Portfolio Choice with House Value Misperception*

Stefano Corradin ECB

José L. Fillat FRB Boston

May 5, 2016

Carles Vergara-Alert IESE

^{*}The views expressed in this paper are those of the authors and do not represent those of the Federal Reserve System, Federal Reserve Bank of Boston, 1/35 or European Central Bank.

INTRODUCTION

MISPERCEPTION

MODEL

PREDICTIONS AND EMPIRICAL

CONCLUSION

APPENDIX

INTRODUCTION

MODEL PREDICTIONS AND EMPIRICAL CONCLUSION APPENDIX

Contribution: Misperception Matters!

In this paper

We present evidence on housing value misperception, sign, and size •

INTRODUCTION

Misperception

MISPERCEPTION

DATA

MODEL

PREDICTIONS AND EMPIRICAL RESULTS

CONCLUSION

APPENDIX

Contribution: Misperception Matters!

In this paper

- We present evidence on housing value misperception, sign, and size
- Develop a model of portfolio allocation with costly acquisition of information,

tion, sign, and size ly acquisition of information,

MODEL

PREDICTIONS AND EMPIRICAL RESULTS

CONCLUSION

APPENDIX

Contribution: Misperception Matters!

In this paper

- We present evidence on housing value misperception, sign, and size
- Develop a model of portfolio allocation with costly acquisition of information,
 - which results in households misvaluing their houses —
 - misperception matters for portfolio, housing, and consumption decisions (spoiler: increases risk aversion)

INTR	ODUCTION
Mispe	rception
MISP	ERCEPTION
DATA	
MOD	EL
PRED RESU	NCTIONS AND EMPIRICAL
CONC	CLUSION
APPE	NDIX

Contribution: Misperception Matters!

In this paper

- We present evidence on housing value misperception, sign, and size
- Develop a model of portfolio allocation with costly acquisition of information,
 - which results in households misvaluing their houses —
 - misperception matters for portfolio, housing, and consumption decisions (spoiler: increases risk aversion)
- Test model implications with household level data on financial wealth, housing, and portfolio allocation.

INTRODUCTION
Misperception
MISPERCEPTION
DATA
MODEL
PREDICTIONS AND EMPIRICAL RESULTS
CONCLUSION

Contribution: Misperception Matters!

In this paper

- We present evidence on housing value misperception, sign, and size
- Develop a model of portfolio allocation with costly acquisition of information,
 - which results in households misvaluing their houses
 - misperception matters for portfolio, housing, and consumption decisions (spoiler: increases risk aversion)
- Test model implications with household level data on financial wealth, housing, and portfolio allocation.

Evidence on misperception (too long list), but evidence on sign is mixed (and very relevant for portfolio allocations)

- Benitez-Silva et al. (2008), Agarwal (2007) \rightarrow overvaluation
- Follain and Malpezzi (1981), Goodman and Ittner (1992) \rightarrow undervaluation

Misperception
MISPERCEPTION
DATA
MODEL
PREDICTIONS AND EMPIRIC
RESULTS

CONCLUSION

APPENDIX

Misperception Definition

Evidence on misperception:

- self-reported housing values vs "market" housing values
- market values built from purchase date (=zero misperception) using price index
 - perceived housing wealth rarely equals market housing wealth

values nisperception) using price index : housing wealth

Misperception
MISPERCEPTION
DATA
MODEL
PREDICTIONS AND EMPIRICAL RESULTS
CONCLUSION
APPENDIX

Misperception Definition

Evidence on misperception:

- self-reported housing values vs "market" housing values
- market values built from purchase date (=zero misperception) using price index - perceived housing wealth rarely equals market housing wealth

Data

- PSID at zipcode level \rightarrow self reported house value
- CoreLogic at zipcode level \rightarrow market value •

INTRODUCTION
Misperception
MISPERCEPTION
DATA
MODEL
PREDICTIONS AND EMPIRICAL RESULTS
CONCLUSION
APPENDIX

Misperception Definition

Evidence on misperception:

- self-reported housing values vs "market" housing values
- market values built from purchase date (=zero misperception) using price index perceived housing wealth rarely equals market housing wealth

Data

- PSID at zipcode level \rightarrow self reported house value
- CoreLogic at zipcode level \rightarrow market value

Use the CL HPI index to inflate purchase price of house.

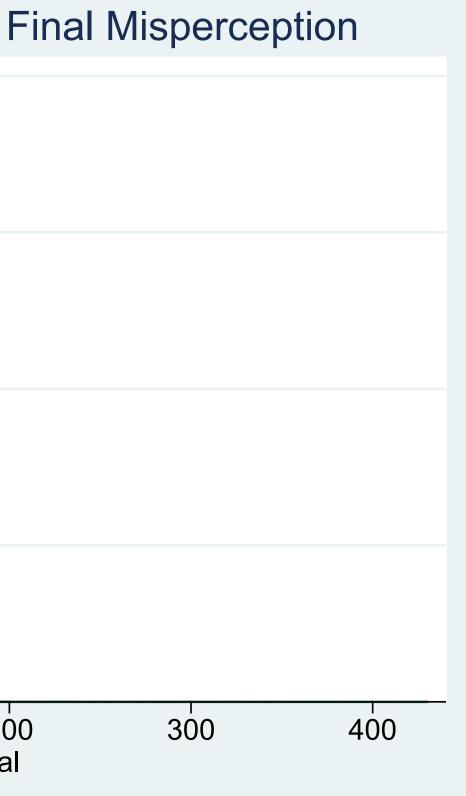
 $Misperception = (H \cdot P_{H,t}^{PSID}) - (H \cdot P_{H,0}^{PSID} \times \Delta HPI_{0 \to t}^{CL})$ •

MISPERCEPTION

MODEL

PREDICTIONS AND EMPIRICAL RESULTS

CONCLUSION

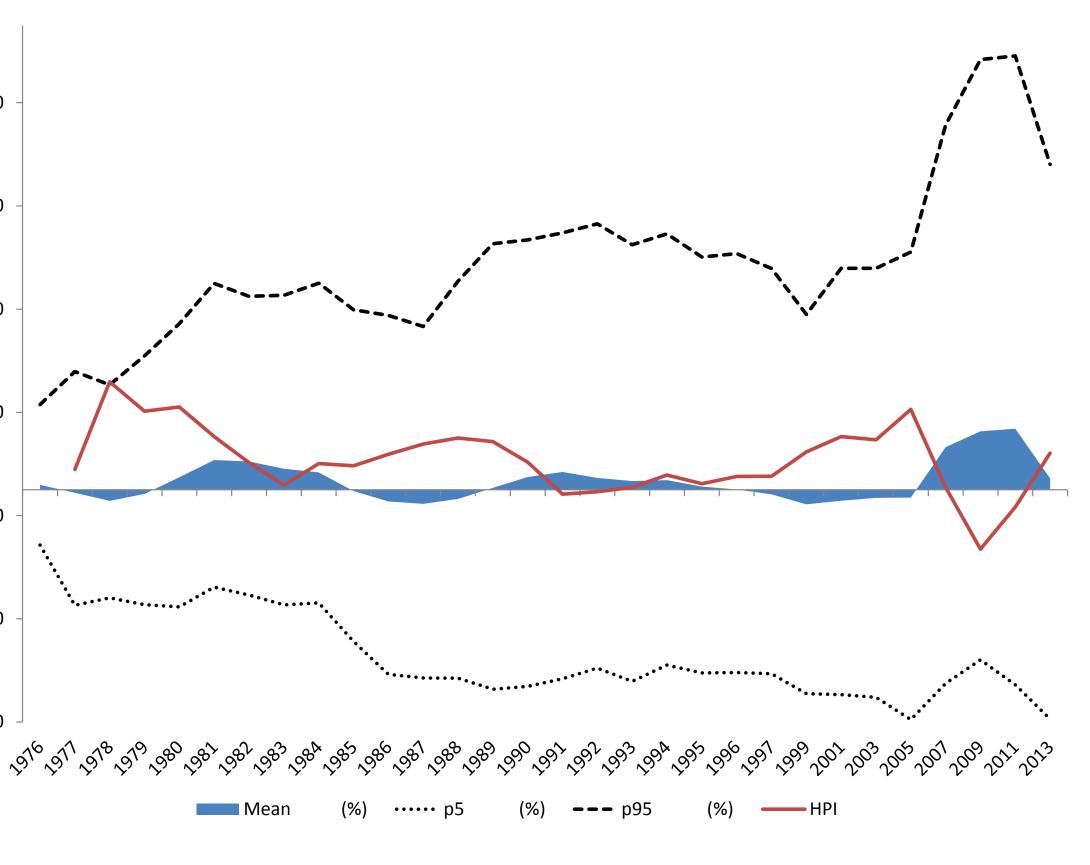

APPENDIX

MISPERCEPTION

Distribution of Misperception

INTRODUCTION MISPERCEPTION Histogram	- <u>-</u>	Dis	stribut	ion of t	the v	ariabl	le F
Time Series Tenure Risky Share Results DATA MODEL	- 03						
PREDICTIONS AND EMPIRICAL RESULTS CONCLUSION APPENDIX	Density .02						
	- <u>-</u>						
	0 -	-100	0		100 r	nisper_	200 final

Misperception cyclicality


INTRODUCTION		
MISPERCEPTION	75.00	-
Histogram		
Time Series		
Tenure		
Risky Share	55.00	-
Results		
DATA		
MODEL	25.00	
PREDICTIONS AND EMPIRICAL RESULTS	35.00	
CONCLUSION		1
APPENDIX	15.00	
	-5.00	
	-25.00	······································
		······································

-45.00 -

(%) ••••• p5

(%)

Mean

Misperception is Persistent

	1 - 2	3	4	5	6	7	8
1984	-3.06	-3.29	0.22	7.41	11.93	6.44	15.33
1985	-4.18	-5.16	-7.43	-4.29	5.05	6.58	2.94
1986	-9.49	-5.09	-7.20	-9.76	-3.88	1.72	7.41
1987	-7.53	-4.11	-9.40	-5.55	-10.97	-1.58	1.09
1988	-1.36	-5.68	-3.35	-7.04	-6.19	-12.89	-0.39
1989	2.94	0.88	3.17	-1.36	-7.85	-1.76	-10.69
1990	1.11	6.45	2.58	-1.07	0.40	0.97	-1.53
1991	1.67	5.60	9.40	3.77	2.26	2.05	2.02
1992	-1.85	2.72	2.45	11.36	2.81	-0.26	2.90
1993	1.68	-3.35	0.98	3.28	4.88	3.05	-2.86
1994	-0.17	-2.46	-3.98	1.49	5.21	6.08	3.36
1995	-1.17	-1.76	-3.43	-6.14	1.06	4.79	8.58
1996	-0.64	-3.96	-2.04	0.29	-7.63	0.03	2.80
1997	-1.04	-0.56	-6.54	-3.74	-1.35	-8.77	-3.93
1999	-6.56	-4.86	-3.86	-7.60	-3.59	-4.71	-9.21
2001	2.86	-8.34	0.96	-4.84	-8.85	-0.70	-3.00
2003	0.14	0.96	-10.41	-0.17	-3.73	-2.97	3.28
2005	1.19	-0.54	-0.20	-13.84	-5.17	-1.41	-2.20
2007	14.82	11.42	9.09	17.61	-4.18	17.10	10.04
2009	8.03	25.42	17.33	12.65	16.69	-3.12	18.34
2011	1.63	7.50	26.77	17.18	12.87	21.33	8.61
2013	-6.14	-3.66	-0.70	13.09	5.99	1.25	4.66
Average	0.07	0.57	1.41	2.19	1.10	1.76	2.57

