Interest Rates, Debt and Intertemporal Allocation: Evidence from Notched Mortgage Contracts in the UK

Michael Best, SIEPR James Cloyne, BoE Ethan Ilzetzki, LSE Henrik Kleven, LSE

May 2016

Our Question

- What is the impact of interest rates on household leverage and intertemporal consumption allocation?
- Key question in household finance, public finance and macro
- Great Recession has renewed interest in household leverage (e.g. Hall 2011, Mian \& Sufi 2014)
- Household debt \approx mortgage debt
- 89% of all household debt in the UK
- 74% of all household debt in the US
- Yet we have little causal evidence on mortgage debt

Empirical Challenge

- Difficult to find exogenous variation in interest rates
- Time variation in interest rates is endogenous
- Tax variation in after-tax interest rates could be useful, but compelling quasi-experiments are rare
- We exploit quasi-experimental variation in interest rates due to notched mortgage contracts in the UK
- Mortgage interest rate follows a step function of the loan-to-value ratio (LTV) at the time of loan origination
- This creates notches at specific LTV thresholds

This Paper

1. Reduced-form analysis

- Bunching estimates of LTV responses
- Mortgage demand elasticities
- Elasticity ≈ 0.3 on average, strongly heterogeneous

2. Structural analysis

- Dynamic model of consumption and debt choices
- Elasticity of Intertemporal Substitution (EIS)
- EIS ≈ 0.1 on average, very homogeneous
- Robustness and extensions

Institutional Setting and Data

UK Mortgage Market

- Interest rate notches at critical LTV thresholds
- $60 \%, 70 \%, 75 \%, 80 \%, 85 \%$
- Notches vary between banks, products, and over time
- Frequent refinancing
- Typical mortgage is 2-5 year fixed interest rate
- Penalizing reset rate deters late refinancing
- Early repayment fee and origination fee deter early refinancing
- Our Focus: Remortgagors
- House value is given
- Isolates debt choice from housing choice

Data

- Product Sales Database from UK Financial Conduct Authority merged with MoneyFacts Data (origination fees)
- All household mortgage contracts from 2008-14
- Rich mortgage contract and household characteristics
- Our estimation sample is a panel of remortgagors

Mortgage Interest Schedule

- Interest rate jumps depend on bank, product and time
- We non-parametrically estimate interest rate jump at notches:

$$
\begin{aligned}
r_{i} & =f\left(L T V_{i}\right)+\beta_{1} \text { lender }_{i}+\beta_{2} \text { type }_{i} \otimes \text { dur }_{i} \otimes \text { month }_{i} \\
& +\beta_{3} \text { repayment }_{i}+\beta_{4} \text { reason }_{i}+s\left(\text { term }_{i}\right)+\nu_{i}
\end{aligned}
$$

- Adding borrower demographics have little impact on schedule

Mortgage Interest Schedule

Reduced-Form Analysis

LTV Distribution for Remortgagors

Counterfactual Distribution

Standard Approach: Fit Polynomial to Observed Distribution

- Requires that notches only affect the distribution locally
- Here the distribution is affected globally

Our Approach: Empirical Counterfactual using Panel Data

- Previous LTV + amortization + new house price \Rightarrow Passive LTV: LTV immediately before refinancing
- Counterfactual LTV distribution: Passive LTV distribution + equity extraction distribution for non-bunchers

Actual and Passive LTV Distributions

Actual and Counterfactual LTV Distributions

Bunching Estimation: Pooling Notches

Mortgage Demand Elasticities

Statistic	Notch					
	$\mathbf{6 0}$	$\mathbf{7 0}$	$\mathbf{7 5}$	$\mathbf{8 0}$	$\mathbf{8 5}$	Pooled
$\Delta r(\%)$	0.12	0.23	0.34	0.37	0.31	0.25
	(0.01)	(0.01)	(0.02)	(0.02)	(0.06)	(0.01)
$\Delta \lambda$	0.54	1.36	2.64	3.51	5.50	1.74
Δ Equity/V $(\%)$	(0.03)	(0.03)	(0.05)	(0.07)	(0.26)	(0.02)
	$(0.34$	4.11	5.26	6.12	5.89	4.88
Δc_{0}	1,611	3,543	5,946	7,050	9,506	4,104
	(87.72)	(83.22)	(113.97)	(145.09)	(455.76)	(39.86)
Δc_{1}	2,418	5,065	8,181	9,807	12,241	5,802
	(105.98)	(105.92)	(150.37)	(237.88)	(677.98)	(66.36)
$r^{*}(\%)$	13.20	11.78	10.35	9.71	7.18	10.92
Elasticity ε	(1.11)	(0.62)	(0.46)	(0.47)	(0.81)	(0.27)
	0.07	0.19	0.40	0.56	1.37	0.25

