Testing Multivariate Economic Restrictions using Quantiles: The Example of Slutsky Negative Semidefiniteness

Stefan Hoderlein, Boston College

(Joint with Holger Dette and Natalie Neumayer)

• **Objective of the Paper**: 1. Testing shape constraint imposed by rationality in heterogeneous population with complex unobservable.

• 2. Using distributional information/quantiles in systems of equations without triangularity/monotonicity.
Difficulties with this Objective

- Problem 1: Relationship between quantiles and structural unobservables in the absence of scalar monotonicity.

- Problem 2: How to use an univariate concept (quantile) in systems of equations.

- Problem 3: Interaction between problems 1 and 2. What added complications arise if we consider structural unobservables in systems of equations.
Literature

• Shape constraints and heterogeneity: Matzkin (1994, 2007)

• Testing rationality + parametric: Stone (1954), Deaton and Muellbauer (1980), Blundell et al. (1994). Control for observed heterogeneity

• Nonparametric testing literature. We could do omission of variables.
Literature

- Particularly close: Hoderlein and Mammen (2007, 2009)

Overview of today’s talk

- 1. Motivation/Literature
- 2. Model
- 3. Identification Result
- 4. Test statistic and Bootstrap.
- 5. Simulation/Application
(Unobserved) Population Model

Assumption 1, DGP: “Nonseparable” System of Demand Equations

\[Y_1 = \phi_1(P, X, U) \]
\[Y_2 = \phi_2(P, X, U) \]
\[\vdots \]
\[Y_L = \phi_L(P, X, U), \]

\(Y_l = \text{demand for good } l, \ Y \in \mathcal{Y} \subseteq \mathbb{R}^L_+ \)

\(P = (P_1, ..., P_L)' \in \mathcal{P} \subseteq \mathbb{R}^L_+, \ L\)-vector of prices.

\(X \in \mathcal{X} \subseteq \mathbb{R}_+, \ “income”, \)

\(U \in \mathcal{U} \subseteq \mathbb{R}^\infty, “preferences”, \) high (potentially countably infinite) dimensional unobservable.
(Unobserved) Population Model

- What do we allow for: all equations may depend on $d > L$ unobservables in arbitrary fashion.

- We do not assume triangular structure.

- We do not assume that individuals are of the same type.

- There could be many types, with many parameters each.
(Unobserved) Population Model

- “Treatment effects” scenario - “excess” heterogeneity, ϕ not identifiable.

- However: Averages are identified.

- **Economic theory**: Under standard assumptions on utility, ϕ smooth, differentiable in p, x.

- For every $U = u$, Slutsky matrix negative semidefinite.
Slutsky matrix.

\[\mathcal{G}(P, X, U) = D_p \phi(P, X, U) + \partial_x \phi(P, X, U) \phi(P, X, U)', \]

- \(D_p \) matrix of partial derivatives, \(\partial_x \) vector. Has to be nsd, i.e.,

\[\mathcal{G}(P, X, U) \leq 0, \quad \mathbb{P}_{P \times U} - a.s. \]

- Key restriction of utility maximization. Equivalent to Weak Axiom.
Independence Assumption

- Problem: in heterogeneous population, depends on (unobserved) U.

- Need to make statement about how this relates to observables

- Independence condition (no covariates). Exogenous case

$$F_{U \mid P_X} = F_U$$
Independence Assumption

- With covariates/household characteristics $S \in S \subseteq \mathbb{R}^{l}$. Let $U = \vartheta(S, A)$. $A \in \mathcal{A} \subseteq \mathbb{R}^{\infty}$.

- Independence condition. Exogenous case

\[F_{U|PXS} = F_{U|S} \]

- “Selection on observables”.
Independence Assumption

- With Endogeneity of (w.l.o.g. X): Control function approach. Assume there exist instruments Z such that

$$X = \mu(P, S, Z) + V,$$

(or scalar monotonicity, see Chesher (2003), Hoderlein and Vanhems (2010)), and

$$F_{U|PXSV} = F_{U|SV}$$

- Assumption 2: “Selection on observables and controls”.
Other Ingredients

- Regularity conditions on ϕ: smoothness, uniform bounds on derivatives ("Assumption 3")

- Innovation: use distributional information to learn about $\mathcal{G}(P, X, U)$.

