centre for microdata methods and practice

ESRC centre

cemmap is an ESRC research centre

ESRC

Keep in touch

Subscribe to cemmap news

Multi-step non- and semi-parametric predictive regressions for short and long horizon stock return prediction

Authors: Tingting Cheng , Jiti Gao and Oliver Linton
Date: 10 January 2018
Type: cemmap Working Paper, CWP03/18
DOI: 10.1920/wp.cem.2018.0318

Abstract

In this paper, we propose three new predictive models: the multi-step nonparametric predictive regression model and the multi-step additive predictive regression model, in which the predictive variables are locally stationary time series; and the multi-step time-varying coefficient predictive regression model, in which the predictive variables are stochastically nonstationary. We also establish the estimation theory and asymptotic properties for these models in the short horizon and long horizon case. To evaluate the effectiveness of these models, we investigate their capability of stock return prediction. The empirical results show that all of these models can substantially outperform the traditional linear predictive regression model in terms of both in-sample and out-of-sample performance. In addition, we fi nd that these models can always beat the historical mean model in terms of in-sample fi tting, and also for some cases in terms of the out-of-sample forecasting.

Download full version

Search cemmap

Search by title, topic or name.

Contact cemmap

Centre for Microdata Methods and Practice

How to find us

Tel: +44 (0)20 7291 4800

E-mail us