Structural Analysis

Framework

- Baseline model

- T-period lifecycle model with housing choice and bequests
- CRRA preferences over consumption
- Perfect foresight
- Face a notch at period 0 , but not in the future
- Robustness
- Uncertainty about future interest rates
- Epstein-Zin for a broad range of risk aversion
- Hyperbolic discounting
- Dropping home improvers
- In progress
- Moving costs
- Facing notches in the future
- Stochastic income and housing prices
- Portfolio choice and liquidity constraints

Model

Preferences

$$
U=\frac{\sigma}{\sigma-1} \sum_{t=0}^{T} \delta^{t}\left(c_{t}^{\frac{\sigma-1}{\sigma}}+A H_{t+1}^{\frac{\sigma-1}{\sigma}}-\theta_{t} M_{t}\right)+\delta^{T+1} B\left(W_{T+1}\right)
$$

- c_{t} : non-housing consumption
- H_{t+1} : housing services
- $M_{t} \in\{0,1\}:=1$ when $H_{t+1} \neq(1-d) H_{t}$
- Assume $M_{0}=0$ (remortgagor) and $M_{t}=1$ for $t>0$ (housing chosen freely in future).
- W_{t} : wealth

$$
W_{t}=P_{t}(1-d) H_{t}-R_{t} D_{t}
$$

Model

Budget constraint

$$
c_{t}=y_{t}+W_{t}+D_{t+1}-P_{t} H_{t+1}
$$

Budget constraint at $t=0$

$$
c_{t} \leq y_{t}+\left(\lambda_{t+1}-\bar{\lambda}_{t}\right) P_{t}(1-d) H_{t}
$$

where

- $\bar{\lambda}_{t} \equiv \frac{R_{t} D_{t}}{P_{t}(1-d) H_{t}}$ is passive LTV
- $\lambda_{t+1} \equiv \frac{D_{t+1}}{P_{t}(1-d) H_{t}}$ is chosen LTV

Baseline Model

- Remortgage decision in period zero
- Mortgage interest notch:
- Gross interest rate of $\quad R_{1}=R \quad$ if $\quad \lambda_{1} \leq \lambda^{*}$
- Or

$$
R_{1}=R+\Delta R \quad \text { if } \quad \lambda_{1}>\lambda^{*}
$$

- Face a path $\left\{R_{t}\right\}_{2}^{T+1}$ anticipating not to bunch at λ^{*} in the future

Estimating Indifference Equation

There exists a marginal buncher who is indifferent between:

Interior Choice

- Interest rate $R+\Delta R$
- Unconstrained choice
- $c_{1}^{i}=(\delta(R+\Delta R))^{\sigma} c_{0}^{i}$
- Utility U^{I}

Notch Choice

- Interest rate R
- Borrow to the notch
- LTV $=\lambda^{*}$
- Utility U^{N}
\Rightarrow Indifference condition: $U^{I}=U^{N}$

$$
\Leftrightarrow F\left(\sigma, \Delta \ln \lambda_{t}, \Delta \ln R_{t}, X\right)=0
$$

Our Approach vs Standard Approach

Standard Euler Equation Approach

$$
\sigma=\frac{\Delta \ln \left(c_{t+1} / c_{t}\right)}{\Delta \ln R_{t}}
$$

Our Notch Approach

$$
F\left(\sigma, \Delta \ln \lambda_{t}, \Delta \ln R_{t}, X\right)=0
$$

Two key differences:

- Time variation in R_{t} vs notch in R_{t}
- LTV change $\Delta \ln \lambda_{t}$ vs consumption change $\Delta \ln \left(c_{t+1} / c_{t}\right)$

EIS Estimates

Statistic	$\mathbf{6 0}$	$\mathbf{7 0}$	$\mathbf{7 5}$	$\mathbf{8 0}$	$\mathbf{8 5}$	Pooled
	0.54	1.36	2.64	3.51	5.50	1.74
$\Delta \lambda$	(0.03)	(0.03)	(0.05)	(0.07)	(0.26)	(0.02)
	0.67	0.17	0.33	0.14	0.05	0.36
a	(0.11)	(0.05)	(0.06)	(0.03)	(0.02)	(0.04)
	1.68	1.70	4.08	4.22	6.15	2.85
	(0.45)	(0.15)	(0.38)	(0.23)	(0.34)	(0.22)
EIS σ	0.10	0.05	0.14	0.12	0.24	0.07
	(0.05)	(0.01)	(0.02)	(0.01)	(0.05)	(0.01)