Risky stock holdings are persistent too

	1985	1990	1995	2000	2002	2	2004
1984	0.015	0.029	0.078				
1989	0.010	0.027	0.057	0.023	0.028		
1994			0.038	0.050	0.044	0.05	4
1999				0.024	0.041	0.04'	7
2001					0.043	0.026	5
2003						0.023	}
2005							
2007							

Median = 0.037

Misperception of housing wealth affects portfolio, consumption, and housing decisions •

Results

MODEL

PREDICTIONS AND EMPIRICAL RESULTS

CONCLUSION

APPENDIX

- Results
- MODEL
- PREDICTIONS AND EMPIRICAL RESULTS
- CONCLUSION
- APPENDIX

- Misperception of housing wealth affects portfolio, consumption, and housing decisions • Households' value of their houses differs from market value •

INTRODUCTION	
MISPERCEPTION	
Histogram	
Time Series	
Tenure	
Risky Share	
Results	
DATA	
MODEL	
PREDICTIONS AND EMPIRICAL RESULTS	
CONCLUSION	
APPENDIX	

- Misperception of housing wealth affects portfolio, consumption, and housing decisions • Households' value of their houses differs from market value

less risky investments

\uparrow Misvaluation \Rightarrow (

INTRODUCTION
MISPERCEPTION
Histogram
Time Series
Tenure
Risky Share
Results
DATA
MODEL
PREDICTIONS AND EMPIRICAL RESULTS
CONCLUSION
APPENDIX

- Misperception of housing wealth affects portfolio, consumption, and housing decisions Households' value of their houses differs from market value

 \uparrow Misvaluation \Rightarrow

lower consumption and lower leverage

INTRODUCTION
MISPERCEPTION
Histogram
Time Series
Tenure
Risky Share
Results
DATA
MODEL
PREDICTIONS AND EMPIRICAL RESULTS
CONCLUSION
APPENDIX

- Misperception of housing wealth affects portfolio, consumption, and housing decisions Households' value of their houses differs from market value

 less risky investments
 lower consumption and lower leverage
 larger housing relative to total wealth \uparrow Misvaluation \Rightarrow

INTRODUCTION
MISPERCEPTION
Histogram
Time Series
Tenure
Risky Share
Results
DATA
MODEL
PREDICTIONS AND EMPIRICAL RESULTS
CONCLUSION
APPENDIX

- Misperception of housing wealth affects portfolio, consumption, and housing decisions • Households' value of their houses differs from market value

	less risky investm
\uparrow Misvaluation \Rightarrow	lower consumptio
	larger housing rel
	more frequent ac

- nents
- on and lower leverage
- elative to total wealth
- more frequent acquisition of information

INTRODUCTION

MISPERCEPTION

DATA

PSID

CL

MODEL

PREDICTIONS AND EMPIRICAL RESULTS

CONCLUSION

APPENDIX

DATA

11 / 35

PSID Data

• household sample 1978-2013

INTRODUCTION

MISPERCEPTION

DATA

PSID

CL

MODEL

PREDICTIONS AND EMPIRICAL RESULTS

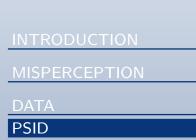
CONCLUSION

APPENDIX

12 / 35

PSID

MODEL

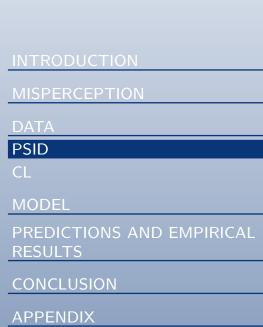

PREDICTIONS AND EMPIRICAL RESULTS

CONCLUSION

APPENDIX

- household sample 1978-2013 •
- Financial wealth = house value (first and second), business value, other assets, stock • holdings, checking and savings valances, IRAs and annuities, less the mortgage principal on primary residence

MODEL


PREDICTIONS AND EMPIRICAL RESULTS

CONCLUSION

APPENDIX


- household sample 1978-2013 •
- Financial wealth = house value (first and second), business value, other assets, stock • holdings, checking and savings valances, IRAs and annuities, less the mortgage principal on primary residence
- All net of debt •

- household sample 1978-2013 •
- Financial wealth = house value (first and second), business value, other assets, stock • holdings, checking and savings valances, IRAs and annuities, less the mortgage principal on primary residence
- All net of debt •
- Only owners

- household sample 1978-2013
- Financial wealth = house value (first and second), business value, other assets, stock holdings, checking and savings valances, IRAs and annuities, less the mortgage principal on primary residence
- All net of debt
- Only owners
- Identify movers, start measuring misperception at purchase time
 - misperception is assumed to be **zero** at purchase

CoreLogic House Prices

• Repeat sales index (monthly, starting 1975), single family combined

INT			
	КU		ON

MISPERCEPTION

DAT

CL

MODEL

PREDICTIONS AND EMPIRICAL RESULTS

CONCLUSION

APPENDIX

NTRODUCTION
/ISPERCEPTION
DATA
· SID
CL
/IODEL
PREDICTIONS AND EMPIRICAL RESULTS
CONCLUSION
APPENDIX

CoreLogic House Prices

- Repeat sales index (monthly, starting 1975), single family combined •
- public record files from First American •

NTRODUCTION
MISPERCEPTION
DATA
PSID
CL
MODEL
PREDICTIONS AND EMPIRIC

APPENDIX

CoreLogic House Prices

- Repeat sales index (monthly, starting 1975), single family combined •
- public record files from First American
- Representative of all loans (not just GSEs) •

INTRODUCTION
MISPERCEPTION
DATA
PSID
CL
MODEL
PREDICTIONS AND EMPIRICAL RESULTS
CONCLUSION

CoreLogic House Prices

- Repeat sales index (monthly, starting 1975), single family combined
- public record files from First American
- Representative of all loans (not just GSEs)
- Limited coverage at the zipcode level

Use the index to inflate purchase price of house, starting at purchase time

 $Misperception = (H \cdot P_{H,t}^{PSID}) - (H \cdot P_{H,0}^{PSID} \times \Delta HPI_{0 \to t}^{CL})$ •

INTRODUCTION

MISPERCEPTION

DATA

MODEL
Model
Illustration
Equilibrium
Calibration
Boundaries
Sensitivity
PREDICTIONS AND EMPIRICAL RESULTS

CONCLUSION

APPENDIX

MODEL

14 / 35

Model

INTRODUCTION
MISPERCEPTION
DATA
MODEL
Model
Illustration
Equilibrium
Calibration
Boundaries
Sensitivity
PREDICTIONS AND EMPIRICAL
RESULTS
CONCLUSION

APPENDIX

Notation:

 $u(C,H) = \frac{1}{1-\gamma} (C^{\beta} H)$ $dH = -\delta H dt$ $dP = P\mu dt + P\sigma dZ_2$ dB = rBdt $dS = S \alpha_S dt +$ $W = B + \Theta + R$

- $P \equiv$ house price
- $S \equiv \text{stock price}$
- $\Theta \equiv$ financial wealth in risky stock
- $B \equiv$ financial wealth in safe assets
- $\phi_o \equiv \text{cost of acquiring info}$
- $\phi_a \equiv \text{cost of moving}$
- $m^i \equiv \text{market value "surprise"}$

$$(H^{1-eta})^{1-\gamma}$$

$$S \sigma_S dZ_1$$

HP

Model cont'd

Value function for acquiring information

$$V(W, H, P) = \max_{C, \Theta, H', \tau} E\left[\int_0^\tau u(C, He^{-\delta t})dt + \mathbb{I}_{H' > H}e^{-\rho\tau}(1-\pi)V\left(W(\tau), He^{-\delta\tau}, + \mathbb{I}_{H' < H}e^{-\rho\tau}\pi V\left(W(\tau), He^{-\delta\tau}, P(\tau)\right)\right)\right]$$

$$W(\tau) = W(\tau^{-}) - \phi_o P(\tau) H(\tau^{-}) + m^i P(\tau)$$
$$P(\tau) = P(\tau^{-})(1 + m^i)$$
$$H(\tau) = H' \text{ and } H(\tau^{-}) = He^{-\delta\tau}$$

MISPERCEPTION
DATA
MODEL
Model
Illustration
Equilibrium
Calibration
Boundaries
Sensitivity
PREDICTIONS AND EMPIRICAL RESULTS
CONCLUSION
APPENDIX

$P(\tau) + \pi \widetilde{V} (W(\tau), H(\tau), P(\tau))$ $+ (1 - \pi) \widetilde{V} (W(\tau), H(\tau), P(\tau))$

 $(\tau^{-})H(\tau^{-})$

Model cont'd

Value function for acquiring information

$$V(W, H, P) = \max_{C,\Theta,H',\tau} E\left[\int_0^\tau u(C, He^{-\delta t})dt + \mathbb{I}_{H'>H}e^{-\rho\tau}(1-\pi)V\left(W(\tau), He^{-\delta\tau}, P(\tau)\right) + \pi \widetilde{V}\left(W(\tau), H(\tau), P(\tau)\right) + \mathbb{I}_{H'$$

