centre for microdata methods and practice

ESRC centre

cemmap is an ESRC research centre

ESRC

Keep in touch

Subscribe to cemmap news

Inference on a distribution from noisy draws

Authors: Koen Jochmans and Martin Weidner
Date: 27 February 2018
Type: cemmap Working Paper, CWP14/18
DOI: 10.1920/wp.cem.2018.1418

Abstract

We consider a situation where a distribution is being estimated by the empirical distribution of noisy measurements. The measurements errors are allowed to be heteroskedastic and their variance may depend on the realization of the underlying random variable. We use an asymptotic embedding where the noise shrinks with the sample size to calculate the leading bias arising from the presence of noise. Conditions are obtained under which this bias is asymptotically non-negligible. Analytical and jackknife corrections for the empirical distribution are derived that recenter the limit distribution and yield con fidence intervals with correct coverage in large samples. Similar adjustments are presented for nonparametric estimators of the density and quantile function. Our approach can be connected to corrections for selection bias and shrinkage estimation. Simulation results confi rm the much improved sampling behavior of the corrected estimators. An empirical application to the estimation of a stochastic-frontier model is also provided.

Download full version

Search cemmap

Search by title, topic or name.

Contact cemmap

Centre for Microdata Methods and Practice

How to find us

Tel: +44 (0)20 7291 4800

E-mail us