- Use regression quantiles, C random scalar, D random vector. Formally define $k^\alpha_{C|D}(d)$ by
 \[\mathbb{P}(C \leq k^\alpha_{C|D}(d) | D = d) = \alpha, \]

- Regularity conditions on certain quantiles ("Assumption 4")
Other Ingredients

• Straightforward corollary from Hoderlein and Mammen (2007)

• Let A1 - A4 hold, then for any \(Y_i, \ l = 1, \ldots, L, \)

\[
\partial_x k_{Y_i|P_XSV}(p, x, s, v) =
\]
\[
\mathbb{E}[\partial_x \phi(P, X, U)|P = p, X = x, S = s, V = v, Y = k_{Y_i|P_XSV}(x)],
\]
and analogously for \(D_p \phi. \)
Other Ingredients

- Corollary - Interpretation

\[\partial_x k_{Y_l|PXSV}^\alpha(P, X, S, V) = \mathbb{E}[\partial_x \phi(P, X, U)|P, X, S, V, Y = k_{Y_l|PXSV}^\alpha]. \]

- Best approximation to unobserved effect of interest \(\partial_x \phi \), given observed information.

- Effect of a small treatment, for subpopulation defined by treatment intensity \(P = p, X = x \) and proxies for preferences \(S = s, V = v, Y = k_{Y_l|PXSV}^\alpha(p, x, s, v) \).
Problem

- Univariate result in a “deep” sense:

- Example, two equations

\[
Y_1 = \phi_1(X, A), \\
Y_2 = \phi_2(X, A)
\]

- Hoderlein and Mammen (2009): \(\mathbb{E}[\partial_x \phi_1(X, U) | X, Y_1, Y_2] \) not (point) identified from distribution of data.

- No hope for direct “systems of equations” attack using all \(L \) quantiles.
Main identification result in this paper

• Some preliminaries: Given $L - 1$ demands, the L-th is determined by budget constraint: omit equation L.

• We impose homogeneity of degree zero (one price drops out, all prices are relative).

• Hence also only $L - 1$ prices.
Main identification result

- Key identification idea in DHN: reduce multivariate problem to set of univariate problems, akin to the Cramer-Wold device.

- In particular, form indices of dependent variable.

- Formally, let \(Y(b) = b'Y = b'\phi \), for

- Let \(k(\alpha, b|w) \) denote the conditional \(\alpha \) quantile of \(Y(b) \) given \(W = (P, X, S, V) \)

- Let \(\nabla_x \) denote the gradient.
Main identification result

Theorem 1: Let assumptions A1–A4 hold. Then,

\[\mathcal{G}(p, x, u) \ n_{sd} \Rightarrow \nabla_p k(\alpha, b|w)'b + \partial_x k(\alpha, b|w)k(\alpha, b|w) \leq 0 \]

for all \((\alpha, b) \in (0, 1) \times \mathbb{S}_{L-1}, \) and all \((w, u) \in \mathcal{W} \times \mathcal{U}.\)
• **Main identification result**

• **Remarks:** No triangular structure, no monotonicity, still learn something by looking at implications on set of distributions.

• \(g(\phi(\cdot, \cdot)) \in \mathcal{B} \Rightarrow g^*(F_{Y|P_X}(\cdot, \cdot)) \in \mathcal{B}' \).

• Logic \(\neg g^*(F_{Y|P_X}(y,p,x)) \Rightarrow \neg g(\phi(y,p,u)) \)
 with \(\mathbb{P}[Y = y, P = p, U = u] > 0. \)

• We may learn something: For which value of \((p, x; \alpha, b)\), i.e., subpopulation, rationality fails. Important for refining economic theory. Example with covariates. \(S = \) urban two person households.
Main identification result

• Remarks:

• Cramer Wold device: (conditional distribution of all linear combinations used \rightarrow use entire conditional distribution of the data).

• But identifies only set of conditional expectations with σ-algebras: $\mathbb{E}[\cdot | P, X, S, V, Y(b)]$ indexed by b.

• Proof uses main idea of HM, combined with directional derivatives
Test Statistic

• Introduce

\[k_{p\ell}(\alpha, b \mid w) = \partial_{p\ell}k(\alpha, b \mid w) \bigg|_{(p,x)=w} \]
\[k_x(\alpha, b \mid w) = \partial_x k(\alpha, b \mid w) \bigg|_{(p,x)=w} \]

• \(H_0 : \forall \alpha \in A, b = (b_1, \ldots, b_{L-1})' \in S_{L-1} : \]
\[\sum_{\ell=1}^{L-1} b_\ell k_{p\ell}(\alpha, b \mid w) + k_x(\alpha, b \mid w)k(\alpha, b \mid w) \leq 0 \]
Test Statistic

