8)

where cl(H(t−)) is the closure of H(t−) = {x : h(x) < t}. If for each x there exists a sequence
{n(k)} such that hn(k)(x) > h(x) a.s., then (3.8) is also a necessary condition.

10The setting can be generalised for collections of functions and so for systems of inequalities.
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Assume that the random field

ζn(x) = an(h(x)− hn(x)) , x ∈ X , (3.9)

has a weak limit ζ(x) as n → ∞, i.e. g(ζn) → g(ζ) in distribution for each continuous functional
g on the space C(X) of continuous functions on X with the uniform metric. It is also possible to
come up with the limit theorem for the Hausdorff distance between H(t) ∩K0 and its estimator.

3.5 Set estimation

Assume that we would like to estimate an unknown (deterministic) set K by observing a sample
of points {x1, . . . , xn} from it. One of most general estimators is to take the union of balls centred
at these sampled points with radius rn that converges to zero as n → ∞, so that the estimator
becomes

K̂n = ∪ni=1Brn(xn) .

The corresponding estimator is consistent if rn converges to zero sufficiently slow, see [19]. This
construction is similar to the non-parametric curve estimation, which introduces bias in order to
obtain a smoother version of the estimator.

While the above estimator is, perhaps, the only possible for generic compact sets K, it can be
substantially improved if more information about K is available. For instance, if K is convex, then
a much better estimator is obtained as the convex hull Pn of {x1, . . . , xn}, see [27] for one of the
first applications of this estimator. There is a vast literature on asymptotic properties of convex
hulls, which makes it possible to assess the Hausdorff distance between Pn and K and so to come
up with confidence bands for K.

If K has a sufficiently smooth boundary, then further estimators are possible by adjusting the
rate at which rn converges to zero and exploiting the local features of the boundary, see [19].

3.6 Summary: statistical settings

Above we have seen several basic inference settings for random sets.

(i) Estimate parameter of the distribution of a random set X by observing a sample X1, . . . , Xn

(or a variant for stationary sets).

(ii) Estimation of a deterministic set by a random set constructed as solution of inequalities or by
observing a sample of points from this set.

The following settings are also important in view of application to partially identified models.

(iii) Estimate a parameter of a random set X by observing a sample of selections of independent
copies of X. In contrast to (i) we observe xi from Xi for i = 1, . . . , n. This setting arises, e.g.
in analysis of games with multiple equilibria. In this case it is usually not possible to come up
with a single estimated value for the parameter specifying the distribution of X, since many
distributions of X may be compatible with the observed sample of selections.

(iv) Make inference about the distribution of possible selections by observing a sample of realisa-
tions of X. Again, here many distributions of selections are possible.
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Example 3.8 (Domination). Let X = (−∞, ξ], where ξ is normally distributed with unknown
mean m and the known variance (say σ2 = 1). Assume that we observe a sample of values
x1, . . . , xn being selections of independent copies of X. By Theorem 2.6 an in view of the suitable
reduction of the family of test compact sets, we need to find the parameters of ξ (and so of X)
by checking that ξ dominates the observed family of selections. A possible identification region is
given by the family of all m ∈ R such that Φ(t−m) ≤ F̂n(t), where Φ is the cumulative distribution
function of the standard normal distribution and F̂n is the empirical distribution function of the
observed sample x1, . . . , xn.

4 Minkowski sums

4.1 Expectation of a random set

The space of closed sets is not linear, which causes substantial difficulties in defining the expectation
for a random set. One way described below relies on the representation a random set using the
family of its selections.

Let X be a random closed set in Rd. If X possesses at least one integrable selection, then X is
called integrable. For instance, if X is almost surely non-empty compact and its norm ‖X‖ is an
integrable random variable (then X is said to be integrably bounded), then all selections of X are
integrable and so X is integrable too. Later on we usually assume that X is integrably bounded.

Definition 4.1. The (selection or Aumann) expectation EX of an integrable random closed set X
is closure of the family of all expectations for its integrable selections.

If X is an integrably bounded subset of Rd, then the expectations of all its selections form a
closed set and there is no need to take an additional closure. The so defined expectation depends
on the probability space where X is defined. For instance, the deterministic set X = {0, 1}
defined on the trivial probability space has expectation EX = {0, 1}, since it has only two trivial
(deterministic) selections, see Remark 2.2. However, if X is defined on a non-atomic probability
space, then its selections are ξ = 1A for all events A ⊂ Ω, so that Eξ = P(A) and the range of
possible values for Eξ constitutes the whole interval [0, 1].

The following result shows that the selection expectation is a convex set. A useful mathematical
tool suitable to describe a convex set K in the Euclidean space Rd is its support function defined
as

hK(u) = sup{〈x, u〉 : x ∈ K} ,

where 〈x, u〉 denotes the scalar product. Note that the support function is finite for all u if K is
bounded. Sometimes the support function is considered only for u from the unit sphere, since it is
one-homogeneous meaning that hK(cu) = chK(u) for all c ≥ 0.

