centre for microdata methods and practice

ESRC centre

cemmap is an ESRC research centre

ESRC

Keep in touch

Subscribe to cemmap news

Censored quantile regression with endogenous regressors

Authors: Richard Blundell and James L. Powell
Date: 01 November 2007
Type: Journal article, Journal of Econometrics, Vol. 141, No. 1, pp. 65-83
DOI: 10.1016/j.jeconom.2007.01.016

Abstract

This paper develops a semiparametric method for estimation of the censored regression model when some of the regressors are endogenous (and continuously distributed) and instrumental variables are available for them. A "distributional exclusion" restriction is imposed on the unobservable errors, whose conditional distribution is assumed to depend on the regressors and instruments only through a lower-dimensional "control variable," here assumed to be the difference between the endogenous regressors and their conditional expectations given the instruments. This assumption, which implies a similar exclusion restriction for the conditional quantiles of the censored dependent variable, is used to motivate a two-stage estimator of the censored regression coefficients. In the first stage, the conditional quantile of the dependent variable given the instruments and the regressors is nonparametrically estimated, as are the first-stage reduced-form residuals to be used as control variables. The second-stage estimator is a weighted least squares regression of pairwise differences in the estimated quantiles on the corresponding differences in regressors, using only pairs of observations for which both estimated quantiles are positive (i.e., in the uncensored region) and the corresponding difference in estimated control variables is small. The paper gives the form of the asymptotic distribution for the proposed estimator, and discusses how it compares to similar estimators for alternative models.

Download full version

Search cemmap

Search by title, topic or name.

Contact cemmap

Centre for Microdata Methods and Practice

How to find us

Tel: +44 (0)20 7291 4800

E-mail us