- Define

\[T_n = \sqrt{n h^{L+2}} \sup_{\alpha \in A, b \in S_{L-1}} R_n(\alpha, b \mid w), \]

where

\[R_n(\alpha, b \mid w) = \sum_{\ell=1}^{L-1} b_\ell \hat{k}_{p_\ell}(\alpha, b \mid w) + \hat{k}_x(\alpha, b \mid w) \hat{k}(\alpha, b \mid w). \]
Test Statistic

- Let \(\tau_\alpha(u) = u(\alpha - I\{u < 0\}) \)

- Estimators are local polynomial quantile estimators:
 \[
 (\hat{\mu}_0, \hat{\mu}_1, \hat{\mu}_2) = \arg\min_{(\mu_0, \mu_1, \mu_2) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}} \sum_{i=1}^{n} \tau_\alpha \left(Y_i' b - \mu_0 - \mu_1' (W_i - w) - (W_i - w)' \mu_2 (W_i - w) \right) K \left(\frac{W_i - w}{h} \right)
 \]

- Then, \(\hat{k}(\alpha, b \mid w) = \hat{\mu}_0, \hat{k}_{p,\ell}(\alpha, b \mid w) = \hat{\mu}_{1,\ell}, \ell = 1, \ldots, L - 1, \) and \(\hat{k}_{x}(\alpha, b \mid w) = \hat{\mu}_{1,L}. \)
Test Statistic

- Under standard assumptions, $R_n(\alpha, b \mid w)$ consistently estimates

\[
R(\alpha, b \mid w) = \sum_{\ell=1}^{L-1} b_\ell k_{p\ell}(\alpha, b \mid w) + k_x(\alpha, b \mid w)k(\alpha, b \mid w)
\]

and we have the following weak convergence result.
Test Statistic

- **Theorem 2:** Let $f_{P,X}$ denote the density of (P, X), and let $f_{Y(b)|P,X}(\cdot | w)$, $F_{Y(b)|P,X}(\cdot | w)$ denote the conditional density and distribution function of $Y(b)$, given $(P, X) = w$. Under assumptions specified in the paper, the process

$$\sqrt{nh^{L+2}} \left(R_n(\alpha, b | w) - R(\alpha, b | w) \right)_{\alpha \in A, b \in S_{L-1}}$$

converges (for w fixed) weakly to a Gaussian process $G(\alpha, b | w)_{\alpha \in A, b \in S_{L-1}}$ with covariance
Test Statistic

- **Theorem 2 (cont.):** Gaussian process $G(\alpha, b \mid w)_{\alpha \in A, b \in S_{L-1}}$ with covariance

\[
\text{Cov}\left(G(\alpha, b \mid w), G(\tilde{\alpha}, \tilde{b} \mid w)\right) = \left[\mathbb{P}\left(Y(b) \leq k(\alpha, b \mid w), Y(\tilde{b}) \leq k(\tilde{\alpha}, \tilde{b} \mid w) \mid (P, X) = w\right)
\right.
\]

\[
\times F_{Y(b)|P,X}(k(\alpha, b \mid w) \mid w) F_{Y(\tilde{b})|P,X}(k(\tilde{\alpha}, \tilde{b} \mid w) \mid w)
\]

\[
\times \int K^2(\bar{p}, \bar{x})(b'\bar{p} + k(\alpha, b \mid w)\bar{x})(\tilde{b}'\bar{p} + k(\tilde{\alpha}, \tilde{b} \mid w)\bar{x}) d(\bar{p}, \bar{x})
\]

\[
\times \frac{f_{Y(b)|P,X}(k(\alpha, b \mid w) \mid w) f_{Y(\tilde{b})|P,X}(k(\tilde{\alpha}, \tilde{b} \mid w) \mid w) f_{P,X}(w)(\int u^2 \kappa)}{
}
\]
Test Statistic

• Only get distributional result for centered statistic

\[\tilde{T}_n = \sqrt{nh^{L+2}} \sup_{\alpha,b} (R_n(\alpha, b | w) - R(\alpha, b | w)) \]

both under the null hypothesis and under fixed alternatives.

• Corollary to theorem 2: For each \(c \in \mathbb{R} \),

\[\mathbb{P}(\tilde{T}_n > c) \xrightarrow{n \to \infty} \mathbb{P}(\sup_{\alpha,b} G(\alpha, b) > c). \]
Test Statistic

- Structure of the null hypothesis, $H_0 : R(\cdot, \cdot | w) \leq 0$

- It follows that $\mathbb{P}(T_n > c) \leq \mathbb{P}(\tilde{T}_n > c)$ under H_0,

- Hence, obtain asymptotically level γ test by rejecting H_0 whenever $T_n > c_\gamma$, where $\mathbb{P}(\sup_{\alpha, b} G(\alpha, b) > c_\gamma) = \gamma$.
Test Statistic

- Pointwise tests (ie, conditional on fixed values of regressors) as in Hoderlein (2005, 2010).