Exercise 4.2. Show that the support function hK(−u) equals hǨ(u), where Ǩ is the set centrally
symmetric to K with respect to the origin.

Theorem 4.3. If an integrably bounded X is defined on a non-atomic probability space, then EX
is a convex set and

EhX(u) = hEX(u) , u ∈ Rd . (4.1)
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Proof. The convexity of the Aumann expectation can be derived from the Lyapunov theorem which says
that the range of any vector-valued measure is a convex set (to see this in the one-dimensional case note
that real-valued measures do not have gaps in the ranges of their values). Let ξ1 and ξ2 be two integrable
selections of X. Define the vector-valued measure

λ(A) = (E(1A ξ1),E(1A ξ2))

for all measurable events A. The closure of its range is convex, λ(∅) = (0, 0) and λ(Ω) = (Eξ1,Eξ2). Let
α ∈ (0, 1). Thus, there exists an event A such that

|αEξi −E(1A ξi)| < ε/2 , i = 1, 2 .

Define the selection
η = 1A ξ1 + 1Ac ξ2 .

Then
‖αEξ1 + (1− α)Eξ2 −Eη‖ < ε

for arbitrary ε > 0, whence EX is convex.
Now establish the relationship to support functions. Let x ∈ EX. Then there exists a sequence ξn of

selections such that Eξn → x as n→∞. Furthermore

h{x}(u) = lim
n→∞

〈Eξn, u〉 = lim
n→∞

E〈ξn, u〉 ≤ EhX(u) .

Finally, for each unit vector u and ε > 0 define a half-space as

Yε = {x : 〈x, u〉 ≥ hX(u)− ε} .

Then Yε ∩X is a non-empty random closed set, which has a selection ξε, such that

h{ξε}(u) ≥ hX(u)− ε .

Taking the expectation confirms that hEX(u) ≥ EhX(u).

In other words, the expectation of a random set is a convex set whose support function equals
the expected support function of X. The convexifying effect of the selection expectation limits
its applications in such areas like image analysis, where it is sometimes essential to come up with
averaging scheme for images, see [20, Sec. 2.2] for a collection of further definitions of expectations.
However, it appears very naturally in the law of large numbers for random closed sets as described
in the following section.

Example 4.4. Let X = Bξ(η) be the closed ball of radius ξ > 0 centred at η ∈ Rd, where both ξ
and η are integrable. Then its expectation is the ball of radius Eξ centred at Eη.

Exercise 4.5. Show that EX = {a} is a singleton if and only if X is a random singleton itself, i.e.
X = {ξ}.

Exercise 4.6. Assume that X is isotropic, i.e. X coincides in distribution with its arbitrary
rotation around the origin. Identify EX.

Sometimes it is necessary to check if a given point x belongs to a convex set, e.g. to the Aumann
expectation EX. This can be done by comparing the support functions of x and of EX. Namely
x ∈ EX if and only if

sup
u∈Rd

[
〈x, u〉 − hEX(u)

]
= 0 .

Alternatively, the supremum can be taken over all u with norm one, in which case the supremum
is less than or equal to zero.
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4.2 Law of large numbers and the central limit theorem for Minkowski sums

The most common distance on the family K of compact sets is the Hausdorff distance defined as

ρH(K,L) = inf{r > 0 : K ⊂ Lr, L ⊂ Kr} ,

where Kr denotes the closed r-neighbourhood of K, i.e. the set of all points within distance r from
K. Recall that the Minkowski sum of two compact sets K and L is defined as

K + L = {x+ y : x ∈ K, y ∈ L} .

In particular Kr is the Minkowski sum of K and the closed ball of radius r, centred at the origin.
The same definition applies if one of the summands is compact and the other is closed. However
if the both summands are closed (and not necessarily compact), then the sum is not always closed
and one typically inserts the closure in the definition.

Support functions linearise the Minkowski sum, i.e.

hK+L(u) = hK(u) + hL(u) , u ∈ Rd .

The homogeneity property of support functions makes it possible to define them only on the unit
sphere Sd−1 in Rd. Then the uniform metric for support functions on the sphere turns into the
Hausdorff distance between compact sets. Namely

ρH(K,L) = sup
u∈Sd−1

|hK(u)− hL(u)|

and also
‖K‖ = ρH(K, {0}) = sup

u∈Sd−1

|hK(u)| .

Consider a sequence of i.i.d. random compact sets X1, X2, . . . all distributed as a random
compact set X. It should be noted that the mere existence of such sequence implies that the
probability space is non-atomic.

Theorem 4.7 (Law of large numbers for random sets, see [1]). If X,X1, X2, . . . are i.i.d. integrably
bounded random compact sets and Sn = X1 + · · ·+Xn, n ≥ 1, are their Minkowski sums, then

ρH(n−1Sn,EX)→ 0 a.s. as n→∞ .

Proof. Let us prove the result assuming that X is almost surely convex. Then

hn−1Sn(u) =
1

n

n∑
i=1

hXi(u)→ EhX(u) = hEX(u)a.s. as n→∞

by a strong law of large numbers in a Banach space specialised for the space of continuous functions
on the unit ball with the uniform metric. The uniform metric on this space corresponds to the
Hausdorff metric on convex compact sets, whence the strong law of large numbers holds.

