centre for microdata methods and practice

ESRC centre

cemmap is an ESRC research centre

ESRC

Keep in touch

Subscribe to cemmap news

Recovering social networks from panel data: identification, simulations and an application

Authors: Áureo de Paula , Imran Rasul and Pedro CL Souza
Date: 08 October 2018
Type: cemmap Working Paper, CWP58/18

Abstract

It is almost self-evident that social interactions can determine economic behavior and outcomes. Yet, information on social ties does not exist in most publicly available and widely used datasets. We present results on the identification of social networks from observational panel data that contains no information on social ties between agents. In the context of a canonical social interactions model, we provide sufficient conditions under which the social interactions matrix, endogenous and exogenous social effect parameters are all globally identified. While this result is relevant across different estimation strategies, we then describe how high-dimensional estimation techniques can be used to estimate the model based on the Adaptive Elastic Net GMM method. We showcase the method and its robustness in Monte Carlo simulations using stylized and real world network structures. Finally, we employ the method to study tax competition across US states. We find the identified network structure of tax competition differs markedly from the common assumption of competition between geographically neighboring states. We analyze the identified social interactions matrix to provide novel insights into the long-standing debate on the relative roles of factor mobility and yardstick competition in driving tax setting behavior across states. Most broadly, our results show how the analysis of social interactions can be extended to economic realms where no network data exists.

Download full version

Search cemmap

Search by title, topic or name.

Contact cemmap

Centre for Microdata Methods and Practice

How to find us

Tel: +44 (0)20 7291 4800

E-mail us