centre for microdata methods and practice

ESRC centre

cemmap is an ESRC research centre

ESRC

Keep in touch

Subscribe to cemmap news

ABC of SV: Limited information likelihood inference in stochastic volatility jump-diffusion models

Authors: Michael Creel and Dennis Kristensen
Date: 07 February 2015
Type: Journal Article, Journal of Empirical Finance, Vol. 31, pp. 85-108
DOI: 10.1016/j.jempfin.2015.01.002

Abstract

We develop novel methods for estimation and filtering of continuous-time models with stochastic volatility and jumps using so-called Approximate Bayesian Computation which build likelihoods based on limited information. The proposed estimators and filters are computationally attractive relative to standard likelihood-based versions since they rely on low-dimensional auxiliary statistics and so avoid computation of high-dimensional integrals. Despite their computational simplicity, we find that estimators and filters perform well in practice and lead to precise estimates of model parameters and latent variables. We show how the methods can incorporate intra-daily information to improve on the estimation and filtering. In particular, the availability of realized volatility measures help us in learning about parameters and latent states. The method is employed in the estimation of a flexible stochastic volatility model for the dynamics of the S&P 500 equity index. We find evidence of the presence of a dynamic jump rate and in favor of a structural break in parameters at the time of the recent financial crisis. We find evidence that possible measurement error in log price is small and has little effect on parameter estimates. Smoothing shows that, recently, volatility and the jump rate have returned to the low levels of 2004–2006.

Download full version

Publications feeds

Subscribe to cemmap working papers via RSS

Search cemmap

Search by title, topic or name.

Contact cemmap

Centre for Microdata Methods and Practice

How to find us

Tel: +44 (0)20 7291 4800

E-mail us