In order to rid of the convexity assumption we rely on the following result known as Shapley–
Folkman–Starr theorem. If K1, . . . ,Kn are compact subsets of Rd and n ≥ 1, then

ρH(K1 + · · ·+Kn, conv(K1 + · · ·+Kn)) ≤
√
d max

1≤i≤n
‖Ki‖ .
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Note that the number of summands does not appear in the factor on the right-hand side. For
instance, if K1 = · · · = Kn = K, then one obtains that the distance between the sum of n copies
of K and the sum of n copies of the convex hull of K is at most

√
d‖K‖.

A not necessarily convex X can be replaced by its convex hull conv(X), so that it remains to
show that

n−1ρH(K1 + · · ·+Kn, conv(K1 + · · ·+Kn)) ≤
√
d

n
max

1≤i≤n
‖Xi‖ → 0 a.s. as n→∞ .

The latter follows from the integrable boundedness of X. Indeed, then we have nP(‖X‖ > n)→ 0
as n→∞, and

P( max
i=1,...,n

‖Xi‖ ≥ nx) = 1− (1−P(‖X‖ ≥ nx))n → 0 .

Numerous generalisations of the above strong law of large numbers deal with random subsets
of Banach spaces and possibly unbounded random closed sets in the Euclidean space, see [20].

The formulation of the central limit theorem is complicated by the fact that random sets with
expectation zero are necessarily singletons. Furthermore, it is not possible to define Minkowski
subtraction as the opposite operation to the addition. For instance, it is not possible to find a set
that being added to a ball produces a triangle. Therefore, its not possible in general to normalise
successive sums of random compact sets.

Note that the classical limit theorem may be (a bit weaker) formulated as the convergence of
the normalised distance between the empirical mean and the expectation to the absolute value of
a normally distributed random variable. In other words, it is possible to replace subtraction of two
numbers with a distance between them. This idea is used to formulate a central limit theorem for
Minkowski sums of random sets.

In order to formulate a limit theorem for random closed sets we need to define a centred Gaussian
random field ζ(u) on the unit sphere Sd−1 in Rd which shares the covariance structure with the
random closed set X, i.e.

E[ζ(u)ζ(v)] = cov(hX(u), hX(v)) , u, v ∈ Sd−1 .

Since the support function of a compact set is Lipschitz, it is possible to show that the random
field ζ has a continuous modification.

Theorem 4.8 (Central Limit Theorem, see [31]). Let X1, X2, . . . be i.i.d. copies of a random
closed set X in Rd such that E‖X‖2 < ∞. Then

√
nρH(n−1Sn,EX) converges in distribution as

n→∞ to sup{|ζ(u)| : u ∈ Sd−1}.

Proof. For convex random sets the result follows from the central limit theorem for continuous
random functions on the unit sphere. The general non-convex case is proved by an application of
the Shapley–Folkman–Starr theorem.

It is not clear how to interpret geometrically the limit ζ(u), u ∈ Sd−1, in the central limit
theorem for random sets.

One can attempt to define Gaussian random sets as those whose support function becomes a
Gaussian process on Sd−1. All such sets have however degenerate distributions. Namely, X is a
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Gaussian random set if and only if X = ξ+M , where ξ is a Gaussian random vector in Rd and M
is a deterministic convex compact set. This is seen by noticing that the so-called Steiner point

s(X) =
1

κd

∫
Sd−1

hK(u)u du (4.2)

is a Gaussian random vector that a.s. belongs to X, where κd is the volume of the d-dimensional
unit ball. Thus, M = X − ξ with ξ = s(X) has Gaussian non-negative support function, which is
then necessarily degenerated, so that M is deterministic.

Note that the Steiner point provides a natural selection of X. Further selections can be obtained by

changing the measure used in the right-hand side (4.2) to a more general measure on the unit sphere.

4.3 Zonoids

One particularly important example of expectations of random sets appears if one takes expectation
of random segments. Let X = [0, ξ] be a segment in Rd with end-points being the origin and ξ.
Note that possible translations of X only result in translations of the expectation and so do not
influence its shape.

Assume that ξ is integrable. Then the selection expectation of X is a convex compact set Zξ
with the support function

hZξ(u) = E max(0, 〈u, ξ〉) = E〈u, ξ〉+ ,

where a+ denotes max(0, a), i.e. the positive part of a ∈ R. The set Zξ is called a zonoid of ξ.11

The support function of zonoid equals the expectation of (u1ξ1 + · · · + udξd)+. If ξ1, . . . , ξd
are prices and u1, . . . , ud are weights, then this expectation (if taken with respect to a martingale
measure) becomes the price of an exchange option on d assets. By considering (1, ξ), i.e. the
extended (lifted) variant of ξ, it is possible to interpret the prices of all basket options. Indeed, the
expectation of [0, (1, ξ)] being a random set in Rd+1 is a convex set Ẑξ in Rd+1 called the lift zonoid
of ξ and having the support function

hẐξ(u) = E(u0 + 〈u, ξ〉)+ , u0 ∈ R, u ∈ Rd .