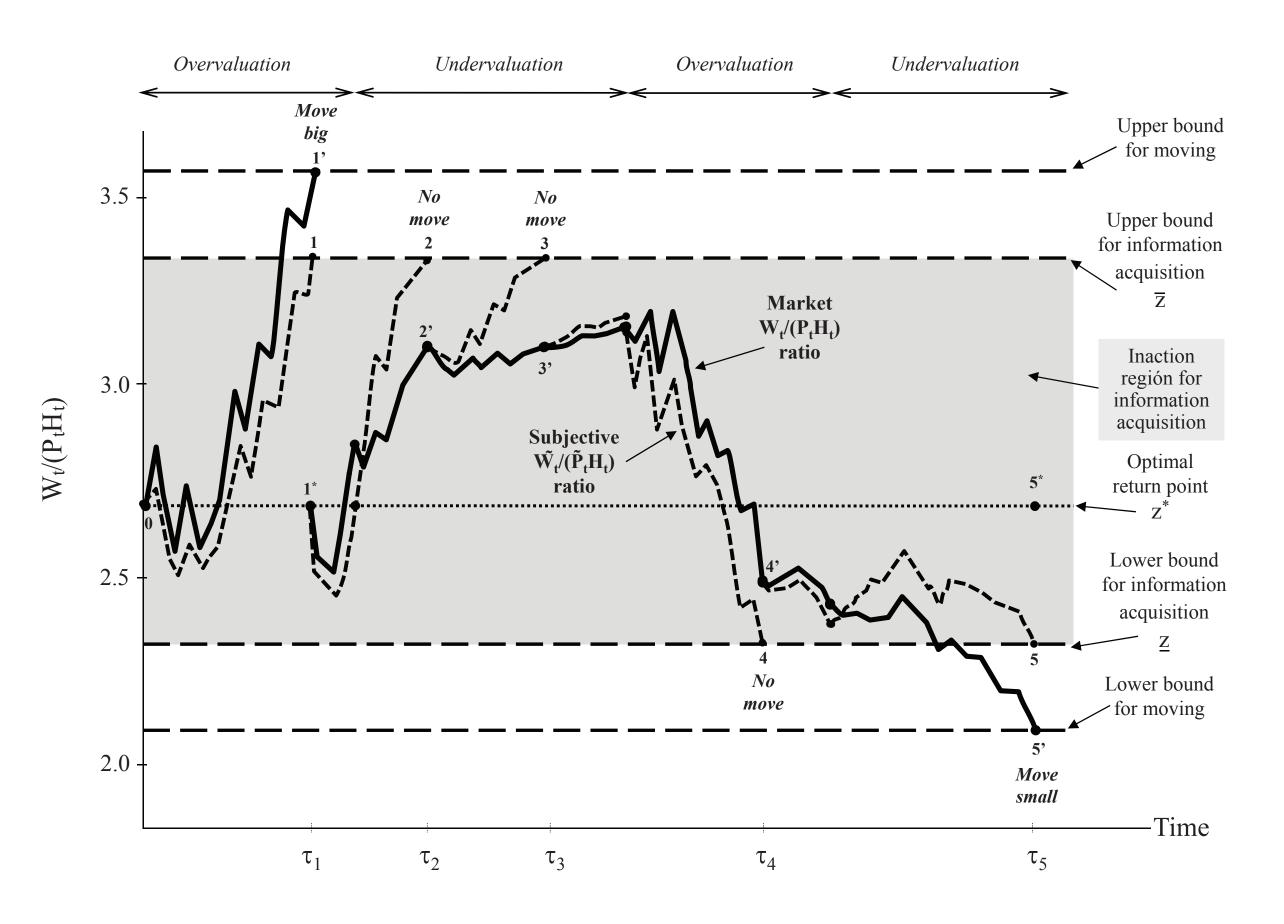
$$W(\tau) = W(\tau^{-}) - \phi_o P(\tau) H(\tau^{-}) + m^i P(\tau)$$
$$P(\tau) = P(\tau^{-})(1 + m^i)$$
$$H(\tau) = H' \text{ and } H(\tau^{-}) = He^{-\delta\tau}$$

Value function of adjusting housing

$$\widetilde{V}(W,H,P) = \max_{C,\Theta,H',\tau} E\left[\int_0^\tau u(C,He^{-\delta t})dt + e^{-\rho\tau}\widetilde{V}\left(W(\tau),H(\tau),P(\tau)\right)\right],$$
$$(t) = W(\tau^-) - \phi_a P(\tau)H(\tau^-) - \phi_o P(\tau)H(\tau^-) + m^i P(\tau^-)H(\tau^-).$$

where W(au)

INTRODUCTION
MISPERCEPTION
DATA
MODEL
Model
Illustration
Equilibrium
Calibration
Boundaries
Sensitivity
PREDICTIONS AND EMPIRICAL RESULTS
CONCLUSION
APPENDIX


 $(\tau^{-})H(\tau^{-})$

16 / 35

Illustration of equilibrium

INTRODUCTION
MISPERCEPTION
MISFERCEF HON
DATA
MODEL
Model
Illustration
Equilibrium
Calibration
Boundaries
Sensitivity
PREDICTIONS AND EMPIRICAL
RESULTS
CONCLUSION
APPENDIX

Equilibrium

The value function of this problem, V(W(t), H(t), P(t)), satisfies the following Hamilton-Jacobi-Bellman (HJB) partial differential equation

 $\sup_{C,\Theta,H',\tau} E\left(dV\left(W,H,P\right) + u\left(C,H\right)dt\right) = 0.$

INTRODUCTION
MISPERCEPTION
DATA
MODEL
Model
Illustration
Equilibrium
Calibration
Boundaries
Sensitivity
PREDICTIONS AND EMPIRICAL
RESULTS
CONCLUSION
APPENDIX

PREDICTIONS AND EMPIRICAL

MISPERCEPTION

MODEL

Equilibrium Calibration **Boundaries**

RESULTS

CONCLUSION

APPENDIX

Equi	hri		\mathbf{n}
Lyui		u	

The value function of this problem, V(W(t), H(t), P(t)), satisfies the following Hamilton-Jacobi-Bellman (HJB) partial differential equation

> $\sup E(dV(W, H, P) + u(C, H) dt) = 0.$ C,Θ,\hat{H}',τ

Thanks to homogeneity properties, we can rewrite the problem in terms of the wealth-to-housing ratio, z = W/(PH)

$$V(W, H, P) = H^{1-\gamma} P^{\beta(1-\gamma)} V\left(\frac{W}{PH}, 1, 1\right) = H^{1-\gamma} P^{\beta(1-\gamma)} v(z).$$

and solve for v(z). c denotes the scaled control c = C/(PH) and θ the scaled control $\theta = \Theta/(PH).$

Solution

INTRODUCTION
MISPERCEPTION
DATA
MODEL
Model
Illustration
Equilibrium
Calibration
Boundaries
Sensitivity
PREDICTIONS AND EMPIRICAL RESULTS
CONCLUSION
APPENDIX

Solution: Portfolio Allocation and Consumption

Given a wealth-to-housing ratio z, where $v(z) > M^{\frac{1}{2}}$ consumption $c^*(z)$ and portfolio $\theta^*(z)$ and $b^*(z)$

$$c^*(z) = \left(\frac{v_z(z)}{\beta}\right)^{1/(\beta(1-z))}$$

$$\theta^*(z) = -\omega \frac{v_z(z)}{v_{zz}(z)} + \frac{\rho_{PS}\sigma_P}{\sigma_S}(z-1)$$

$$b^*(z) = z - \theta^*(z)$$

for the constant ω defined as $\omega = [\alpha_S - r + (1 - \beta)]$

$$\frac{(z+1-\phi_o)^{1-\gamma}}{1-\gamma}$$
, the agent chooses a optimal

 $-\gamma)-1)$

$$(1-\gamma))\rho_{PS}\sigma_P]/\sigma_S^2.$$

Baseline Calibration

MISPERCEPTION

MODEL

Model

Illustration

Equilibrium

Calibration Boundaries

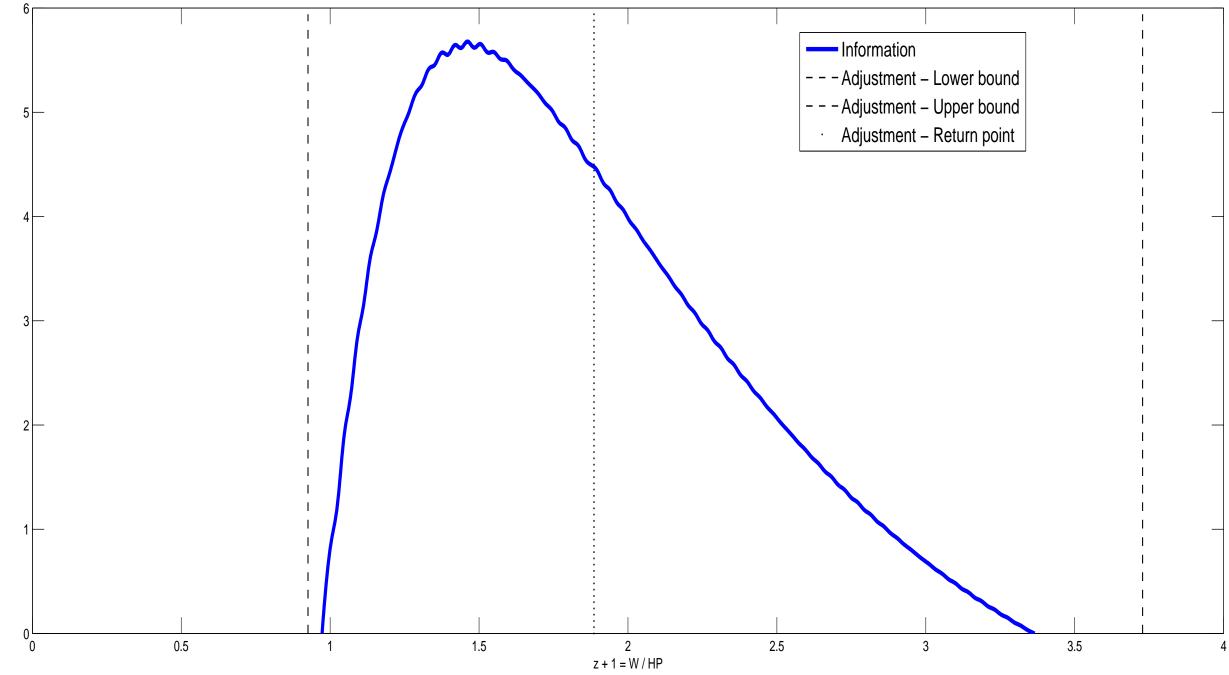
Sensitivity

PREDICTIONS AND EMPIRICAL RESULTS

CONCLUSION

APPENDIX

Variable


Curvature of the utility function House flow services Time preference Risk free rate Housing stock depreciation Transaction cost information cost Risky asset drift Standard deviation risky asset Correlation house price - risky ass Standard deviation house price House price drift Overvaluation Undervaluation Probability

	Symbol	Value
	γ	2
	$1-\beta$	0.4
	ho	0.025
	r	0.015
	δ	0.02
	ϕ_a	0.06
	ϕ_o	0.06
	$lpha_S$	0.077
	σ_S	0.1655
set	$ ho_{PS}$	0.25
	σ_P	0.14
	μ_P	0.03
	m_H	20%
	m_L	-20%
	π	0.5

Graphical Solution

NTRODUCTION
MISPERCEPTION
ΟΑΤΑ
MODEL
Vlodel
llustration
Equilibrium
Calibration
Boundaries
Sensitivity
PREDICTIONS AND EMPIRICAL RESULTS
CONCLUSION
APPENDIX

INTRODUCTION
MISPERCEPTION
DATA
MODEL
Model
Illustration
Equilibrium
Calibration
Boundaries
Sensitivity
PREDICTIONS AND EMPIRICAL RESULTS
CONCLUSION
APPENDIX

Table 1: Acquisition of information, housing adjustments, and misperception. Model outcomes for the information acquisition boundaries, the housing adjustment boundaries, and the return points under different parameterizations.

