centre for microdata methods and practice

ESRC centre

cemmap is an ESRC research centre

ESRC

Keep in touch

Subscribe to cemmap news

Inference under Covariate-Adaptive Randomization

Authors: Federico A. Bugni , Ivan A. Canay and Azeem M. Shaikh
Date: 10 May 2016
Type: cemmap Working Paper, CWP21/16
DOI: 10.1920/wp.cem.2016.2116

Abstract

This paper studies inference for the average treatment eff ect in randomized controlled trials with covariate-adaptive randomization. Here, by covariate-adaptive randomization, we mean randomization schemes that first stratify according to baseline covariates and then assign treatment status so as to achieve "balance" within each stratum. Such schemes include, for example, Efron's biased-coin design and strati ed block randomization. When testing the null hypothesis that the average treatment eff ect equals a pre-speci fied value in such settings, we fi rst show that the usual two-sample t-test is conservative in the sense that it has limiting rejection probability under the null hypothesis no greater than and typically strictly less than the nominal level. In a simulation study, we fi nd that the rejection probability may in fact be dramatically less than the nominal level. We show further that these same conclusions remain true for a naïve  permutation test, but that a modi fied version of the permutation test yields a test that is non-conservative in the sense that its limiting rejection probability under the null hypothesis equals the nominal level for a wide variety of randomization schemes. The modi fied version of the permutation test has the additional advantage that it has rejection probability exactly equal to the nominal level for some distributions satisfying the null hypothesis and some randomization schemes. Finally, we show that the usual t-test (on the coefficient on treatment assignment) in a linear regression of outcomes on treatment assignment and indicators for each of the strata yields a non-conservative test as well under even weaker assumptions on the randomization scheme. In a simulation study, we fi nd that the non-conservative tests have substantially greater power than the usual two-sample t-test.

Download full version
Previous version:
Federico A. Bugni, Ivan A. Canay and Azeem M. Shaikh August 2015, Inference under covariate-adaptive randomization, cemmap Working Paper, CWP45/15, Institute for Fiscal Studies

Publications feeds

Subscribe to cemmap working papers via RSS

Search cemmap

Search by title, topic or name.

Contact cemmap

Centre for Microdata Methods and Practice

How to find us

Tel: +44 (0)20 7291 4800

E-mail us