In finance, the value of u0 is called a strike.

Exercise 4.9. Prove that the values of E(ξ−k)+ for an integrable random variable ξ and all k ∈ R
determine uniquely the distribution of ξ.

While the lift zonoid of ξ uniquely determines the distribution of ξ (first it determines the
distribution of 〈u, ξ〉 and then of ξ itself by the Cramér–Wold device), the zonoid Zξ does not
uniquely determines the distribution of ξ. For example, if ξ is a random variable, then its zonoid
is the segment with end-points being the expectations of the positive and negative parts of ξ.

11In general, a zonotope is the Minkowski sum of a finite number of segments, i.e. the expectation of a random
segment that takes only a finite number of possible values. A zonoid is the limit of zonotopes in the Hausdorff metric
and so is the expectation of a random segment, possibly with none of the end-points being zero. However, it is always
possible to translate zonoid, so that it becomes the expectation of [0, ξ] for some ξ.
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Example 4.10 (Interval regression, see [6]). In the setting of Example 1.1 the estimators of the
slope θ1 and intercept θ2 are obtained as

(θ1, θ2) = Σ(x)−1

(
E(y)
E(xy)

)
, Σ(x) =

[
1 Ex

Ex Ex2

]
.

Since y is a selection of Y = [yL, yU ], xy is a selection of xY and so the pair (y, xy) is a selection
of random segment

G =

{(
y
xy

)
: yL ≤ y ≤ yU

}
⊂ R2 .

Thus, the least squares estimator of θ = (θ1, θ2) is given by Σ(x)1Ḡn where Ḡn is the average of n
segments, so that Ḡn estimates the selection expectation EG.

Exercise 4.11. Let (x, y) ∈ X, where X is a random set in the plane. For instance, if y is interval-
valued, then X is a vertical segment, if both x and y are interval-valued, then X is a rectangle, etc.
The aim is to characterise the ordinary least square regression of y onto x if a sample of random
set X1, . . . , Xn is observed.

5 Heavy tails, stability and unions

5.1 Stable random sets

As shown in Section 4.2, Gaussian random sets have degenerate shape. A general α-stable random
set X satisfies

a1/αX1 + b1/αX2 ∼ (a+ b)1/αX (5.1)

for all a, b > 0, where X1, X2, X are i.i.d. random sets. In particular, Gaussian random set X
appears if α = 2. By centring with a random vector, it is possible to assume that X contains the
origin. Then writing (5.1) for the support function of X we arrive at the conclusion that hX(u) is
α-stable non-negative random variable. If α ∈ [1, 2], this is possible only if hX(u) is constant and
so X is a random translation of a deterministic set as in the Gaussian case.

However, nontrivial α-stable random sets exist if α ∈ (0, 1). Such sets can be constructed as
the sum of series

X = c
∑

Γ
−1/α
k Zk ,

where Γk = ζ1 + · · ·+ ζk with i.i.d. standard exponential ζ1, ζ2, . . . and Z1, Z2, . . . are i.i.d. random
compact sets.

Stable random sets necessarily have heavy-tailed distribution, e.g. if X is α-stable with α ∈
(0, 1), then hX(u) is not integrable for each u. In other words, some points of X with high
probability have large norm. Heavy tailed random sets can be constructed by taking convex hull of
a Poisson point process whose intensity decays sufficiently slow at the infinity. In contrast, if the
intensity decays sufficiently slow, e.g. like in the Gaussian case, then the convex hull of points is
not heavy-tailed.

23



5.2 Unions of random sets

While the arithmetic summation scheme for random variables gives rise to the Gaussian distribution
in the limit, the maximum of random variables gives rise to extreme value distributions. Along
the same line, the Minkowski summation scheme for random sets being singletons reduces to the
classical limit theorem for sums of random vectors, while taking unions of random sets generalises
the maximum (or minimum) scheme for random variables. Notice that if Xi = (−∞, ξi], i = 1, 2 . . .,
then

X1 ∪ · · · ∪Xn = (−∞,max(ξ1, . . . , ξn)] .

Let X,X1, X2, . . . be a sequence of i.i.d. random closed sets in Rd and let an > 0, n ≥ 1, be a
sequence of non-negative normalising constants. The weak convergence of the random set

Zn = an(X1 ∪ · · · ∪Xn)

to a random closed set Z is defined by specialising the general concept of weak convergence of
probability measures to the space F of closed sets. In particular, a necessary and sufficient condition
for this is the convergence of capacity functionals on sets K such that Z touches the boundary of
K with probability zero. The capacity functional of the set Zn is easy to find as

TZn(K) = 1− (1− TX(a−1
n K))n .

Various convergence results for unions of random sets can be found in [20, Ch. 4].
Here we will discuss properties of random sets that can appear in the limit. In a more gen-

eral triangular array schemes the limits are union-infinitely-divisible, while in the above described
scheme the limit Z is necessarily union-stable.