	Adjust LB	Info. LB	Return Point	Info. UB	Adjust UB
GL (no misperception)	-0.025		0.955		2.311
Benchmark (+5%/-5%)	-0.074	-0.070	0.885	2.432	2.867
Increase misperception	0.120	0.138	0.773	2.160	2.542
Overvaluation - $ abla\pi$	0.022	0.023	0.709	4.855	5.111
Undervaluation - $\Delta\pi$	0.127	0.134	0.948	1.807	1.902

with respect to GL, inaction region is lower and smaller

INTRODUCTION
MISPERCEPTION
DATA
DATA
MODEL
Model
Illustration
Equilibrium
Calibration
Boundaries
Sensitivity
PREDICTIONS AND EMPIRICAL
RESULTS
CONCLUSION
APPENDIX

Table 1: Acquisition of information, housing adjustments, and misperception. Model outcomes for the information acquisition boundaries, the housing adjustment boundaries, and the return points under different parameterizations.

	Adjust LB	Info. LB	Return Point	Info. UB	Adjust UB
GL (no misperception)	-0.025		0.955		2.311
Benchmark $(+5\%/-5\%)$	-0.074	-0.070	0.885	2.432	2.867
Increase misperception	0.120	0.138	0.773	2.160	2.542
Overvaluation - $ abla\pi$	0.022	0.023	0.709	4.855	5.111
Undervaluation - $\Delta\pi$	0.127	0.134	0.948	1.807	1.902

- with respect to GL, inaction region is lower and smaller
- wider misperception, lowers inaction region even more

INTRODUCTION
MISPERCEPTION
DATA
MODEL
Model
Illustration
Equilibrium
Calibration
Boundaries
Sensitivity
PREDICTIONS AND EMPIRICAL
RESULTS
CONCLUSION
APPENDIX

Table 1: Acquisition of information, housing adjustments, and misperception. Model outcomes for the information acquisition boundaries, the housing adjustment boundaries, and the return points under different parameterizations.

	Adjust LB	Info. LB	Return Point	Info. UB	Adjust UB
GL (no misperception)	-0.025		0.955		2.311
Benchmark (+5%/-5%)	-0.074	-0.070	0.885	2.432	2.867
Increase misperception	0.120	0.138	0.773	2.160	2.542
Overvaluation - $ abla\pi$	0.022	0.023	0.709	4.855	5.111
Undervaluation - $\Delta\pi$	0.127	0.134	0.948	1.807	1.902

- with respect to GL, inaction region is lower and smaller
- wider misperception, lowers inaction region even more
- more undervaluation, widens inaction region for information

INTRODUCTION
MISPERCEPTION
DATA
MODEL
Model
Illustration
Equilibrium
Calibration
Boundaries
Sensitivity
PREDICTIONS AND EMPIRICAL
RESULTS
CONCLUSION
APPENDIX

Table 1: Acquisition of information, housing adjustments, and misperception. Model outcomes for the information acquisition boundaries, the housing adjustment boundaries, and the return points under different parameterizations.

	Adjust LB	Info. LB	Return Point	Info. UB	Adjust UB
GL (no misperception)	-0.025		0.955		2.311
Benchmark (+5%/-5%)	-0.074	-0.070	0.885	2.432	2.867
Increase misperception	0.120	0.138	0.773	2.160	2.542
Overvaluation - $ abla\pi$	0.022	0.023	0.709	4.855	5.111
Undervaluation - $\Delta\pi$	0.127	0.134	0.948	1.807	1.902

- with respect to GL, inaction region is lower and smaller
- wider misperception, lowers inaction region even more
- more undervaluation, widens inaction region for information
- more overvaluation, narrows inaction region for information

INTRODUCTION

MISPERCEPTION

DATA

MODEL

PREDICTIONS AND EMPIRICAL RESULTS

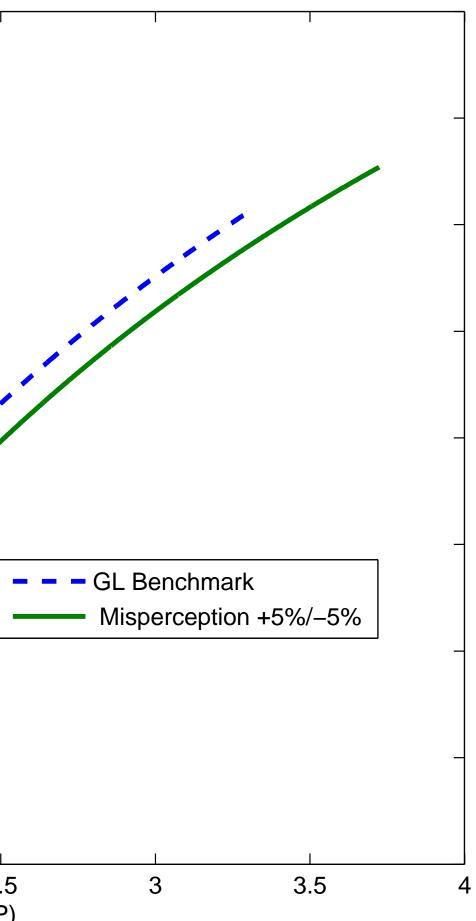
 Δm and heta

Over/Under and θ Δm and COver/Under and C

Over/Under and B

CONCLUSION

APPENDIX

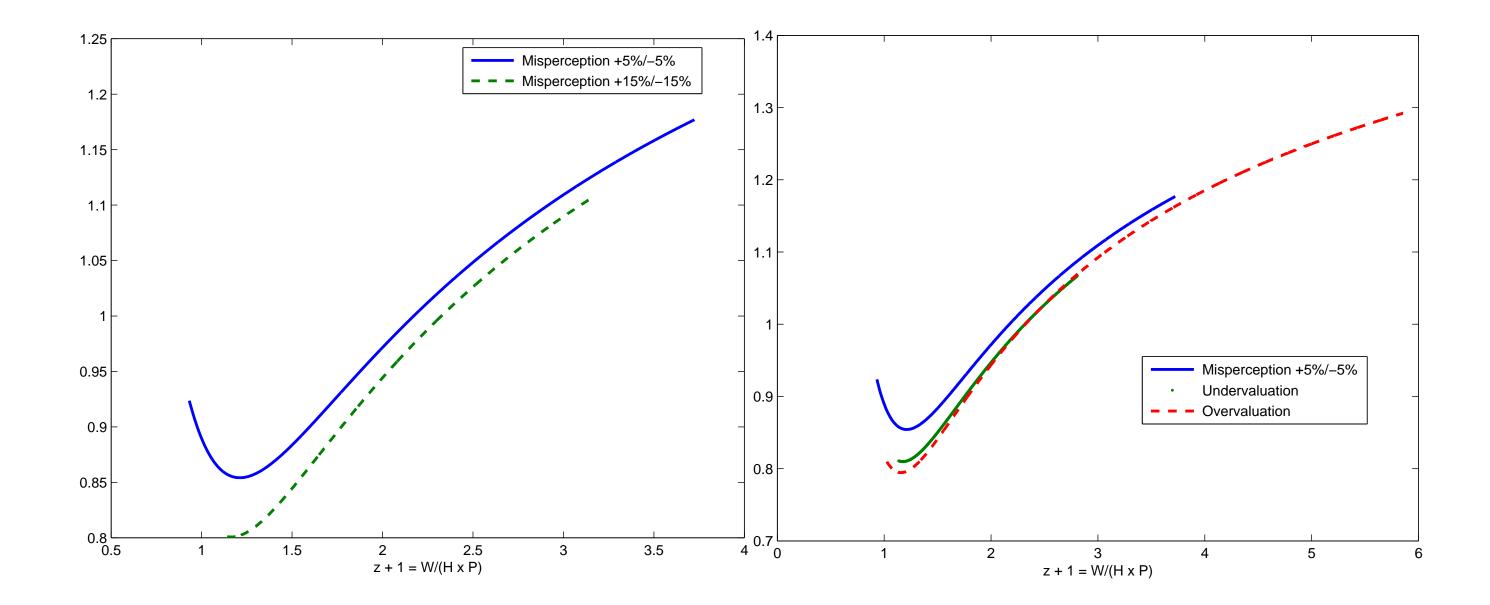

PREDICTIONS AND EMPIRICAL RESULTS

Risky assets and misperception

	1.25 _[1	1
INTRODUCTION						
MISPERCEPTION						
DATA	1.2	_				
MODEL						
PREDICTIONS AND EMPIRICAL						
$\frac{RESULTS}{\Delta m \text{ and } \theta}$	1.15	_				
Over/Under and $ heta$						
Δm and C Over/Under and C						
Δm and B	1.1	_				
Over/Under and B	1.1					
CONCLUSION						
APPENDIX					/	1
	1.05	-				
					//	
					· / /	
	1	-			. /	
						-
				· · /		_
	0.95			- / /		
				<i>i</i> /		
	0.9					
	0.9		· · - ·			
				•		
						1
	0.85 0.5	5 1	1	.5 2	2 2	2.5
	0.0	~ I	•		_ 2	


 $z + 1 = W/(H \times P)$

Risky assets and probabilities of over/undervaluation


INTRODUCTION
MISPERCEPTION
DATA
MODEL
PREDICTIONS AND EMPIRICAL
RESULTS
Δm and $ heta$
Over/Under and $ heta$
Δm and C
Over/Under and C
Δm and B
Over/Under and B
CONCLUSION
APPENDIX

Risky assets and probabilities of over/undervaluation

INTRODUCTION
MISPERCEPTION
DATA
MODEL
PREDICTIONS AND EMPIRICAL RESULTS
Δm and $ heta$
Over/Under and $ heta$
Δm and C
Over/Under and C
Δm and B
Over/Under and B
CONCLUSION
APPENDIX

$$\frac{\theta_{it}}{z_{it}} = \gamma_0 + \gamma_1 \cdot z_{it} + \gamma_2 \cdot m_{it} + \gamma_3 \cdot z_{it} \cdot m_{it} + \gamma_3 \cdot z_{it} \cdot m_{it} + \gamma_4 \cdot z_{it} \cdot m_{it} \cdot z_{it} \cdot m_{it} + \gamma_4 \cdot m_{it} \cdot m_{it} + \gamma_$$

Panel A: Misperception (dispersion)						
[1]	[2]	[3]				
-0.006968^{**}	-0.010731^{***}	-0.010729^{*}				
[-2.11]	[-2.77]	[-1.88]				
		0.000775				
с ј	L J	$[1.15] \\ 0.002869$				
		[1.39]				
0.04553	-0.077445	-0.076793				
[0.1]	[-0.51]	[-0.33]				
5.83%	57.36%	57.14%				
	\overline{D}					
		$FE\ Zip$				
4,225	4,225	2ip 4, 198				
	$\begin{bmatrix} 1 \end{bmatrix}$ $-0.006968^{**} \\ \begin{bmatrix} -2.11 \end{bmatrix} \\ 0.001718^{***} \\ \begin{bmatrix} 5.10 \end{bmatrix} \\ 0.001859 \\ \begin{bmatrix} 1.43 \end{bmatrix} \\ 0.04553 \\ \begin{bmatrix} 0.1 \end{bmatrix} \\ 5.83\%$ $RE \\ No$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				