Heterogeneity in EIS

Estimated From Pooled Notch

Covariate	Quartile			
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Age	0.05	0.06	0.10	0.09
	(0.01)	(0.02)	(0.04)	(0.03)
Income	0.09	0.08	0.05	0.07
	(0.03)	(0.02)	(0.01)	(0.04)
Loan to Income	0.05	0.06	0.06	0.10
	(0.03)	(0.02)	(0.01)	(0.03)
House Price Growth	0.07	0.05	0.04	0.24
	(0.03)	(0.01)	(0.01)	(0.06)
Interest Rate Change	0.04	0.05	0.08	0.11
	(0.01)	(0.01)	(0.02)	(0.05)

Robustness and Extensions

σ	Panel A: Future Interest Rates $\left\{r_{t}\right\}_{2}^{\infty}$			
	2\%	$\mathrm{r}_{1}=3.35 \%$	7\%	15\%
	0.0743	0.0764	0.0817	0.0909
	(0.0111)	(0.0115)	(0.0123)	(0.0138)
Panel B: Discount Factor δ				
σ	0.7	0.9	0.95	0.99
	0.0811	0.0772	0.0764	0.0759
	(0.0133)	(0.0118)	(0.0115)	(0.0113)
Panel C: Hyperbolic Discounting β				
σ	0.5	0.7	0.9	1
	0.0766	0.0765	0.0765	0.0764
	(0.0115)	(0.0115)	(0.0115)	(0.0115)
Panel D: Risk Aversion γ (With Uncertainty)				
σ	0	5	10	100
	0.0764	0.0795	0.0781	0.0749
	(0.0115)	(0.0120)	(0.0117)	(0.0112)

Conclusions

- Novel source of quasi-experimental interest rate variation
- Elasticities of mortgage demand (reduced-form)
- Relatively large and strongly heterogeneous elasticities
- Important for monetary and tax policy, but not a deep parameter invariant to environment
- Elasticities of intertemporal substitution (structural)
- Relatively small and homogeneous elasticities
- Liquidity constraints cannot (easily) explain low elasticities
- Important for macro and consumption theory; key statistic for monetary and fiscal policy

Households Refinance when Reset Rate Kicks In

Mortgage Interest Schedule: With Individual Controls

$$
\begin{aligned}
r_{i} & =f\left(L T V_{i}\right)+\beta_{1} \text { lender }_{i}+\beta_{2} \text { type }_{i} \otimes \text { dur }_{i} \otimes \text { month }_{i} \\
& +\beta_{3} \text { repayment }_{i}+\beta_{4} \text { reason }_{i} \\
& \left.+s_{1}\left(\text { age }_{i}\right)+s_{2} \text { (income }_{i}\right) I\left\{\text { single }_{i}\right\} \\
& +s_{3}\left(\text { income }_{i}\right) I\left\{\text { couple }_{i}\right\}+s_{4}\left(\text { term }_{i}\right)+\nu_{i}
\end{aligned}
$$

Mortgage Interest Schedule: With Individual Controls

Equity Extracted by Passive LTV for Non-Bunchers

Bunching Estimation: 60\% LTV Notch

Bunching Estimation at the 70\% LTV Notch

Bunching Estimation: 75\% LTV Notch

Bunching Estimation at the 80\% LTV Notch

Bunching Estimation at the 85\% LTV Notch

\longrightarrow Actual $\quad \longrightarrow$ Conditional Interest Rate $\quad \longrightarrow$ Counterfactual