Definition 5.1. A random closed set is said to be union-infinitely divisible if Z coincides in
distribution with the union of i.i.d. random closed sets Z11, . . . , Znn for each n ≥ 2.
A random closed set Z is said to be union-stable if Z coincides in distribution with a−1

n (Z1∪· · ·∪Zn)
for each n ≥ 2 with normalising constants an > 0, where Z1, . . . , Zn are i.i.d. copies of Z.

Exercise 5.2. Assume that Z coincides in distribution with the union of its n i.i.d. copies for
some n ≥ 2. Show that such Z is necessarily deterministic.

For the following it is essential to single out the deterministic part of a random set. A point x
is said to be a fixed point of X if x ∈ X with probability one. The set of fixed points is denoted
by FX . For instance, if X = (−∞, ξ] with exponentially distributed ξ, then FX = (−∞, 0], while
FX is empty if ξ is normally distributed.

Theorem 5.3. A random closed set X is union-infinitely-divisible if and only if there exists a
completely alternating upper semicontinuous functional ψ : K → [0,∞] such that

T (K) = 1− e−ψ(K) , K ∈ K ,

and ψ(K) <∞ whenever K ∩ FX = ∅.

Example 5.4. Let X be the Poisson point process with intensity measure Λ. Then T (K) =
1− e−Λ(K) and X is union-infinitely-divisible. Indeed, X equals in distribution the union of n i.i.d.
Poisson processes, each with intensity measure n−1Λ.
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The functional ψ shares nearly the same properties as T apart from the fact that the values of
ψ are no longer required to lie in [0, 1]. The functional ψ defines a locally measure µ on F , such
that µ({F : F ∩K 6= ∅}) = ψ(K). The measure µ defines a Poisson processes on F such that the
“points” of this process are actually closed sets. Then X is the union of Poisson process on F with
intensity measure µ.

Theorem 5.5. A random closed set is union-stable if and only if its capacity functional admits representation
T (K) = 1− e−ψ(K) with ψ being homogeneous, i.e.

ψ(sK) = sαψ(K) , K ∈ K, K ∩ FX = ∅ ,

for some α 6= 0 and all s > 0, and also FX = sFX for all s > 0.

The proof of the above theorem relies on solving some functional equations for capacity functionals of
random sets, quite similar to the corresponding characterisation of max-stable random variables. The major
complication stems from the fact that for any random variable ξ the equivalence of the distributions of ξ and
cξ immediately implies that c = 1. This is however not the case for random sets, e.g. X = {t ≥ 0 : wt = 0},
the set of zeros for the standard Brownian motion, coincides in distribution with cX for each c > 0. Another
example of such X is a randomly rotated cone in Rd. The key step in the proof of Theorem 5.5 aims to show
that the union-stability property rules out all such self-similar random sets.

Exercise 5.6. Let X = (−∞, ξ] on R. Characterise all distributions of ξ that correspond to union-stable
X and confirm that these distributions are exactly extreme value distributions of Fréchet and Weibull type.

If X is a Poisson process, then its union-stability property implies that the intensity of the process is

homogeneous, i.e. Λ(sx) = sα−dλ(x) for all x ∈ Rd and s > 0.

5.3 The Boolean model

The Poisson process gives rise to an important model of random sets that produces random sets
which are infinitely divisible for unions. In order to define the so-called Boolean model of random
sets, consider a Poisson process Π in Rd with intensity measure Λ and a sequence of i.i.d. random
compact sets X0, X1, X2, . . .. One calls the points xi of Π germs and the random sets Xi grains.
Then consider the union of grains placed at locations specified by the germs, i.e. define

X =
⋃
xi∈Π

(xi +Xi) .

In order to ensure that the union remains a closed set, one requires that the typical grain X0 grains
is not too big. For instance, if X0 almost surely contains the origin, the condition E‖X0‖d < ∞
guarantees that X is a random closed set, which is then called the Boolean model.12 If Λ is the
Lebesgue measure, then X is said to be a stationary Boolean model, which is by now the best
understood model of a stationary random closed set.

Recall that Ǩ = {−x : x ∈ K} denotes the centrally symmetric set to K ⊂ Rd.

Theorem 5.7. If X is a Boolean model, then

TX(K) = 1− exp{−EΛ(X̌0 +K)} , K ∈ K .
12The necessary and sufficient condition for the closedness of X is the finiteness of EΛ(Xr

0 ) for some r > 0, where
Xr

0 is the closed r-neighbourhood of X0.
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Proof. Let Π′Λ be the set of all points xn ∈ ΠΛ with (Xn + xn) ∩K 6= ∅. In other words, Π′Λ is a result of
a thinning procedure applied to the Poisson point process ΠΛ. Then each point x ∈ ΠΛ belongs also to Π′Λ
with probability

g(x) = P{(X0 + x) ∩K 6= ∅} = P{x ∈ X̌0 +K} .
Then, by the Poisson property and Fubini’s theorem,

TX(K) = P{X ∩K 6= ∅} = 1−P{Π′λ = ∅}

= 1− exp

{
−
∫
Rd

g(x)Λ(dx)

}
= 1− exp{−EΛ(X̌0 +K)} .