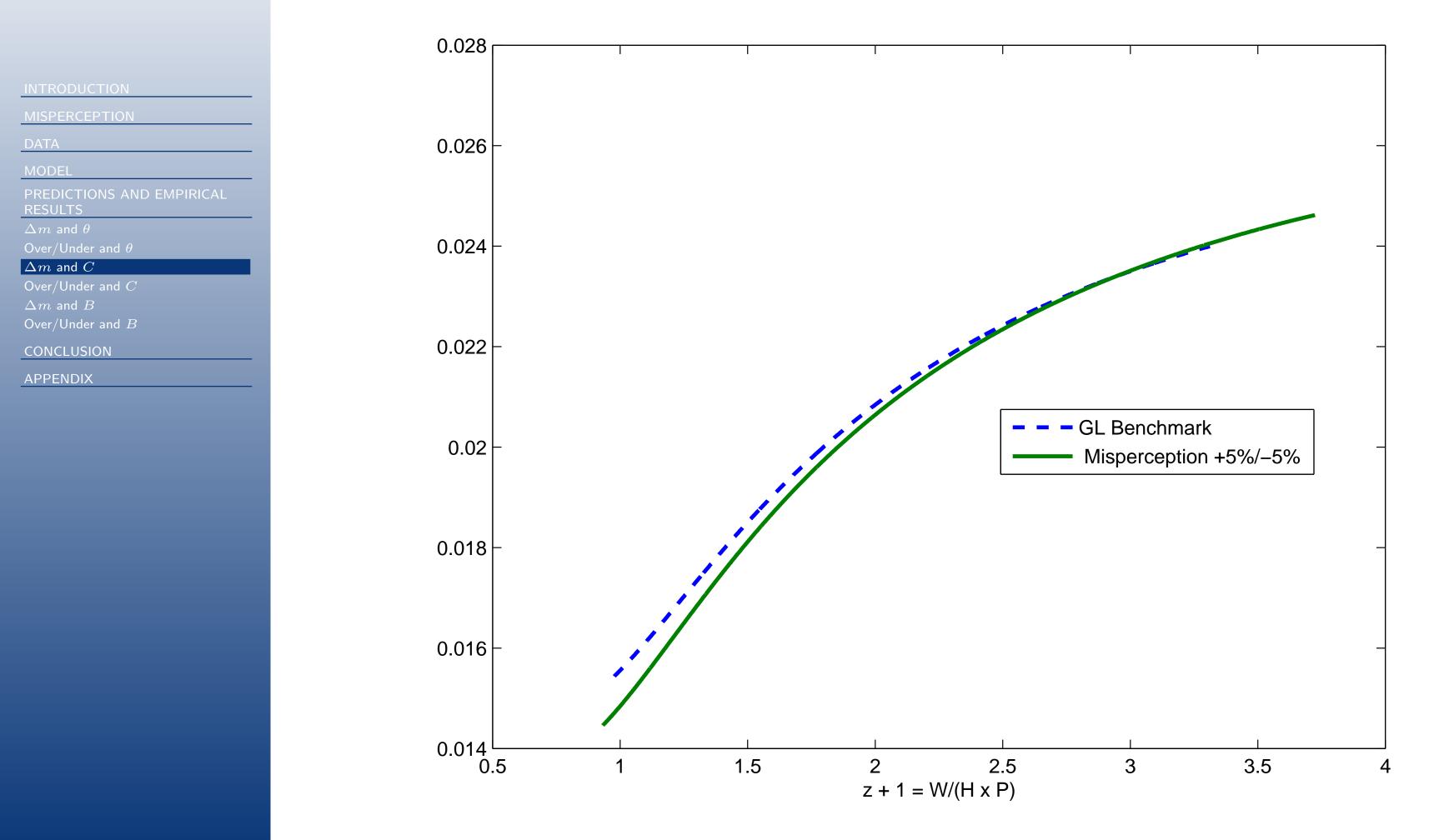
 $+\Gamma \cdot X_{it} + u_{it},$

$$\frac{\theta_{it}}{z_{it}} = \gamma_0 + \gamma_1 \cdot z_{it} + \gamma_2 \cdot m_{it} + \gamma_3 \cdot z_{it} \cdot m_{it} + \gamma_3 \cdot z_{it} \cdot m_{it} + \gamma_4 \cdot z_{it} \cdot m_{it} \cdot z_{it} \cdot m_{it} + \gamma_4 \cdot m_{it} \cdot m_{it} + \gamma_$$

Panel A: Misperception (dispersion)						
	[1]	[2]	[3]			
m_{it}	-0.006968**	-0.010731^{***}	-0.010729^{*}			
z_{it}	[-2.11] 0.001718^{***}	[-2.77] 0.000773^*	[-1.88] 0.000775			
$m_{it} * z$	$[5.10] \\ 0.001859$	$[1.79] \\ 0.002865^*$	$[1.15] \\ 0.002869$			
constant	$[1.43] \\ 0.04553$	[1.93] -0.077445	$[1.39] \\ -0.076793$			
R^2	$[0.1]\ 5.83\%$	$[-0.51]\ 57.36\%$	$[-0.33]\ 57.14\%$			
FE/RE	RE	FE	FE			
Cluster	No	No	Zip			
Obs.	4,225	4,225	4,198			

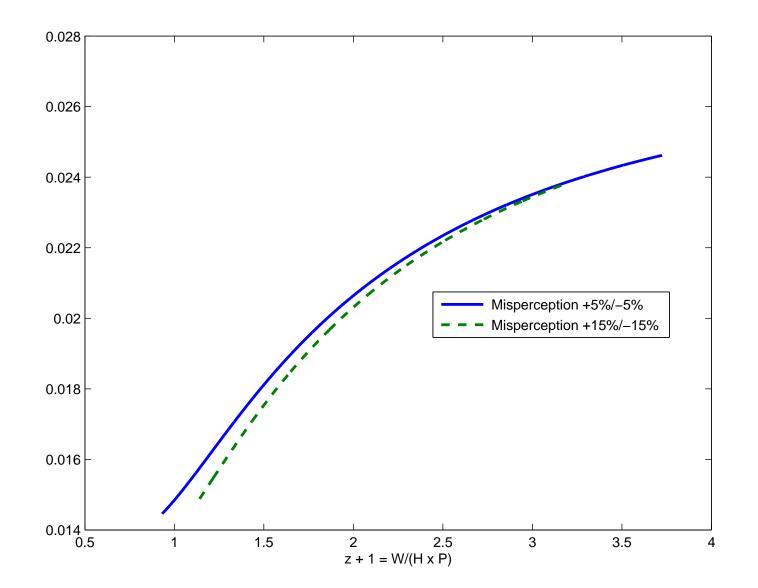
 $-\Gamma \cdot X_{it} + u_{it},$

$$\frac{\theta_{it}}{z_{it}} = \gamma_0 + \gamma_1 \cdot z_{it} + \gamma_2 \cdot m_{it} + \gamma_3 \cdot z_{it} \cdot m_{it} + \Gamma \cdot X_{it} + u_{it},$$

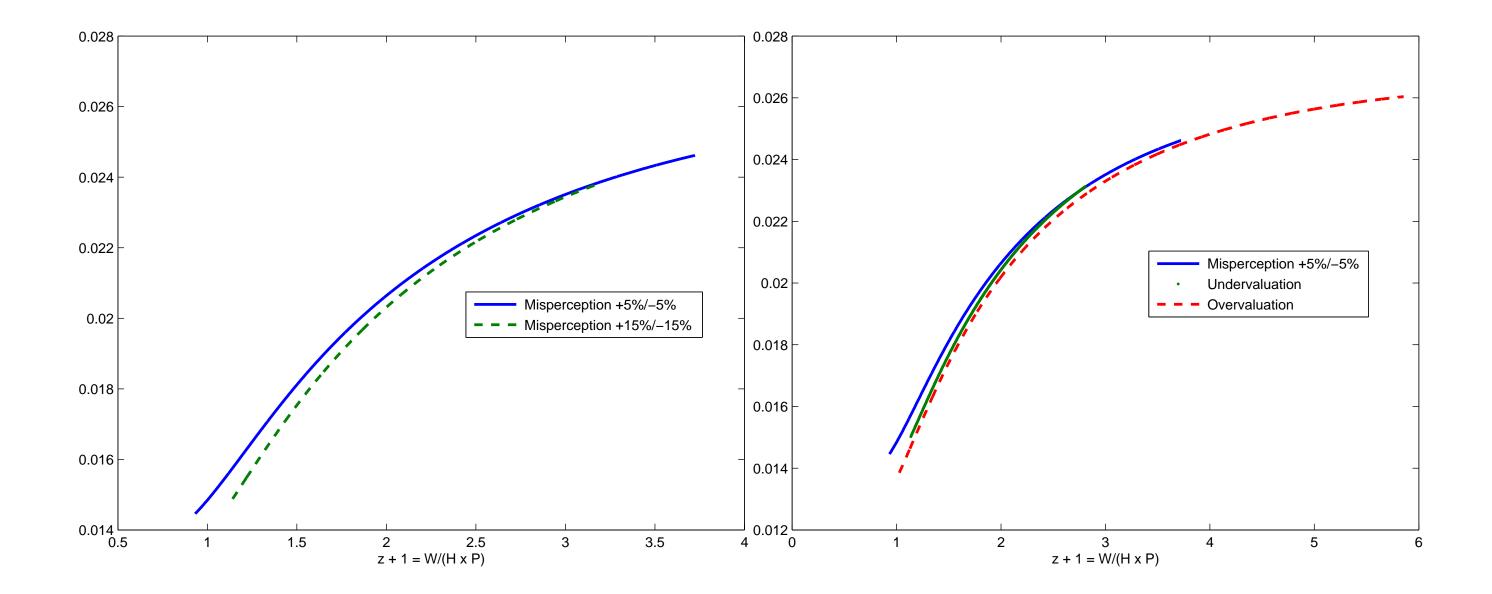

	Panel A: Misperception (dispersion)			Panel B: Misperception (overvaluation)		uation)	
	[1]	[2]	[3]		[1]	[2]	[3]
m_{it}	-0.006968^{**}	-0.010731^{***}	-0.010729^{*}	m_{it}	-0.005282^{**}	-0.007952^{***}	-0.007951^{***}
	[-2.11]	[-2.77]	[-1.88]		[-2.55]	[-3.29]	[-1.99]
z_{it}	0.001718^{***}	0.000773^{*}	0.000775	z_{it}	0.001893^{***}	0.001120^{***}	0.001122^{*}
	[5.10]	[1.79]	[1.15]		[6.34]	[2.84]	[1.82]
$m_{it} * z$	0.001859	0.002865^{*}	0.002869	$m_{it} * z$	0.001076	0.002380**	0.002379
	[1.43]	[1.93]	[1.39]		[1.28]	[2.45]	[1.62]
constant	0.04553	-0.077445	-0.076793	constant	0.063773	-0.034879	-0.034326
	$\left[0.1\right]$	[-0.51]	[-0.33]		[0.72]	[-0.23]	[-0.15]
R^2	5.83%	57.36%	57.14%	R^2	6.09%	57.4%	57.18%
FE/RE	RE	FE	FE	FE/RE	RE	FE	FE
Cluster	No	No	Zip	Cluster	No	No	Zip
Obs.	4,225	4,225	4,198	Obs.	4,225	4,225	4,198

$$\frac{\theta_{it}}{z_{it}} = \gamma_0 + \gamma_1 \cdot z_{it} + \gamma_2 \cdot m_{it} + \gamma_3 \cdot z_{it} \cdot m_{it} + \Gamma \cdot X_{it} + u_{it},$$

