centre for microdata methods and practice

ESRC centre

cemmap is an ESRC research centre

ESRC

Keep in touch

Subscribe to cemmap news

Robust inference in high-dimensional approximately sparse quantile regression models

Authors: Alexandre Belloni , Victor Chernozhukov and Kengo Kato
Date: 30 December 2013
Type: cemmap Working Papers, CWP70/13
doi: 10.1920/wp.cem.2013.7013

Abstract

This work proposes new inference methods for the estimation of a regression coefficient of interest in quantile regression models. We consider high-dimensional models where the number of regressors potentially exceeds the sample size but a subset of them suffice to construct a reasonable approximation of the unknown quantile regression function in the model. The proposed methods are protected against moderate model selection mistakes, which are often inevitable in the approximately spare model considered here. The methods construct (implicitly or explicitly) an optimal instrument as a residual from a density-weighed projection of the regressor of interest on other regressors. Under regularity conditions, the proposed estimators of the quantile regression coefficient are asymptotically root-n normal, with variance equal to the semi-parametric efficiency bound of the partially linear quantile regression model. In addition, the performance of the technique is illustrated through Monte-carlo experiments and an empirical example, dealing with risk factors in childhood malnutrition. The numerical results confirm the theoretical findings that the proposed methods should outperform the naive post-model selection methods in non-parametric settings. Moreover, the empirical results demonstrate soundness of the proposed methods.

Download full version

Publications feeds

Subscribe to cemmap working papers via RSS

Search cemmap

Search by title, topic or name.

Contact cemmap

Centre for Microdata Methods and Practice

How to find us

Tel: +44 (0)20 7291 4800

E-mail us