Example 5.8. Let X0 be a ball of radius η such that Eηd < ∞. Then the stationary Boolean
model exists and has the capacity functional

TX(K) = 1− exp{−λE|Kη|} ,

where | · | denotes the Lebesgue measure and λ is the intensity of the stationary Poisson process of
germs. If K is convex, then the Lebesgue measure of Kη is the polynomial of order d in η whose
coefficients depend on the geometry of K.

While it is rather easy to find the hitting probability for the Boolean model, it is considerably
more complicated task to find the probability that X covers a non-finite set K.

Exercise 5.9. Find the probability p(x) = P{x ∈ X} for the Boolean model X, which is called
the coverage function of X. By Robbins’ formula find the expected Lebesgue measure of X ∩W
for an observation window W .

5.4 Other expectations of sets

It should be noted that the selection expectation is well suited to deal with convex random sets, in
view of its convexifying effect. There exist numerous other definitions of expectation for random
sets which do not have this convexifying effect.

For instance, if a random set X is star-shaped, i.e. x ∈ X implies that the segment [0, x] is
contained in X, then X can be described by its radial function rX(u) that depends on direction
u and so the expected radial function ErX(u) becomes the radial function of a deterministic star-
shaped set called the star-shaped expectation of X. This definition however heavily depends on
the relative position of X with respect to the origin.

Numerous further definitions of expectations are discussed in [20].

6 Set-valued random functions

6.1 Examples of set-valued processes

A family of random sets Xt indexed by time (discrete or continuous) is naturally called a set-
valued process. The time argument may also represent or include other covariates. A single-valued
stochastic process ξt such that ξt ∈ Xt a.s. for all t is called a selection of the set-valued process.
Set-valued processes (or processes of random sets) are discussed by [13] and [20, Ch. 5].
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Example 6.1 (Growth model). Let X1, X2, . . . be random closed sets, for instance, independent
identically distributed. Then it is possible to define an increasing set-valued process (sequence) by
taking unions

Zn = X1 ∪ · · · ∪Xn

or convex hulls like conv(X1, . . . , Xn) or Minkowski sums

Yn = X1 + · · ·+Xn .

The limit theorems for Minkowski sums and unions clarify the limiting behaviour of so defined
processes.

Note that it is considerably more difficult to define tractable models of set-valued processes that
also may decrease with positive probability.

Example 6.2. Consider a random game that depends on some parameters. The Nash equilibrium
has a closed graph as function of parameters, see [8, Sec. 1.3.2]. Thus, in case of random game, the
set of equilibria becomes a set-valued process.

Example 6.3. Let ξt, t ∈ Rd, be real-valued upper semicontinuous stochastic process. Then

Xa = {t : ξt ≤ a} , a ∈ R ,

is an increasing set-valued process indexed by the level a. For instance, if ξt is an estimate for the
cumulative distribution function of a random vector, then Xa represent a possible related quantile
process. It is possible to define addition of functions by adding the corresponding level sets, so
that the so-called level sum of functions is a function whose level sets equal the Minkowski sums of
level sets of the two summands. The law of large numbers for Minkowski sums then yield the law
of large numbers for so defined sums of functions.

A rich source of set-valued functions is provided by solutions of differential inclusions, see [2].
Let xt, t ∈ R, be a differentiable function. Then

dx

dt
∈ F (x, t)

is called a differential inclusion, where F is a set-valued function of x and t. If F is random, then
the family of solutions Xt = {xt} for each given t builds a set-valued process. It should be noted
that not all functions yt such that yt ∈ Xt for all t are solutions of the differential inclusions, since
such functions may be very irregular.

It is also possible to consider stochastic differential equations with set-valued coefficients. How-
ever, since there is no natural analogue of the set-valued Brownian motion, there is no analogue of
the set-valued stochastic differential.

6.2 Set-valued martingales

An integrable set-valued process Zt with discrete time t = 0, . . . , T or continuous time t ∈ [0, T ]
is said to be a set-valued (Ft)-martingale if E(Zt|Fs) = Zs a.s. for all 0 ≤ s ≤ t ≤ T . The
conditional expectation of Zt is defined as the convex set whose support function is the conditional
expectation of the support function of Zt, see [20, Sec. 2.1.6] and [11] for the case of unbounded
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Zt. It is well known (see [12] and [20, Sec. 5.1.1]) that a set-valued martingale admits at least one
martingale selection and, moreover, it has a countable dense family of martingale selections, the
so-called Castaing representation, see [20, Th. 5.1.12]. In the following we consider only the case of
the discrete time.

Note that a supermartingale is defined by the inclusion relation E(Zt|Fs) ⊂ Zs a.s. for all
0 ≤ s ≤ t ≤ T and a submartingale by E(Zt|Fs) ⊃ Zs a.s. This situation is quite typical for
set-valued process obtained as convex hulls of martingales, since the supremum of martingales
naturally yields a submartingale. In difference to the classical case of real-valued martingales, it is
not possible to pass from a super- to submartingale by considering −Zt.