	Panel A: Misperception (dispersion)			Panel B: Misperception (overvaluation)		uation)	
	[1]	[2]	[3]		[1]	[2]	[3]
m_{it}	-0.006968^{**}	-0.010731^{***}	-0.010729^{*}	m_{it}	-0.005282^{**}	-0.007952^{***}	-0.007951^{***}
	[-2.11]	[-2.77]	[-1.88]		[-2.55]	[-3.29]	[-1.99]
z_{it}	0.001718^{***}	0.000773^{*}	0.000775	z_{it}	0.001893^{***}	0.001120^{***}	0.001122^{*}
	[5.10]	[1.79]	[1.15]		[6.34]	[2.84]	[1.82]
$m_{it} * z$	0.001859	0.002865^{*}	0.002869	$m_{it} * z$	0.001076	0.002380**	0.002379
	[1.43]	[1.93]	[1.39]		[1.28]	[2.45]	[1.62]
constant	0.04553	-0.077445	-0.076793	constan	0.063773	-0.034879	-0.034326
	$\left[0.1\right]$	[-0.51]	[-0.33]		[0.72]	[-0.23]	[-0.15]
R^2	5.83%	57.36%	57.14%	R^2	6.09%	57.4%	57.18%
FE/RE	RE	FE	FE	FE/RE	RE	FE	FE
Cluster	No	No	Zip	Cluster	No	No	Zip
Obs.	4,225	4,225	4,198	Obs.	4,225	4,225	4,198


Misperception and Consumption

Probabilities of Over/Undervaluation and Consumption


INTRODUCTION	
MISPERCEPTION	
DATA	
MODEL	
PREDICTIONS AND EMPIRICAL	
RESULTS	
Δm and $ heta$	
Over/Under and $ heta$	
Δm and C	
Over/Under and C	
Δm and B	
Over/Under and B	
CONCLUSION	
APPENDIX	

Probabilities of Over/Undervaluation and Consumption

INTRODUCTION
MISPERCEPTION
DATA
MODEL
PREDICTIONS AND EMPIRICAL
RESULTS
Δm and $ heta$
Over/Under and $ heta$
Δm and C
Over/Under and C
Δm and B
Over/Under and B
CONCLUSION
APPENDIX

$$\frac{C_{it}}{z_{it}} = \gamma_0 + \gamma_1 \cdot z_{it} + \gamma_2 \cdot m_{it} + \gamma_3 \cdot z_{it} \cdot m_{it$$

	Panel A: Misperception (dispersion)					
	[1]	[2]	[3]			
m_{it}	-0.008014^{***}	-0.012556^{***}	-0.01260^{***}			
	[-2.99]	[-4.45]	[-3.64]			
z_{it}	-0.010316^{***} [-27.55]	-0.010356^{***} [-25.67]	-0.010337^{***} [-17.73]			
$m_{it} * z_{it}$	0.003647^{***}	0.003913^{***}	0.003884***			
	[3.12]	[3.25]	[3.20]			
constant	1.712719***	1.467278***	1.437393***			
R^2	$[10.62] \\ 15.15\%$	$[8.08] \\ 81.85\%$	$[5.26] \\ 81.76\%$			
FE/RE	RE	FE	FE			
Cluster	No	No	Zip			
Obs.	8,192	8,192	8,028			

 $+\Gamma \cdot X_{it} + u_{it},$

$$\frac{C_{it}}{z_{it}} = \gamma_0 + \gamma_1 \cdot z_{it} + \gamma_2 \cdot m_{it} + \gamma_3 \cdot z_{it} \cdot m_{it$$

Panel A: Misperception (dispersion)					
	[1]	[2]	[3]		
m_{it}	-0.008014^{***}	-0.012556^{***}	-0.01260^{***}		
	[-2.99]	[-4.45]	[-3.64]		
z_{it}	-0.010316^{***}	-0.010356^{***}	-0.010337^{***}		
	[-27.55]	[-25.67]	[-17.73]		
$m_{it} * z_{it}$	0.003647^{***}	0.003913^{***}	0.003884^{***}		
	[3.12]	[3.25]	[3.20]		
constant	1.712719^{***}	1.467278^{***}	1.437393^{***}		
	[10.62]	[8.08]	[5.26]		
R^2	15.15%	81.85%	81.76%		
FE/RE	RE	FE	FE		
Cluster	No	No	Zip		
Obs.	8,192	8,192	8,028		

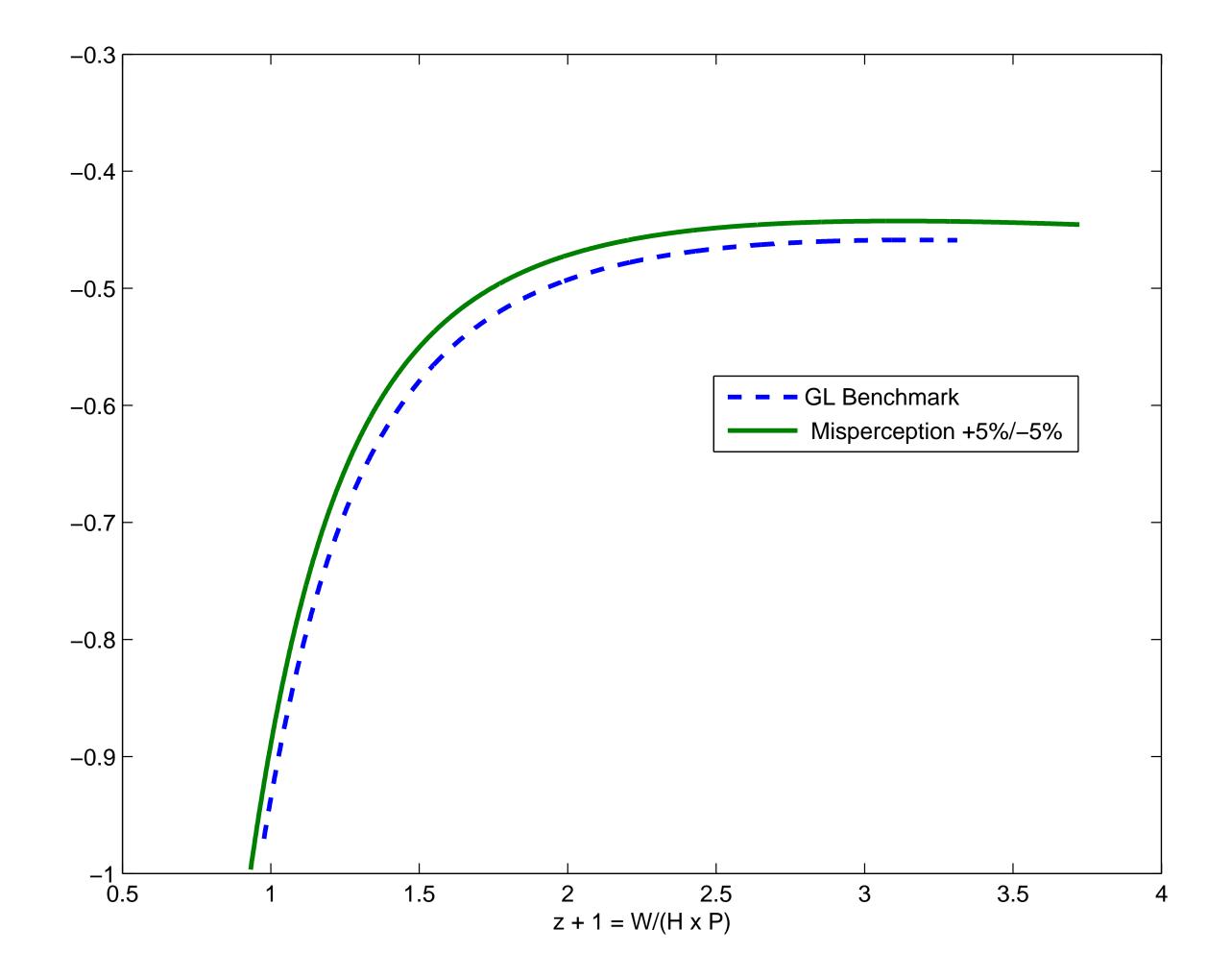
 $+\Gamma \cdot X_{it} + u_{it},$

$$\frac{C_{it}}{z_{it}} = \gamma_0 + \gamma_1 \cdot z_{it} + \gamma_2 \cdot m_{it} + \gamma_3 \cdot z_{it} \cdot m_{it} + \gamma_3 \cdot z_{it} \cdot m_{it} + \gamma_4 \cdot z_{it} \cdot m_{it} \cdot z_{it} \cdot m_{it} + \gamma_4 \cdot m_{it} \cdot m_{it} + \gamma_$$

	Panel A: Mispe	rception (dispers	sion)		Panel B: Misperception (overvaluation)			
	[1]	[2]	[3]		[1]	[2]	[3]	
m_{it}	-0.008014^{***} [-2.99]	-0.012556^{***} [-4.45]	-0.01260^{***} [-3.64]	m_{it}	-0.024522^{***} [-15.18]	-0.024224^{***} [-14.29]	-0.024275^{***} [-8.73]	
z_{it}	-0.010316^{***} [-27.55]	-0.010356^{***} [-25.67]	-0.010337^{***} [-17.73]	z_{it}	-0.009922^{***} [-31.03]	-0.009890^{***} [-28.49]	-0.009876^{***} [-19.52]	
$m_{it} * z_{it}$	0.003647^{***}	0.003913***	0.003884***	$m_{it} * z_{it}$	0.003667^{***}	0.004058***	0.004065^{***}	
constant	[3.12] 1.712719^{***}	[3.25] 1.467278^{***}	[3.20] 1.437393^{***}	constant	[5.03] 1.318664^{***}	[5.38] 1.213028^{***}	[4.22] 1.183237^{***}	
R^2	$[10.62]\ 15.15\%$	$[8.08] \\ 81.85\%$	$[5.26] \\ 81.76\%$	R^2	$[8.40] \\ 17.90\%$	$[6.88] \\ 82.67\%$	$[4.40] \\ 82.58\%$	
FE/RE Cluster Obs.	$RE \\ No \\ 8, 192$	FE No 8,192	$FE \\ Zip \\ 8,028$	FE/RE Cluster Obs.	$RE \\ No \\ 8,192$	FE No 8,192	$FE \\ Zip \\ 8,028$	
ODS.	0,192	0,192	0,020	Obs.	0,192	0,192	0,020	