- Objective: Get fraction of population for which rationality is rejected through Honore-Mueller correction.

\[P_X [\text{reject}] = P_X [\text{not rational}] + 0.05 [1 - P_X [\text{not rational}]] \]

- Solve for \(P_X [\text{not rational}] \).
Test Statistic

- If interest is in joint null hypothesis of rationality at \(m \) specified values of \(x \).

- Consider the largest t-statistic test statistic. Adjust critical value upwards.

- Specifically, if the individual t-tests are of level \(\alpha \), the level \(\alpha^* \) of the overall test satisfies \((1 - \alpha)^m = 1 - \alpha^* \)
Test Statistic - Bootstrap

- Asymptotic distribution to involved, hence get bootstrap, $k = 1, .., m$.

- Keep covariates and define $(P^*_k, X^*_k) = (P_k, X_k)$.

- For each fixed covariate (P_k, X_k) we generate Y^*_k from conditional distribution of Y, given $(P, X) = (P_k, X_k)$, i.e. $F_{Y|P,X}(\cdot | P_k, X_k)$.

- For one-dimensional Y this method coincides with the bootstrap procedure suggested in HM (2009).
Simulation

- DGP Let $A \sim \mathcal{U}[0, 1]$. Then, simple model with no income effect:

\[
\begin{bmatrix}
Y_1 \\
Y_2 \\
Y_3
\end{bmatrix}
= \begin{bmatrix}
0.9A \\
0.5A \\
0.7A
\end{bmatrix}
+ \begin{bmatrix}
-0.25A + \lambda & 0.1A & 0.1A \\
0.1A & -0.25A & 0.1A \\
0.1A & 0.1A & -0.25A
\end{bmatrix}
\begin{bmatrix}
P_1 \\
P_2 \\
P_3
\end{bmatrix},
\]

- Slutsky

For $\lambda = 0$ always nd for entire population.
Simulation

- DGP Let $A \sim \mathcal{U}[0, 1]$. Then, model such that Slutsky matrix:

$$S(A) = \begin{pmatrix}
-0.25A + \lambda & 0.1A & 0.1A \\
0.1A & -0.25A & 0.1A \\
0.1A & 0.1A & -0.25A
\end{pmatrix},$$

- As λ increases, parts of population not nd. For $\lambda = 0.05$, $5/25 = 0.2$ of population not rational.
Simulation

- Numbers, \(n = 2000 \) observations

- Data simulated from normal distributions, but same means and variances as data in application.

- Results. Size = 0.03 (expected size distortion due to non-centering).

<table>
<thead>
<tr>
<th>(\lambda)</th>
<th>0.01</th>
<th>0.02</th>
<th>0.03</th>
<th>0.04</th>
<th>0.05</th>
<th>0.07</th>
<th>0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Population not Rational</td>
<td>0.04</td>
<td>0.08</td>
<td>0.12</td>
<td>0.16</td>
<td>0.20</td>
<td>0.28</td>
<td>0.40</td>
</tr>
<tr>
<td>Power</td>
<td>0.08</td>
<td>0.15</td>
<td>0.30</td>
<td>0.62</td>
<td>0.83</td>
<td>0.97</td>
<td>0.999</td>
</tr>
</tbody>
</table>
Simulation

• Similar, but even stronger results when difference between rational and not rational bigger.

• Models with income effect: similar results.

• To do: more alternatives etc.
Applications

- British FES data (repeated cross sections, thanks to Richard Blundell)

- Repeated cross sections.

- Preliminary results: Find rationality largely not rejected,

\[P_X [Rational] = 0.92. \]

No obvious structure in violations.
Summary/Outlook

• Showed how to conduct hypothesis testing in a scenario with:

• Complicated ("excess") Heterogeneity

• Systems of Equations

• Using entire distribution of the data (b-indexed quantiles, Cramer-Wold device)
Summary/Outlook

• Proposed test statistic.

• Established large sample theory

• Derived bootstrap method.

• Worked well in simulations: able to detect even relatively small fractions of almost rational individuals

• Found in application support for core of utility maximization.
Summary/Outlook

- Principle can be applied to omission of variables

- Also in systems of simultaneous equations/Panels.

- Testing for endogeneity in a control function fashion.

- We focus on most important economic shape constraint.