For instance, consider geometric Brownian motions ζt = s0 exp{σWt − σ2t/2} with volatility σ
that belongs to an interval [σ′, σ′′], see [3] and [24] for a discussion of such partially specified volatility
models. The union Zt of all their paths is an interval-valued submartingale, see [18, Ex. 9.2]. Its
upper bound ζat = supZt is a numerical submartingale, while the lower bound ζbt = inf Zt is a
numerical supermartingale. Applying the Doob decomposition theorem to the both of them it is
possible to come up with an interval-valued martingale that is the largest set-valued martingale
inscribed in Zt for all t. In spaces of dimension 2 and more the problem of finding the largest
set-valued martingale inscribed in a set-valued process is not yet studied.

The specific nature of the financial setting calls for the study of set-valued processes that are
not necessarily martingales themselves or are martingales with respect to another (risk-neutral)
probability measure Q equivalent to P.

Consider now the mere question of the existence of a Q-martingale selection ζt of a set-valued process
Zt, where Q is equivalent to the underlying probability measure P. We then call ζ an equivalent martingale
selection.

Rokhlin [29] studied the existence of a martingale selection for a sequence of relatively open convex set-

valued process Xt with discrete time t = 0, . . . , T . The main results of [29] establishes that the existence of

martingale selection is equivalent to the a.s. non-emptiness of the recursively defined set-valued process Wt,

t = 0, . . . , T . One sets WT to be the closure of XT and defines Wt−1 to be the closure of Xt−1 intersected with

the relative interior of Yt−1, the latter being the convex hull of the support of the conditional expectation of

Wt given Ft−1. The support for a random set is defined by [28] as the union of the supports for all selections

of the random set.

6.3 Transaction costs

As conventional martingales are extremely important for mathematical finance, the set-valued
martingales also can be used to bring financial models closer to reality by accounting for transaction
costs.

Transaction costs in a currency market with d traded currencies can be described by means of
a bid-ask matrix Π = (πij)ij=1,d where πij is the number of units of currency i (or, more generally,
an asset number i) needed as a payment for one unit of currency j, see [16] and [30]. It is always
assumed that Π has all positive entries, the diagonal entries are all 1 and πij ≤ πikπkj , the latter
means that a chain of exchanges never beats the result of a direct transaction.

In the time-dependent stochastic setting the bid-ask matrix Πt is a random adapted matrix-
valued process that depends on (discrete) time and is called a bid-ask process. By discounting
prices, it is always assumed that all interest rates are zero.

A currency portfolio is a vector x ∈ Rd that represents the number of physical units of the
currencies held by an investor. The set of portfolios available at price zero is the cone −K̂(Π) in
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Rd spanned by the negative basis vectors −ei, 1 ≤ i ≤ d, and the vectors −πijei+ ej for all i and j.
The latter portfolios can be realised by borrowing πij units of asset i and buying with this one unit
of j. This portfolio can be liquidated by buying πij units of asset i with at most πjiπij ≤ πjj = 1
unit of asset j. The cone of portfolios available at price zero is centrally symmetric to the solvency
cone K̂(Π), see [9] and [30]. The hats in these notation indicate that the elements of the cones
represent physical units of the assets.

Consider any x from the cone −K̂(Π). If the assets were priced at s = (s1, . . . , sd), then this
portfolio would cost 〈x, s〉 =

∑
xisi, which should be at most zero. Thus, s might be used as a

price system if and only if 〈x, s〉 ≤ 0 for all x ∈ −K̂(Π). In other words, all consistent price systems
form a cone K∗(Π), which is polar to −K̂(Π). The cone K∗(Π) is also called the positive dual cone
to the solvency cone K̂(Π). Note that K∗(Π) \ {0} is a subset of the interior of Rd+. Later on we

abbreviate K̂(Πt) as K̂t with a similar agreement for other related cones.
Having started with zero initial endowment, by trading in one time unit it is possible to arrive

at a portfolio which belongs to −K̂0. If we write L0(G,F) for the family of all F-measurable random
vectors with values in a set G ⊂ Rd, then in T time units one can arrive at any portfolio from

ÂT =
T∑
t=0

L0(−K̂t,Ft) ,

which is called the set of attainable portfolios. The sum in the right-hand side is the Minkowski
sum of subsets of L0(Rd,FT ). The major issue then is to determine whether ÂT might contain
portfolios with a positive value, which then would lead to a sure profit without investment. The
typical way to prove such results is to show the closedness of the cone ÂT in L0 and then apply
the separation argument. Note that the Minkowski sum of closed but non-compact sets in a linear
space is not necessarily closed.

The bid-ask process (Πt)
T
t=0 is said to satisfy the no-arbitrage property (NA) if the intersection

of ÂT and the family L0(Rd+,FT ) of non-negative FT -measurable random vectors is exactly {0}.
In order to avoid arbitrage for the agents, who might profit from transaction costs by cancelling
the effects of opposite operations and pocketing the transaction costs on the both, the sequence
of portfolios is sometimes assumed to be increasing, see [14] and [18], i.e. both the short and long
positions are assumed to be non-decreasing in t. However, this assumption is generally superfluous.