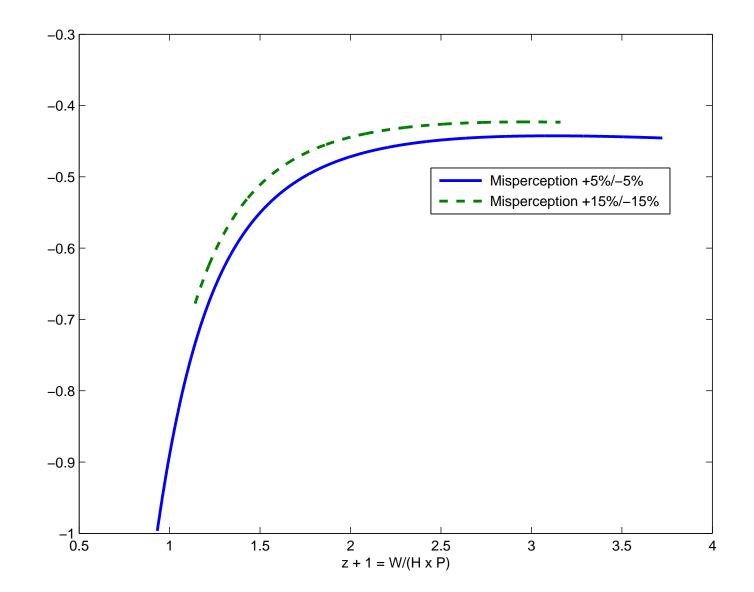
$$\Gamma \cdot X_{it} + u_{it},$$

$$\frac{C_{it}}{z_{it}} = \gamma_0 + \gamma_1 \cdot z_{it} + \gamma_2 \cdot m_{it} + \gamma_3 \cdot z_{it} \cdot m_{it} + \gamma_3 \cdot z_{it} \cdot m_{it} + \gamma_4 \cdot z_{it} \cdot m_{it} \cdot z_{it} \cdot m_{it} + \gamma_4 \cdot m_{it} \cdot m_{it} + \gamma_$$

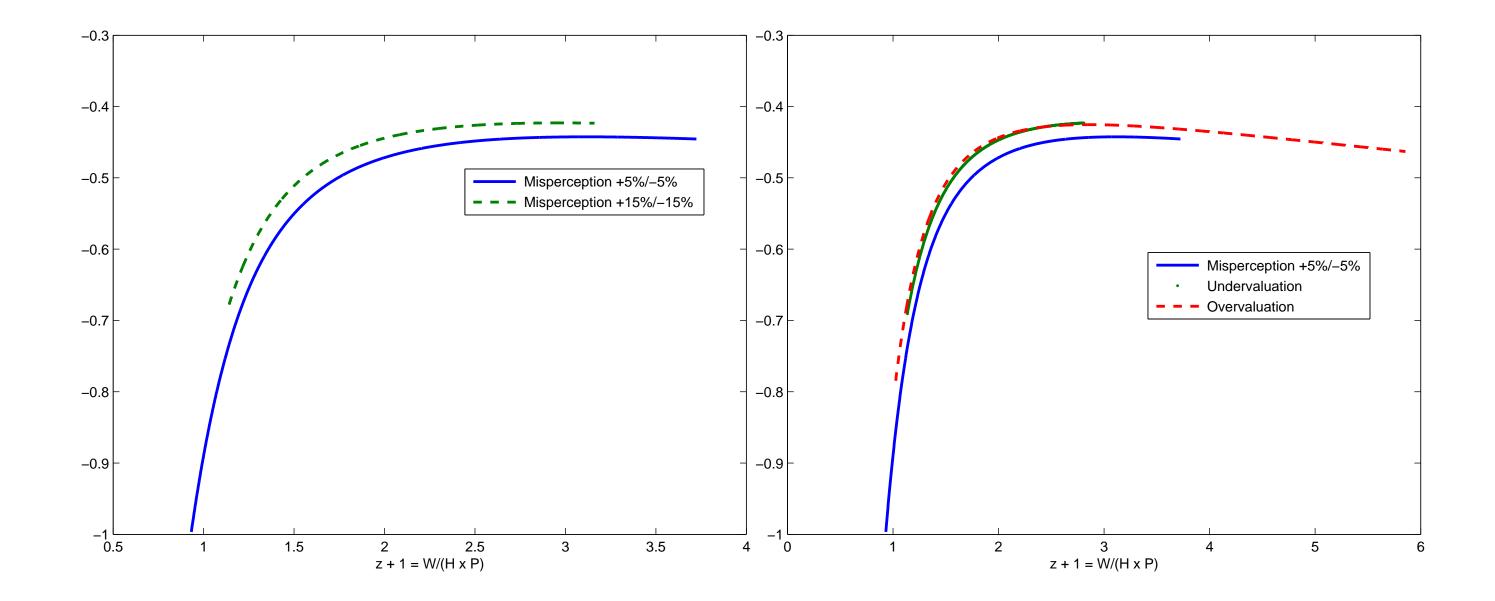

	Panel A: Mispe	rception (dispers	sion)	F	Panel B: Misperc	eption (overvalu	ation)
	[1]	[2]	[3]		[1]	[2]	[3]
m_{it}	-0.008014^{***} [-2.99]	-0.012556^{***} [-4.45]	-0.01260^{***} [-3.64]	m_{it}	-0.024522^{***} [-15.18]	-0.024224^{***} [-14.29]	-0.024275^{***} [-8.73]
z_{it}	-0.010316^{***} [-27.55]	-0.010356^{***} [-25.67]	-0.010337^{***} [-17.73]	z_{it}	-0.009922^{***} [-31.03]	-0.009890^{***} [-28.49]	-0.009876^{***} [-19.52]
$m_{it} * z_{it}$	0.003647^{***} [3.12]	0.003913*** [3.25]	0.003884*** [3.20]	$m_{it} * z_{it}$	0.003667^{***} [5.03]	0.004058*** [5.38]	0.004065^{***} $[4.22]$
constant	[5.12] 1.712719^{***} [10.62]	[5.26] 1.467278^{***} [8.08]	[5.26] 1.437393^{***} [5.26]	constant	[5.05] 1.318664^{***} [8.40]	1.213028^{***} [6.88]	1.183237^{***} [4.40]
R^2	15.15%	[8.08] 81.85%	[3.20] 81.76%	R^2	[8.40] 17.90%	[0.88] 82.67%	[4.40] 82.58%
FE/RE Cluster Obs.	$\begin{matrix} RE\\ No\\ 8,192 \end{matrix}$	$FE \\ No \\ 8,192$	$FE\\Zip\\8,028$	FE/RE Cluster Obs.	$\begin{matrix} RE\\ No\\ 8,192 \end{matrix}$	$FE\\No\\8,192$	$FE\ Zip\ 8,028$

$$\Gamma \cdot X_{it} + u_{it},$$

Misperception and Leverage


MISPERCEPTION	
DATA	
MODEL	
PREDICTIONS AND EMPIRICAL	
RESULTS	
Δm and $ heta$	
Over/Under and $ heta$	
Δm and C	
Over/Under and C	
Δm and B	
Over/Under and B	
CONCLUSION	
APPENDIX	

Probabilities of Over/Undervaluation and leverage


INTRODUCTION
MISPERCEPTION
DATA
MODEL
PREDICTIONS AND EMPIRICAL RESULTS
Δm and $ heta$
Over/Under and $ heta$
Δm and C
Over/Under and C
Δm and B
Over/Under and B
CONCLUSION
APPENDIX

Probabilities of Over/Undervaluation and leverage

INTRODUCTION
MISPERCEPTION
DATA
MODEL
PREDICTIONS AND EMPIRICAL RESULTS
Δm and $ heta$
Over/Under and $ heta$
Δm and C
Over/Under and C
Δm and B
Over/Under and B
CONCLUSION
APPENDIX

Misperception and Leverage - Empirics

$$\frac{B_{it}}{z_{it}} = \gamma_0 + \gamma_1 \cdot z_{it} + \gamma_2 \cdot m_{it} + \gamma_3 \cdot z_{it} \cdot m_{it} - \gamma_3 \cdot z_{it} - \gamma_5 \cdot m_{it} -$$

	Panel A: Misperception (dispersion)					
	[1]	[2]	[3]			
m_{it}	-0.139381***	-0.170331^{***}	-0.171242***			
~	[-7.11] -0.039793^{***}	[-6.92] -0.051349^{***}	[-3.90] -0.051589^{***}			
z	[-14.24]	[-13.98]	[-9.14]			
$m_{it} * z$	0.084761^{***}	0.098550^{***}	0.099200***			
	[7.91]	[7.70]	[4.03]			
constant	1.894726^{***} [2.78]	$1.549514 \\ [1.57]$	$1.383134 \\ [0.85]$			
R^2	6.93%	71.16%	71.01%			
FE/RE	RE	FE	FE			
Cluster	No	No	Zip			
Obs.	3,828	3,828	3,857			

 $+\Gamma \cdot X_{it} + u_{it},$

(3)

Misperception and Leverage - Empirics

$$\frac{B_{it}}{z_{it}} = \gamma_0 + \gamma_1 \cdot z_{it} + \gamma_2 \cdot m_{it} + \gamma_3 \cdot z_{it} \cdot m_{it} - \gamma_3 \cdot z_{it} - \gamma_5 \cdot m_{it} -$$

	Panel A: Misperception (dispersion)				
	[1]	[2]	[3]		
m_{it}	-0.139381^{***}	-0.170331^{***}	-0.171242^{***}		
	[-7.11]	[-6.92]	[-3.90]		
\mathcal{Z}	-0.039793^{***}	-0.051349^{***}	-0.051589^{***}		
	[-14.24]	[-13.98]	[-9.14]		
$m_{it} * z$	0.084761^{***}	0.098550^{***}	0.099200^{***}		
	[7.91]	[7.70]	[4.03]		
constant	1.894726^{***}	1.549514	1.383134		
	[2.78]	[1.57]	[0.85]		
R^2	6.93%	71.16%	71.01%		
FE/RE	RE	FE	FE		
Cluster	No	No	Zip		
Obs.	3,828	3,828	3,857		

 $+\Gamma \cdot X_{it} + u_{it},$

(3)

Misperception and Leverage - Empirics

$$\frac{B_{it}}{z_{it}} = \gamma_0 + \gamma_1 \cdot z_{it} + \gamma_2 \cdot m_{it} + \gamma_3 \cdot z_{it} \cdot m_{it} + \beta_3 \cdot z_{it} \cdot m_{it} \cdot$$