Indifference Condition: Marginal Buncher

Parameters Taken from Our Data

Parameter	Notch					
	$\mathbf{6 0}$	$\mathbf{7 0}$	$\mathbf{7 5}$	$\mathbf{8 0}$	$\mathbf{8 5}$	$\mathbf{6 0 - 8 5}$
$\Delta t(\mathrm{yrs})$	3.28	3.22	3.25	3.57	3.65	3.35
	(0.02)	(0.01)	(0.01)	(0.02)	(0.03)	(0.01)
D_{1}^{*}	$178,414.30$	$181,526.42$	$168,504.81$	$160,125.30$	$146,975.95$	$169,716.78$
	$(1,263.62)$	(992.48)	(838.41)	(916.45)	(963.22)	(454.95)
$R_{0} D_{0}$	$168,986.00$	$170,941.69$	$156,551.13$	$147,659.69$	$136,005.20$	$158,523.98$
	$(1,300.79)$	(983.00)	(774.30)	(828.35)	(896.77)	(449.86)
y_{0}	$48,834.93$	$46,819.63$	$43,148.35$	$41,400.18$	$39,790.09$	$44,343.52$
	(532.61)	(393.18)	(239.40)	(224.48)	(247.38)	(150.03)
Δ Equity $/ V(\%)$	3.30	4.15	5.26	5.97	5.97	4.87
	(0.09)	(0.07)	(0.07)	(0.07)	(0.10)	(0.04)
$(\%)$	3.09	3.17	3.38	3.74	4.37	3.36
	(0.01)	(0.00)	(0.00)	(0.01)	(0.01)	(0.01)
Δr	0.12	0.23	0.33	0.36	0.34	0.25
	(0.01)	(0.01)	(0.02)	(0.02)	(0.05)	(0.01)

Parameters Calibrated or Taken from Other Data

Parameter	Process	Data
P_{t}	$\ln P_{t}=0.333+0.95 \ln P_{t-1}+\varepsilon_{t}^{p}$ $\varepsilon_{t}^{p} \sim N\left(0, \sigma_{p}^{2}\right)$ $\sigma_{p}^{2}=0.0045$	Land registry 1995-2016
Real interest rate	$r r_{t}=0.21 \%+0.88 r r_{t-1}+\varepsilon_{t}^{r}$ $\varepsilon_{r} \sim\left(0, \sigma_{r}^{2}\right)$ $\sigma_{r}^{2}=1.43$	Bank of England 1993-2015
Nominal interest rate	$R_{t}=1+\max \left\{2 \%+r r_{t}, 0.5\right\}+r_{L T V}(L T V)$	
y_{t}	Cancels out of indifference eq.	
A	To match housing wealth to income ratio of 4.65	BoE
Bequest motivation	Median bequest of 0	HMRC
β	0.95	

Optimization Frictions

- Kleven-Waseem non-parametric friction adjustment:
- Estimate fraction of non-optimizers from strictly dominated region above notch \rightarrow adjust bunching using this fraction
- We use a parametric friction adjustment:
- There is no strictly dominated region here
- But given preferences with $\delta>0$, there exist regions of choice inconsistent with any $\sigma \geq 0$
- Use density mass in this region to estimate the fraction a of non-optimizers

Mortgage Menu in a Large UK Bank

Maximum Loan to Valuation (LTV) of 90\%

2 Year Fixed Standard >
2 Year Fixed Fee Saver* >
2 Year Fixed Premier and Advance Standard >
5 Year Fixed Standard >
5 Year Fixed Fee Saver* >
5 Year Fixed Premier and Advance Standard >

Maximum Loan to Valuation (LTV) of 85\%

2 Year Fixed Standard >
2 Year Fixed Fee Saver* >
2 Year Fixed Premier and Advance Standard >
5 Year Fixed Standard >
5 Year Fixed Fee Saver* >
5 Year Fixed Premier and Advance Standard >

Maximum Loan to Valuation (LTV) of $\mathbf{8 0 \%}$

2 Year Fixed Standard >
2 Year Fixed Fee Saver* >
2 Year Fixed Premier and Advance Standard >
5 Year Fixed Standard >

Mortgage Interest Schedule in a Large UK Bank

2 Year Fixed Standard

Max loan-to-value	Initial interest rate	Initial interest rate applied until ?	This reverts to the Variable Rate/BTL Variable Rate, currently $?$	Overall cost for comparison (APR)	Booking fee
90\%	3.29\%	2 Years Fixed until 31.07.17	3.94\%	4\% APR	$£ 999$
Max loan-to-value	Initial interest rate	Initial interest rate applied until ?	This reverts to the Variable Rate/BTL Variable Rate, currently $?$	Overall cost for comparison (APR) ?	Booking fee ?
85\%	2.29\%	2 Years Fixed until 31.07.17	3.94\%	3.8\% APR	$£ 999$
Max loan-to-value	Initial interest rate	Initial interest rate applied until ?	This reverts to the Variable Rate/BTL Variable Rate, currently	Overall cost for comparison (APR) ?	Booking fee
80\%	1.99\%	2 Years Fixed until 31.07.17	3.94\%	3.7\% APR	£999