It is apparent that attainable portfolios in this model of transaction costs are random vectors
that take values in certain polyhedral cones. These cones are determined by (possibly random)
bid-ask matrices and so can be treated as random polyhedral closed cones in Rd. Grigoriev [9]
showed that for two assets (i.e. for d = 2) the no-arbitrage property is equivalent to the existence
of an (Ft)-martingale ζt that a.s. takes values in K∗t \ {0} for all t = 0, . . . , T . This martingale
(ζt)

T
t=0 is called a consistent price process associated with (Πt)

T
t=0. Counterexamples confirm that

this result does not hold for d ≥ 4, see [30], and for all d ≥ 3 in case of general polyhedral cones
K∗t not necessarily associated with bid-ask matrices, see [9, Ex. 5.1]. The case of bid-ask matrices
and d = 3 is still open. In general, an equivalent interpretation of the no-arbitrage condition using
consistent price processes in the space of arbitrary dimension d ≥ 3 is not yet known.

In view of this, [30] has shown the equivalence of two stronger statements: the robust no-
arbitrage property and the existence of a strictly consistent price process. The robust no-arbitrage
means the existence of a bid-ask process Π̃ with smaller bid-ask spreads

1

πji
<

1

π̃ji
< π̃ij < πij , 1 ≤ i 6= j ≤ d ,
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which also satisfies the no-arbitrage property, meaning that the agent might offer some non-zero
discounts on transaction costs while still ensuring no-arbitrage. A consistent price process ζt is said
to be strict if ζt a.s. belongs to the relative interior of K∗t for all t, where the relative interior of
a set is the interior taken in the smallest affine subspace containing this set. The consistent price
system K̃∗t generated by Π̃ is a subset of the relative interior of K∗t . The appearance of the relative
interior in this context is quite natural, since if K∗t lies in a hyperplane, certain assets (or some
combinations of them) can be freely exchanged. One says that the model exhibits efficient friction
if K∗t has non-empty interior for all t. In this case all exchanges involve positive transaction costs,
the interior of K∗t coincides with the relative interior and so each strictly consistent price process
automatically belongs to the interior of K∗t .

Assume now that the first asset represents a money account. Since this asset is traded without
transaction costs, the prices of other assets can be represented as bid and ask prices in relation
to the money account. Let Sa,it and Sb,it be the ask and bid prices (so that [Sbt , S

a
t ] is the bid-ask

spread) for asset i = 2, . . . , d at time t. If we set Sa,1t = Sb,1t = 1 for all t, then it is possible to define

a bid-ask matrix by setting πijt = Sa,jt /Sb,it . In the opposite direction, a bid-ask matrix admits a
bid-ask spread representation with a money account if πijt = πi1t π

1j
t for all time moments t and

every assets i and j. While this is always possible if d = 2, this assumption restricts the possible
family of solvency cones in dimension d ≥ 3.

If d = 2, i.e. for the bid-ask spread [Sbt , S
a
t ] on a single asset, [9, Cor. 2.9] showed that the no-

arbitrage condition is equivalent to the existence of a martingale St with respect to a probability
measure equivalent to the original probability measure P, such that St ∈ [Sbt , S

a
t ] a.s. for all

t = 0, . . . , T . This means that the interval-valued process [Sbt , S
a
t ] possesses a martingale selection

with respect to an equivalent measure. The earlier results in this direction go back to [15]. Although
(for d ≥ 3) this setting is more restrictive than the bid-ask matrix formulation, it corresponds to
an intuitive perception of a price that belongs to some interval and is not simply rescalable as in
the case of price systems given by cones. Furthermore, the family of all martingale selections can
be used to determine the upper and lower prices of claims. These prices are obtained by taking
supremum and infimum of the expectations of claim payoffs obtained by substituting in the payoff
function all possible martingale selections.

For multiple assets with a money account, [14] considered set-valued price processes being
rectangles or parallelepipeds. While this setting perfectly fits into the idea of bid-ask matrices, it
does not take into account possible discounts for simultaneous transactions on several related assets.
This link-save effect has been noticed by [18]. There it was assumed that prices of several assets at
time t are described by a convex set Zt in the first quadrant, so that the price of a combination of
assets u = (u1, . . . , ud) ∈ Rd (expressed in physical units) is given by the support function hZt(u) of
the set Zt. The sublinearity of support functions corresponds again to the sublinearity property of
prices, since the price of the combination u′+u′′ does not exceed the sum of the individual prices of
u′ and u′′. It is shown in [18] that the existence of a martingale selection of the set-valued process
(Zt)

T
t=0 in the square integrable case is equivalent to the no-arbitrage property. If we add a money

account to this model, then the cone with base {1} × Zt becomes an analogue of the cone K∗t in
Kabanov’s model of transaction costs. It should be noted however that the corresponding cone is
not a polyhedral cone any longer.
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