	Panel A: Mispe	rception (dispers	sion)		Panel B: Misperception (overvaluation)			
	[1]	[2]	[3]			[1]	[2]	[3]
m_{it}	-0.139381^{***}	-0.170331^{***}	-0.171242^{***}	η	n_{it}	0.006325	-0.009512	-0.008998
	[-7.11]	[-6.92]	[-3.90]			[0.46]	[-0.54]	[-0.31]
z	-0.039793^{***}	-0.051349^{***}	-0.051589^{***}	\mathcal{Z}		-0.030290^{***}	-0.037645^{***}	-0.037771^{***}
	[-14.24]	[-13.98]	[-9.14]			[-12.81]	[-12.14]	[-6.05]
$m_{it} * z$	0.084761^{***}	0.098550^{***}	0.099200^{***}	m	$n_{it} * z$	-0.038122^{***}	-0.025783^{**}	-0.026115
	[7.91]	[7.70]	[4.03]			[-4.47]	[-2.41]	[-1.44]
constant	1.894726***	1.549514	1.383134	CC	onstant	1.817843***	1.696728*	1.517266
	[2.78]	[1.57]	[0.85]			[2.70]	[1.71]	[0.90]
R^2	6.93%	71.16%	71.01%	R	2^2	7.52%	70.68%	70.51%
FE/RE	RE	FE	FE	F	E/RE	RE	FE	FE
Cluster	No	No	Zip	С	luster	No	No	Zip
Obs.	3,828	3,828	3,857	0	bs.	3,828	3,828	3,857

$$\Gamma \cdot X_{it} + u_{it},$$

(3)

INTRODUCTION

MODEL

PREDICTIONS AND EMPIRICAL RESULTS

CONCLUSION

APPENDIX

CONCLUSION

33 / 35

INTRODUCTION
MISPERCEPTION
DATA
MODEL
PREDICTIONS AND EMPIRICAL RESULTS
CONCLUSION
Next
APPENDIX

Conclusions

- House price misperception affects the optimal behavior of households (via risk aversion). The more misperception,
 - less investment in risky assets
 - larger housing wealth relative to total wealth
 - acquire information more frequently
- Overvaluation \Rightarrow less risky asset near downsizing
- Overvaluation \Rightarrow narrower bands of inaction

In this paper

- Showed evidence of misperception
- Build misperception into a portfolio choice model
- Tested implications with household level data (PSID)

INTRODUCTION
MISPERCEPTION
DATA
MODEL
PREDICTIONS AND EMPIRICAL RESULTS
CONCLUSION
Next
APPENDIX

Next Steps

On the model:

Extend to a richer model for misperception as a function of tenure (to match data)

On the empirical implications:

- Extend the analysis to include tenure. •
- Robustness: Census Data.
- Better understanding of the drivers behind misperception and implication on other markets.

INTRODUCTION

MODEL

PREDICTIONS AND EMPIRICAL

CONCLUSION

APPENDIX

APPENDIX

36 / 35

v(z) satisfies

MODEL

PREDICTIONS AND EMPIRICAL RESULTS

CONCLUSION

APPENDIX

 $\widetilde{\rho}v(z) = \sup_{c,\theta} \left\{ u(c) + \mathcal{D}v(z) \right\}, \quad z \in (\underline{z}_o, \overline{z}_o),$

v(z) satisfies

$$\widetilde{\rho}v(z) = \sup_{c,\theta} \left\{ u(c) + \mathcal{D}v(z) \right\}, \quad z \in (\underline{z}_o, \overline{z}_o),$$

where

$$\begin{aligned} \mathcal{D}v(z) =& (z(r+\delta-\mu_P+\sigma_P^2(1+\beta(\gamma-1)))) \\ &+\theta(\alpha_S-r-(1+\beta(\gamma-1))\rho_{PS}\ \sigma_S\sigma_P)-c)v_z(z) \\ &+\frac{1}{2}(z^2\sigma_P^2-2z\hat{\theta}\ \rho_{PS}\ \sigma_P\sigma_S+\theta^2\sigma_S^2)v_{zz}(z), \end{aligned}$$

INTRODUCTION

MISPERCEPTION

DATA

MODEL

PREDICTIONS AND EMPIRICAL

CONCLUSION

APPENDIX

v(z) satisfies

$$\widetilde{\rho}v(z) = \sup_{c,\theta} \left\{ u(c) + \mathcal{D}v(z) \right\}, \quad z \in (\underline{z}_o, \overline{z}_o),$$

where

$$\begin{aligned} \mathcal{D}v(z) = & (z(r+\delta-\mu_P+\sigma_P^2(1+\beta(\gamma + \theta(\gamma + \theta(\gamma - 1)) + \theta(\alpha_S - r - (1+\beta(\gamma - 1)) + \frac{1}{2}(z^2\sigma_P^2 - 2z\hat{\theta}\ \rho_{PS}\ \sigma_P\sigma_S) \end{aligned}$$

$$v(z) = M \frac{(z+1-\phi_o)^{(1-\gamma)}}{1-\gamma}, \quad z \notin (\underline{z}_o, \overline{z}_o)$$

INTRODUCTION

MISPERCEPTION

DATA

MODEL

PREDICTIONS AND EMPIRICAL RESULTS

CONCLUSION

APPENDIX

$$egin{aligned} &\gamma-1)))\ &(1))
ho_{PS}\ \sigma_S\sigma_P)-c)v_z(z)\ &(2+ heta^2\sigma_S^2)v_{zz}(z), \end{aligned}$$

v(z) satisfies

$$\widetilde{\rho}v(z) = \sup_{c,\theta} \left\{ u(c) + \mathcal{D}v(z) \right\}, \quad z \in (\underline{z}_o, \overline{z}_o),$$

where

$$\begin{aligned} \mathcal{D}v(z) = & (z(r+\delta-\mu_P+\sigma_P^2(1+\beta(\gamma-1)))) \\ & +\theta(\alpha_S-r-(1+\beta(\gamma-1))\rho_{PS}\ \sigma_S\sigma_P)-c)v_z(z) \\ & +\frac{1}{2}(z^2\sigma_P^2-2z\hat{\theta}\ \rho_{PS}\ \sigma_P\sigma_S+\theta^2\sigma_S^2)v_{zz}(z), \end{aligned}$$

$$v(z) = M \frac{(z+1-\phi_o)^{(1-\gamma)}}{1-\gamma}, \quad z \notin (\underline{z}_o, \overline{z}_o)$$

$$\widetilde{v}(z) = \widetilde{M} \frac{(z+1-\phi_a-\phi_0)^{(1-\gamma)}}{1-\gamma}, \quad z \notin (\underline{z}_a, \overline{z}_a)$$

INTRODUCTION

MISPERCEPTION

DATA

MODEL

PREDICTIONS AND EMPIRICAL RESULTS

CONCLUSION

APPENDIX

PREDICTIONS AND EMPIRICAL

MODEL

RESULTS

CONCLUSION

Solution: Inaction Region

APPENDIX

Solution: Inaction Region

v(z) satisfies

$$\widetilde{\rho}v(z) = \sup_{c,\theta} \left\{ u(c) + \mathcal{D}v(z) \right\}, \quad z \in (\underline{z}_o, \overline{z}_o),$$

where

$$\begin{aligned} \mathcal{D}v(z) = & (z(r+\delta-\mu_P+\sigma_P^2(1+\beta(\gamma-1)))) \\ & +\theta(\alpha_S-r-(1+\beta(\gamma-1))\rho_{PS}\ \sigma_S\sigma_P)-c)v_z(z) \\ & +\frac{1}{2}(z^2\sigma_P^2-2z\hat{\theta}\ \rho_{PS}\ \sigma_P\sigma_S+\theta^2\sigma_S^2)v_{zz}(z), \end{aligned}$$

$$v(z) = M \frac{(z+1-\phi_o)^{(1-\gamma)}}{1-\gamma}, \quad z \notin (\underline{z}_o, \overline{z}_o)$$

$$\widetilde{v}(z) = \widetilde{M} \frac{(z+1-\phi_a-\phi_0)^{(1-\gamma)}}{1-\gamma}, \quad z \notin (\underline{z}_a, \overline{z}_a)$$

and \widetilde{M} is defined as

 $\widetilde{M} = (1 - \gamma) \sup_{z \ge \epsilon} (z + 1)^{\gamma - 1} \widetilde{v}(z),$

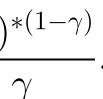
Solution: Return Point

The return point \boldsymbol{z}_a^* attains the maximum in

$\widetilde{v}(z^*)$	 \widetilde{M}	$(z_a$	+	1)
$U(\mathcal{Z})$	 IVI		1	

INTRODUCTION

MISPERCEPTION


DATA

MODEL

PREDICTIONS AND EMPIRICAL RESULTS

CONCLUSION

APPENDIX

Solution: Information Acquisition and Transaction Boundaries

Value matching and smooth pasting conditions hold at the two thresholds $(\underline{z}_a, \overline{z}_a)$

$$\widetilde{v}(z) = \widetilde{M} \frac{(\hat{z} + 1 - \phi_a - \phi_o)^{(1-\gamma)}}{1 - \gamma}$$
$$\widetilde{v}_z(z) = \widetilde{M}(\hat{z} - \phi_a - \phi_o)^{-\gamma}$$

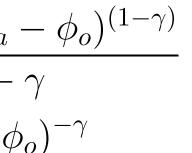
MODEL

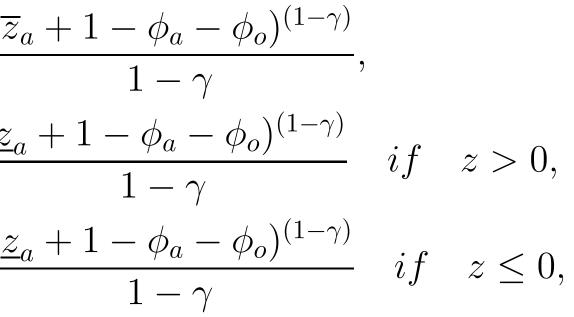
PREDICTIONS AND EMPIRICAL RESULTS

CONCLUSION

APPENDIX

INTRODUCTION	
MISPERCEPTION	
DATA	
MODEL	
PREDICTIONS AND EMPIRICAL RESULTS	
CONCLUSION	
APPENDIX	
Solution: Inaction Region	


Solution: Information Acquisition and Transaction Boundaries


Value matching and smooth pasting conditions hold at the two thresholds $(\underline{z}_a, \overline{z}_a)$

$$\widetilde{v}(z) = \widetilde{M} \frac{(\hat{z} + 1 - \phi_a)}{1 - \tilde{v}_z(z)}$$
$$\widetilde{v}_z(z) = \widetilde{M}(\hat{z} - \phi_a - \phi_a)$$

for $\hat{z}_a = \underline{z}_a, \overline{z}_a$ and at the two thresholds $(\underline{z}_o, \overline{z}_o)$

$$v(z) = \pi v \left(\frac{\overline{z}_o}{1+m^h} + 1 - \phi_o\right) + (1-\pi)M\frac{(\overline{z}_o)}{1+m^h}$$
$$v(z) = (1-\pi)v \left(\frac{\underline{z}_o}{1+m^l} + 1 - \phi_o\right) + \pi M\frac{(\underline{z}_o)}{1+m^h}$$
$$v(z) = \pi v \left(\frac{\underline{z}_o}{1+m^h} + 1 - \phi_o\right) + (1-\pi)M\frac{(\underline{z}_o)}{1+m^h}$$

